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ABSTRACT This paper tackles the complex problem of optimizing resource configuration for microservice
management in heterogeneous cloud environments. To address this challenge, an enhanced framework,
the multi-objective microservice allocation (MOMA) algorithm, is developed to formulate the efficient
resource management of cloud microservice resources as a constrained optimization problem, guided
by resource utilization and network communication overhead, which are two important factors in
microservice resource allocation. The proposed framework simplifies the deployment of cloud services and
streamlines workload monitoring and analysis within a diverse cloud system. A comprehensive comparison
is made between the effectiveness of the proposed algorithm and existing algorithms on real-world datasets,
with a focus on resource balancing, network overhead, and network reliability. Experimental results reveal
that the proposed algorithm significantly enhances resource utilization, reduces network transmission

overhead, and improves reliability.

INDEX TERMS
multi-objective optimization, microservice.

I. INTRODUCTION

In recent years, with the rise of microservices architecture
for breaking large-scale applications down into smaller
independent components, microservice applications invoke
numerous internal microservices to construct responses.
For instance, a container is a typical example that meets
the requirements of a microservices architecture. By using
containers, developers can focus on service development via
operating system virtualization. Since docker is one of the
most successful container frameworks [1], providing inde-
pendent execution environments with isolated file systems,
portability, and superior resource utilization compared to
virtual machines [2], it has become an important technology
in current microservices. Examples of container orchestration
platforms that offer automated deployment include Docker
Swarm, Apache Mesos, and Google Kubernetes [3].
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Despite the rapid technological development of microser-
vices architecture, there are still many tasks to be tackled.
For example, the default resource allocation method in
Kubernetes only aims at physical resource utilization [4]
and does not address the costs and reliability of network
transmission. Moreover, reliability is a critical issue in
cloud service environments, which has been specifically
addressed in [5] and [6]. Given that the approaches of
the existing works mainly operate across homogeneous
clouds, handling resource heterogeneity within multi-cluster
environments may pose even more problems. Accordingly,
in view of the characteristics of microservices, monitoring
all service components and their interactions can be com-
plex. Monitoring metrices, resource metrics (e.g., CPU and
memory utilization) and platform metrics (e.g., number of
requests per second, distribution of time required for each
request, and average execution time for the queries), may
be built for individual services, which provide visibility
into the distributed system for evaluating the application’s
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performance [7]. In this work, we use resource utilization
as the optimization goal. Thus, resource metrics, CPU uti-
lization and memory consumption, are applied for effectively
managing the resources and further enhancing both the
performance and service reliability.

With recognized as an NP-hard problem for container
resource allocation [8], finding polynomial-time complexity
algorithms remains an open issue. Many researchers turn
to meta-heuristic algorithms to obtain optimal solutions
for these resource allocation problems. In various heuristic
algorithms, each possesses its own set of strengths and
weaknesses. By employing contextual analysis, we can
determine the most suitable algorithm for a given scenario [9].
For instance, [10] compares different algorithms to propose
the most fitting one for a specific context and acquires
results through iterative experimentation. Genetic algorithms
(GA) are considered effective in addressing such prob-
lems [11], and Non-Dominated Sorting Genetic Algorithm
II (NSGA-II) is one of the most widely used genetic
algorithms [12]. Accordingly, further research is needed to
address these concerns and advance the field.

In this study, an elitism-based genetic algorithm, the
multi-objective microservice allocation (MOMA) algorithm,
is developed and utilized to determine the optimal placement
of microservices within the cluster, taking into account
the current state of the cluster and the microservices
themselves, where a cluster is a group of servers or nodes,
which participate in workload management. The proposed
framework aims to facilitate the placement of workloads
into the Kubernetes cluster, which may consist of a PC
and physical computer systems (e.g., Raspberry Pi and an
NVIDIA Jetson Nano). This operation involves considering
factors such as resource balancing, inter-dependencies among
microservices, network characteristics, and performance
requirements. By analyzing these factors, the system can
devise an effective distribution strategy that ensures efficient
resource utilization for the microservices. Thus, the goal is to
find the best possible arrangement that maximizes the overall
system performance and minimizes any potential bottlenecks
or resource constraints.

The main contributions and features of this study are as
follows:

1) This work addresses the heterogeneity challenge of
microservice resource allocation by developing an
enhanced GA algorithm with two objective models,
considering resource utilization and network com-
munication overhead, and the empirical parameter
settings via real-world data, for optimizing resource
management in heterogeneous cloud environments.

2) The proposed framework tackles the heterogeneity
aspects of cluster monitoring and resource selection,
simplifies the deployment of cloud services, and
streamlines workload management and analysis within
a diverse cloud system.

3) A comprehensive evaluation of the proposed frame-
work is presented on real-world datasets. The
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experimental results show that the proposed framework
outperforms existing methods in terms of resource

balancing, network overhead, and network reliability.
The organization of this paper is as follows: Section II

reviews related works about cluster resource allocation
and multi-objective optimization. Section III presents the
proposed system architecture and workload analysis frame-
work. Section IV describes a customized multi-objective
optimization model for evaluating the heterogeneous system
performance. Section V examines the framework charac-
teristics and presents a performance comparison between
the proposed scheme and the existing works. Finally,
Section VIII draws conclusions and outlines future research
directions.

Il. RELATED WORKS

This section reviews related works about cluster resource
allocation and multi-objective optimization in various cloud
environments.

A. RESOURCE ALLOCATION

Resource management has always been a critical issue in
cloud computing [13]. In the literature, numerous issues have
been discussed for solving resource management problems
(e.g., scheduling approaches [14] and allocation strategies
[15]). For instance, cluster-based resource management
schemes, which improve Kubernete algorithms [16], [17],
[18], [19], [20], and resource allocation algorithms based on
multi-objective evolutionary algorithms (MOEAs), such as
particle swarm optimization (PSO) [21], simulated annealing
(SA) [22], ant colony optimization (ACO) [23], and GA
algorithm [24], [25], [26]. Note that the Elitist non-dominated
Sorting Genetic Algorithm II (NSGA-II) [27] is one of the
most widely applied MOEAs in this context. The interested
reader is referred to [28] and [29] for comprehensive surveys
of metaheuristic optimization algorithms.

B. CLOUD ENVIRONMENTS

1) SINGLE-CLOUD SCENARIO

A large portion of literature focuses on issues related to
single-cloud scenarios. Fu et al. [21] use a PSO algorithm to
allocate resources and improve efficiency in a single-cloud
environment. Abdallah et al. [22] utilize SA algorithm and
tabu search to emphasize fair allocation procedures of multi-
ple resource types. Liu et al. [30] propose a multi-objective
optimization container scheduling algorithm that considers
five criteria to select the most suitable node for deployment.
Kaewkasi et al. [31] develop a new Docker scheduler and use
the ACO algorithm to balance resources. Gupta et al. [32]
implement enhanced algorithms (e.g., Max-Min and Greedy)
for load balancing in cloud environments. Qiu et al. [33],
Guo et al. [34], Li [35], and Ali [36] adopt machine learning
models (e.g., reinforcement learning and transfer learning)
as the main algorithms for service deployment, microservice
selection, optimizing the delay, and reducing deployment
cost with a fixed service set. However, due to the issue
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TABLE 1. Summary of resource management.

Reference  Architecture Management Objectives Algorithm/Platform
[21] Single cloud Allocation Resource PSO
[22] Single cloud Allocation Energy consumption SA tabu search
[31] Single cloud Scheduling Performance ACO
[30] Single cloud Scheduling Performance, association, clustering Own algorithm
[32] Single cloud Allocation Resource Max-Min, Greedy
[33] Single cloud Allocation Resource Machine learning
[34] Single cloud Scheduling Microservice selection Machine learning
[35] Single cloud Service deployment Delay and deployment cost Machine learning
[24] Multiple clouds Allocation Service cost, latency, availability NSGA-II
[25] Multiple clouds Allocation Load balancing NSGA-II
[26] Multiple clouds Allocation Availability, energy consumption NSGA-II
[37] Multiple clouds Placement CPU performance, microservice interaction Greedy algorithm
[38] Multiple clouds Scheduling Resource, availability, costs GA
[39] Multiple clouds Traffic Availability, reliability Grafana and Prometheus
[40] Multiple clouds Allocation Resource, cost Own algorithm
[41] Heterogeneous cloud Scheduling Performance, energy consumption Own algorithm
[42] Heterogeneous cloud Scheduling Execution times, costs NSGA-II
[43] Heterogeneous cloud Allocation Resource Own framework
This work ~ Multiple heterogeneous clouds ~ Microservices placement, Resource utilization, reliability and overhead Elitist NSGA-IT

resource allocation

of model retraining, theses algorithms may not be suitable
for a microservices system with new services within short
execution time.

2) MULTI-CLOUD SCENARIO

In the context of multi-cloud environments, [24], [25], [26]
employ NSGA-II to address application availability and
energy consumption requirements in container-based clouds.
Han et al. [37] propose a Greedy algorithm for optimizing
microservice placement across multiple Kubernetes clusters.
They also introduce an empirical analysis framework to pro-
vide systematic and reliable measurement data. Frincu et al.
[38] utilize a GA algorithm to achieve high availability
and fault tolerance for applications. In [39], the monitoring
of multi-cloud services is discussed and implemented via
Prometheus and Grafana. Moreover, Lee et al. [40] propose
a hierarchical monitoring framework for multi-cloud envi-
ronments that takes workloads into account but does not
specifically address heterogeneity.

3) HETEROGENEOUS CLOUD SCENARIO

Instead of considering single and multi-cloud scenarios,
Rocha et al. [41] address the importance of heterogeneous
clusters in the cloud and propose an algorithm for accessing
heterogeneous resources, which significantly reduces energy
consumption and runtime. Ali et al. [42] present an improved
NSGA-II algorithm for minimizing range and total cost
in heterogeneous environments. Hasan [43] introduces a
resource monitoring framework for heterogeneous clusters
without detailed consideration of workloads.

In this work, we further extend the scope of the resource
management in a scenario of multiple heterogeneous clouds,
focusing on microservice placement and resource allocation.
We summarize these findings in Table 1, including differ-
ent cloud architectures, resource management approaches,
objective models, and corresponding algorithms. Here we
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examine the problem background and the contributions of the
proposed framework from two different perspectives.

From the scenario management perspective, in the single-
cloud scenario, the latest studies (e.g., [21], [22], [30],
[311, [32], [33], [34], [35]) on allocation and scheduling
management emphasize the importance of resource,energy
consumption, clustering, microservice selection, delay, and
deployment cost. In the multi-cloud scenario, several studies
(e.g., [26], [37], [38]) develop analytical architectures, con-
sidering placement, allocation and scheduling management
with respect to CPU performance, energy consumption,
microservie interaction, and deployment cost. Moreover,
in the heterogeneous cloud scenario, Rocha et al. [41]
and Ali et al. [42] focus on scheduling management with
optimization objectives of deployment cost, execution time,
and energy consumption. However, none of the mentioned
algorithms have specifically addressed the challenges of
heterogeneous and multi-cloud environments.

From the algorithm perspective, the default algorithm in
Kubernetes considers too few factors, focusing solely on
resource allocation balance without applying optimization
strategies. The Greedy algorithm (e.g., [37]) is applied to
simplify calculations and achieve a local optimal solution,
which may fail to deal with the multifaceted considerations
we aim for in multi-cluster algorithms in the cloud. Moreover,
the existing GA-based algorithms (e.g., [24], [25], [26], [41],
[42]) only focus on resource management in multiple clouds
or heterogeneous clusters in the cloud.

Therefore, upon addressing the problems of lacking in
heterogeneous requirements and optimization strategies for
container management, the proposed enhanced framework
allows for a broader exploration of resource management
considerations. Thus, this study focuses on addressing this
gap and proposes a microservice placement and workflow
scheduling approach along with resource allocation strategies
tailored for heterogeneous environments. The proposed
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approach is further analyzed based on two pivotal factors:
resource utilization and network communication overhead,
for tackling these aspects of heterogeneity in cluster moni-
toring and resource selection.

Ill. FRAMEWORK

A. SYSTEM MODEL

Referring to the microservice placement framework in [37],
we propose a novel system framework. Derived from
empirical analysis, the proposed framework provides several
improvements with respect to throughput, latency, and
distribution strategies for microservices, which are depicted
in Figure 1. The proposed framework is divided into four
main components: the Monitoring Unit, the Data Analysis
Unit, the Optimization Algorithm Placement Unit, and the
Kubernetes Management Unit. Through the interactions
of these units, the framework facilitates the placement of
workloads into the Kubernetes cluster. The four components
are described as follows:

COMPUTING COMPUTING

Hybrid Clusters

,,,,,,,, 41 @ .

The #}rk 40

Workload Cloud Native Services

Optimal Kubernetes
Placement | (Management
= AN

o8

e Dusm@m
Algorithm

FIGURE 1. Architecture diagram of the empirical analysis framework.

1) MONITORING UNIT

It monitors the resource usage of the cluster, keeping track
of metrics like CPU utilization and memory consumption.
This information helps in managing and optimizing resource
allocation. Moreover, the system collects performance data of
microservices, including metrics such as latency and through-
put, which enables performance evaluation and identification
of bottlenecks for further optimization. By monitoring these
aspects, the system helps maintain the stability, performance,
and overall health of the cluster environment.

2) DATA ANALYSIS UNIT

The collected monitoring data undergoes comprehensive
analysis to evaluate the state of the cluster and assess the per-
formance of microservices. This analysis involves examining
various metrics, such as resource utilization, response time,
and throughput. By analyzing this data, valuable insights
can be gained regarding the efficiency and effectiveness of
the cluster and its microservices. The analyzed data is then
stored for further use by other components or units within the
system, enabling informed decision-making, optimization of
resource allocation, and performance enhancements.
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3) PLACEMENT OPTIMIZATION UNIT

The optimization algorithms are utilized to determine the
optimal placement of microservices within the cluster,
taking into account the current state of the cluster and
the microservices themselves. This involves considering
factors such as resource balancing, inter-dependencies among
microservices, and performance requirements. By analyzing
these factors, the system can devise an effective distribution
strategy that ensures efficient resource utilization for the
microservices. The goal is to find the best possible arrange-
ment that maximizes the overall system performance and
minimizes any potential bottlenecks or resource constraints.

4) KUBERNETES MANAGEMENT UNIT

The resource management system interacts with the cluster
through the Kubernetes API, enabling it to perform various
tasks. By leveraging the Kubernetes infrastructure, the system
ensures efficient deployment of the workload by assigning the
microservices to the appropriate nodes within the cluster.

B. FRAMEWORK WORKFLOW

Figure 2 illustrates the overall workflow of the three-stage
framework and explains how it communicates with users
and the cluster. In Stage one, the user sends a request
that is received by the Kubernetes Management Unit within
the framework, where the Kubernetes Management Unit is
responsible for deploying the application to the selected
cluster. Next, the Monitoring Unit is utilized to monitor the
workload and gather information about resource utilization
and microservices performance within the cluster. The
collected data are then stored using persistent volume.

In Stage two, the stored measurement data are passed to
the Data Analysis Unit for analyzing the captured values and
deriving stable workload results, which are then stored in
the Analysis Database. This procedure is repeated for each
microservice within the application, ensuring completion for
all microservices.

eeeeeee

roser
Placement Return the placement results

FIGURE 2. Information flowchart of the workflow process.

In Stage three, after organizing the analyzed data in the
database, they are passed to the Placement Optimization Unit,
which executes the designed algorithm for determining an
approximate optimal placement strategy. The results of the
algorithm execution provide insights into the placement of
microservices. Subsequently, the Kubernetes Management
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FIGURE 3. Heterogeneous Cloud applications.

Unit is used to deploy the microservices onto the cluster.
Finally, the results can be applied for strengthening the
monitoring and evaluation of microservice management.

C. APPLICATION TYPE

Since cloud-native technologies empower organizations to
build and execute scalable applications in a modern, dynamic
environment, including public, private, and hybrid clouds,
in this work, we consider a cloud service that can operate for
both edges and clouds. We establish three cloud environment
services to represent the heterogeneous environment, as illus-
trated in Figure 3.

1) KUBEFLOW APPLICATION

Kubeflow is a model development platform, built on top
of Kubernetes, which provides all the necessary tools for
developing models and leverages Kubernetes to achieve
flexible control over resources and networking. During the
execution of the sample program, we utilize the Chicago
Taxi Trips dataset, which is included in Kubeflow’s built-
in test dataset. We adopt the Xgboost demo example in
Kubeflow for training. The process involves various units
such as data preprocessing, model training, prediction, data
normalization, and data validation.

2) SOCK SHOP APPLICATION

The application is a well known microservices application,
widely used in demonstration and testing of microservice
environments such as Kubernetes. It is built using Spring
Boot, Go kit and Node.js and is packaged in Docker
containers. We use Locust to conduct HTTP workload testing
and simulate the performance of the store application under
real-world usage scenarios.

3) EDGEX FOUNDRY APPLICATION
EdgeX is used to provide an open-source platform for
industrial-grade edge computing in the Internet of Things
(IoT) domain. We use Raspberry Pi 4 as the edge device,
combined with DHT-11 sensor, to collect temperature and
humidity data as an example for IoT services.

The three mentioned applications serve as deployable
applications in a heterogeneous hybrid cloud environment,
where these components are often used as reference points
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TABLE 2. Notations and Definitions for the Problem Model.

Element Notation Description

Micro- Microservices The set of microservices.

services |Microservices| = m The total number of microservices
comprising the application.

ms; € Microservices Representing the ith microservice.

Cluster Cluster® The collection of clusters of the ith
microservice.

|Cluster | = ¢; The number of Kubernetes clusters
of the ith microservice.

cnél) € Cluster® Representing the ¢th cluster for the
ith microservice.

Node Hosty The collection of physical nodes in
the ¢th cluster.

|Hosty| = ng The total number of physical nodes
in the /th cluster.

pnj(l) € Hosty Representing the jth physical node
of the (th cluster.

Resource  cpuyey; The CPU resource requirement of
the ith microservice.

memyeq; The Memory resource requirement
of the ith microservice.

CPliresy; The amount of available computing
capacity on the jth node in the ¢th
cluster.

MeMyres,; The amount of available memory

capacity on the jth node in the ¢th
cluster.

Network Failg.) The probability or frequency at
which the node (e.g., the jth node in
the ¢th) may experience a failure or
become unavailable by the ith mi-

croservice.

The network distance between two
nodes (e.g., the ith node and the kth
node in the /th cluster) by the ith
microservice.

Distance(i)
(pn/m )

The total volume of data transmis-
sion for sending and receiving oper-
ations between two nodes (e.g., the
ith node and the kth node in the ¢th
cluster) by the ith microservice.

Intemctionm 0
(

[©)
pny )

for testing. By integrating the proposed framework with
these applications, it opens up greater possibilities for future
adoption and promotion of cloud-native services, which
allows us to make significant advancements in utilizing and
promoting cloud-native services.

IV. THE OPTIMIZATION MODEL

This section provides an overview of the optimization model,
integrating the objectives of establishing load-balancing
cluster environments and reducing network transmission
overhead for reliable microservice communication specified
by the problem model. The notations and descriptions are
summarized in Table 2.

A. PROBLEM MODEL

1) OBIJECTIVE 1: MAXIMUM RESOURCE UTILIZATION

The problem model aims to balance the resources in multiple
clusters, which is referred to as the multi-resource load
balancing problem. To tackle this, we adopt the ‘“‘server’s
dominant load”” method to maximize the load of all resource
types [44]. To avoid significant disparities, the proportional
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values between loads in each cluster and its associated nodes
are calculated and normalized with the standard deviations
o¢,1 and oy as scalar factors for the memory and CPU
resources of cluster ¢, respectively. Comparing to the similar
model in [45], the proposed load balancing model achieves a
more even distribution of resources in heterogeneous multi-
cluster systems, which yields

CLU_BAL
1
0¢,1+0¢2
( “ meniyreq; “ CPUreq; )
X max ol — + ZO’g,z— , (D)
Ej;”lt i1 memres(j i1 Cpuresej

where i is the microservice index, ¢ is the cluster index, j
is the node index, c; represents the number of Kubernetes
clusters of the ith microservice, ny represents the total number
of physical nodes in the fth cluster, and m is the total
number of microservices comprising the application. Note
that memyeq,, menyes, , CPUreq;, and CPlres,, are resource
elements as described in Table 2.

2) OBJECTIVE 2: REDUCING COMMUNICATION OVERHEADS
To improve data availability in edge computing, the impor-
tance of retransmission mechanisms in the context of IoT and
edge computing is emphasized [46], [47]. Therefore, we take
this aspect into account and design a model that focuses on
the impact of retransmission mechanism in heterogeneous
clouds, which is given by

REL_NET_OVH
m ¢ ng ng

=222 2

i=1 =1 j=1 k=1 N k#j
x (1 —|—Failéi.)) % Distance” @ _© s Interaction"” © (O
J (pnj o) (pnj o)

@

where Failg.), Distancez;)n](_l)‘png)), and Interactiongn;e)’pnl(f))
are network elements as described in Table 2. Here Fail
represents the probability or frequency at which the node may
experience a failure or become unavailable by the microser-
vice. Distance represents the network distance between
two nodes by the microservice. Interaction represents the
total volume of data transmission for sending and receiving
operations between two nodes by the microservice.

B. MULTI-OBJECTIVE MICROSERVICE ALLOCATION
MODEL

Based on the aforementioned problem model, an allocation
model aiming at optimizing two objectives is designed to
fulfill the requirements through the following constraints.

CLU_BAL, 3)
REL NET_OVH, 4

minimize
minimize
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m Cji ny
(]
s.t. ZZZmemmqi < memyes;, Vpnj , (5
i=1 t=1 j=1
m ¢ ng

Z z Z CPUreq; < CPUresy;s Vpl’lj([). (6)

i=1 {=1 j=1

Equations (3) and (4) represent two optimization objec-
tives: minimizing the maximum resource utilization on
multiple cluster physical nodes and minimizing network
transmission overhead for reliable microservice commu-
nication. Note that equations (5) and (6) represent the
constraints of the model, which ensure that the resources
of the microservices can be fully allocated on a single
node. Therefore, constraints are imposed specifically for this
aspect.

As we know, multiple-objective problems are difficult
to find exact solutions and often require searching for
optimal approximate solutions. With the parallel computing
capability and scalability for efficiently solving complex
and challenging problems, GA algorithms have been widely
used. However, GA algorithms may suffer from the issue
of easily getting trapped in local optima. Therefore, based
on the NSGA-II algorithm, we enhance its adaptability for
the domain-specific problem via the proposed multi-objective
microservice allocation (MOMA) algorithm, as detailed in
Section V.

V. MOMA ALGORITHM DESIGN

This section explains the design principles of the proposed
MOMA algorithm, which aims to provide better resource
allocation for a container-based heterogeneous cloud. The
proposed MOMA algorithm defines chromosome repre-
sentation, usage of crossover operators, mutation operator
methods, parameter settings, and algorithm flow. Since the
quality of a GA algorithm is greatly influenced by the
definition of each component, in the following subsections,
the overall algorithm structure is described and the operation
procedures are summarized in Algorithm 1.

A. REPRESENTATION

When using a GA algorithm to solve a problem, it is essential
to analyze the problem for determining the decision variables
(i.e., the genes) [48]. After encoding the genes through a
series of processes, we refer to them as chromosomes, which
typically consist of individual genes. To manipulate and
optimize the chromosomes, the binary encoding scheme [49]
is used to ultimately find the optimal or near-optimal
solutions. Thus, we define a microservice list based on
different allocations, which represents the assignment of
containers to various workers in a cluster with implementing
microservices. The workers consist of a heterogeneous
combination of general-purpose computers and edge devices.
Figure 4 shows a typical run of a microservice list based
on different allocations, which represents the assignment of
containers to various workers in a cluster with implementing
microservices. The workers consist of a heterogeneous
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combination of general-purpose computers and edge devices.
Note that ms; represents the ith microservice and 1-
2 represents performing the microservice via node 2 in
cluster 1.

‘ Cluster #1 ‘ [ Cluster #2 ‘
Node #1 [go Node #2 2% Node #1 [g® Node #2 2%
&7 &7
msg ms3 msy mssg
msq msg msp msg
mss5 msz msp ms4
msp msg
ms3

‘ msp ‘
4 Vi V2

N

27
21 )

= prd), =

5 21 ) “22
~_ I\ N

FIGURE 4. An example of chromosome representation.

B. CROSSOVER
During the crossover process, genes are randomly paired
from replicated genetic material with the pairing methods,
including the single-point crossover, two-point crossover,
uniform crossover, mask-arithmetical crossover, and simu-
lated binary crossover (SBX) [50], [51]. However, not every
individual is required to mate in each generation, which leads
to the introduction of a crossover probability, Prob rossover -
The SBX operator primarily aims to emulate the charac-
teristics of single-point crossover in binary-encoded chro-
mosomes. When applying the SBX, assuming two parent
individuals (P; and P3), two offspring individuals (Q; and
(») can be generated using the SBX operator, which are

01 =0.5((Py + P2) — B(P2 — P1)),
02 =0.5((P1 + P2) + B(P2 — P1)), N

where B depends on the random number u, as shown by
equation (8)

(2u)n741r1 if u < Proberossover
g = 1 1 . ®)
(=—)1  otherwise,
2(1 —u)
u is a random number between 0 and 1, and 7 is a constant
representing the distribution index. The value of 7 is set to
a commonly used value of 10. When 7 has a larger value,
the offspring will be more inclined to resemble their parents.
Given two parent individuals (P and P;) and referring to the
SBX operator described in equations (7) and (8), Figure 5
shows the generation process of two offspring individuals (O

and Q»).

C. MUTATION
Mutation is a method of changing the genetic genes of
offspring with a certain probability to prevent from falling
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FIGURE 5. An example of SBXcrossover.

Insertions

Chromosome

(a) Insertions

Deletions

Chromosome

(b) Deletions

FIGURE 6. An example of the insertion and deletion mutation operations.

into the local optimal solution and to maintain genetic diver-
sity. Referring to [48], the displacement-based operators,
the insertion and deletion operators, are applied on newly
generated individuals.

To maintain genetic diversity, the insertion and deletion
operations are point mutations that insert or delete a gene in
a DNA sequence. Based on the chromosome representation
in Figure 4, for the insertion mutation operation, it adds vari-
ations, where values are randomly added to the distribution
list. As shown in Figure 6(a), the microservice ms7 is newly
arranged to be performed via node 2 in cluster 2. For the
deletion mutation operation, it randomly deletes values from
the allocation list, where Figure 6(b) depicts the task deletion
of performing the microservice ms; via node 2 in cluster 2.
Accordingly, as shown in Figure 6, the manifest can be scaled
to make mutations more flexible.

D. ALGORITHM PARAMETERS

The parameter configuration is a crucial aspect in the GA
algorithm. Referring to the empirical parameter settings in
existing studies, in this work we derive the parameter settings
through empirical analysis, including population size, off-
spring size, crossover rate, mutation rate, mutation type, and
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termination criterion. When adjusting the population size and
offspring size, the number of individuals ranged from 50 to
500 in increments of 50. Through experimentation, a size of
200 is determined as the optimal value. For the crossover rate,
a suggested setting of 0.5 is adopted. In terms of mutation,
two types operations are considered, decrease mutation and
increase mutation, with probabilities set at 0.5 each. This
configuration is found to be suitable for our experimental
environment. As for the termination criterion, experiments
are conducted at intervals of 1000, and it is observed that
the value of termination criterion 25000 provides the best
parameter configuration. Table 3 summarizes the parameters
derived from all the evaluated experiments.

TABLE 3. The values of execution parameters.

Parameter Value
Population size 200
Offspring size 200
PrObmutatian 0.3
Probcrossover 0.5

Termination Criterion

E. ALGORITHM DESIGN

In the algorithm workflow, the parameters (i.e., cluster
information, microservice information, and predefined prob-
lem model parameters and algorithm parameters) are fed
into the system. The workflows and the inputs/outputs of
the proposed MOMA algorithm are briefly described in
Algorithm 1. In Step 1, we initialize the individuals by
creating a population P. In Step 2, the algorithm’s operations
are executed until reaching the termination criterion. Then,
the algorithm is performed based on the predefined popu-
lation size. Next, the Binary Tournament Selection method
is applied to select two parents and offspring is further
generated by the SBX method. Consequently, we determine
if mutation is required, and if so, we apply mutation to the
two offspring. After performing the mutation, we combine
these two offspring to form a new generation, sort the parents
and offspring, and then calculate the crowding distance
to measure how close an individual is to its neighbors.
Accordingly, we set the next generation of individuals P.
In Step 3, the final output is the ultimate result (i.e., the Pareto
front).

VI. EXPERIMENTAL SETTINGS AND ANALYSIS

This section describes the experimental environment, exam-
ines the workload distribution for each application. Figure 7
depicts the cluster structure for generating experimental data
on the heterogeneous cluster with workload, where a private
repository is set up to store images, allowing us to easily
perform local pulls.

A. EXPERIMENTAL ENVIRONMENT
To set up the cluster nodes, we use Ubuntu 20.04 and partition
the disk adequately to meet the requirements of cloud
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Algorithm 1 The MOMA Algorithm

Input:

Cluster = {cny|l = 1,2, ...,c};

Host = {pnjlj =1,2,...,m};

Microservices = {ms;li= 1,2, ...,n};
. _ . ® .

Distance = {Dlstance(pl/_’plk-)},

. _ . (D)
Interaction = {Interactlon(p[j)pm)}

PopulationSize < 200;

OffspringSize < 100;

MutationProbability : Probyation <= 0.3;

CrossoverProbability : Probcrossover <= 1.0;

TerminationCriterion < 25000;

P represents a population of individuals;

P and P; represent the parents;

01 and Q; represent the offspring;

U is a new population from two offspring;

Output:

Solution = ParetoFront;
1 Initialize P,
2 while TerminationCriterion # 0 do
for {j = 1, j < PopulationSize; j + + } do
(P1, P>) < BinaryTournament2Selection(P);
(Q1, @2) < SBXCrossover(Py, P»);
if {rand() < Probyuarion} then

01 < Mutation(Qy);
0> < Mutation(Q»);

end

U=UU{Q1,02};

end

ranking <= FastNonDominatedRanking(P U U);
density < CrowdingDistance(P U U);

P < Estimator(ranking, density, P U U);
TerminationCriterion = TerminationCriterion—1;

end
3 return the Pareto front;

architecture, including backup and mount areas. We then
install the NVIDIA driver, CUDA, and cuDNN on the system.
Once these steps are completed, we proceed to combine the
heterogeneous systems by using Kubeadm. We utilize Helm
to install Prometheus and Grafana (Figure 8) for monitoring
the cluster and visualizing its current status. Additionally,
we install DCGM to specifically monitor GPU resource
usage.

Referring to Figure 7, three different types of clusters are
established. First, for the primary of each cluster, we use
the local PC to create virtual machines (VM) for the
purpose of controls. The PC specifications are as follows:
Intel Core i9-10900KF CPU @ 3.7GHz with 20 cores,
256GB of Micron Crucial PRO DDR4 2666GHz RAM,
and an NVIDIA RTX 3080 GPU. The VM specifications
for the primaries follow the official recommendations of a
minimum of 2 cores and 4GB RAM. In the first cluster,
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FIGURE 7. Experimental platform on multiple heterogeneous Kubernetes
clusters.

Welcome to Grafana

FIGURE 8. Prometheus and grafrana.

FIGURE 9. Prometheus and Grafana monitoring graphs.

the configuration of the first node consists of an Intel X(R)
Silver 4110 CPU @ 2.1GHz with 32 cores (2 CPUs),
64GB of Samsung DDR4 2933MHz RAM (4 modules),
and 2 NVIDIA GeForce RTX 2080 Ti GPUs. Additionally,
we add a Raspberry Pi to create a different architecture. In the
second cluster, the configuration of the first node includes
an Intel 17-12700 CPU @ 4.9GHz with 24 cores, 32GB of
Micron Crucial DDR4 3200MHz RAM (2 modules), and
an NVIDIA GeForce RTX 2060 GPU. It also includes a
Raspberry Pi. Finally, in the third cluster, the configuration
of the first node is the same as the second cluster, with
an Intel 17-12700 CPU @ 4.9GHz with 24 cores, 32GB of
Micron Crucial DDR4 3200MHz RAM (2 modules). Instead
of adding a Raspberry Pi, here an NVIDIA Jetson Nano 4GB
is applied to generate architectural diversity.

After setting up the clusters, the proposed framework
is utilized to deploy workloads across the three hetero-
geneous cloud applications, which involves selecting the
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FIGURE 10. Locust workload request graph.

appropriate deployment strategies and configurations tailored
to each application’s specific requirements and character-
istics. By leveraging our framework, we can effectively
distribute and manage the workloads, optimizing perfor-
mance and resource utilization across the heterogeneous
cloud environment. This paper integrates the jMetal frame-
work [52] and a generic framework based on metaheuristic
multi-objective optimization for implementing and validating
the proposed algorithm. However, to better address the
challenges of multi-objective optimization problem, we uti-
lize a modified version of the jMetalPy framework [53]
for the algorithm development. To determine the quality
of solutions, we employ the hypervolume metric, calcu-
lated using the pygmo framework [54], which is partic-
ularly advantageous for large scale parallel environments.
By evaluating the hypervolume values, we can assess the
dispersion in solutions and ensure the retention of a superior
Pareto front.

B. EMPIRICAL ANALYSIS OF RESOURCE REQUIREMENT
This subsection explains the generation of measurement
data, primarily within the Monitoring Unit. We utilize the
Prometheus system to monitor nodes and display the results
through Grafana. This setup enables a continuous integration
and continuous deployment (CI/ CD) process, allowing us to
complete the entire data collection workflow in this manner.
Figure 9 showcases the data results displayed in Grafana after
Prometheus measures the metrics.

In the experiment, we use Locust to request and distribute
the workload for each application (Figure 10). Shell scripts
are applied to send 1 to 10 user requests per second
continuously for 450 seconds. Thus, the interval time between
each microservice is subject to a uniform arrival distribution,
which is applied for empirical analysis of resource require-
ment in this work. Consequently, 20 iterations of the results
are collected as the data for analysis. Note that here we
only present the data related to the resources. For instance,
as for the GPU part, Kubernetes does not provide specific
deployment options for GPUs. Therefore, we monitor GPU
usage, but do not take any specific actions regarding it.

Tables 4 and 5 present the resource requirements with
respect to the number of users, ranging from 1 to 10. The CPU
and Memory columns represent the analysis results obtained
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TABLE 4. Network interactions and resource requirements with one user request.

Application Container CPU Memory Interaction
Kubeflow application-controller 0.01 162.37 2.74 x 1072
metadata 0.0l 17580  6.87 x 1073
metadata-writer 0.01  459.85 9.45 x 1075
metadata-envoy-deployment 0.02  208.86 3.49 x 10~4
cache-server 0.01 229.99 2.34 x 1072
ml-pipeline-viewer 0.01  184.03 1.25 x 10~4
ml-pipeline-scheduledworkflow  0.01 192.84 9.45 x 10~4
mysql 0.01 148693 2.37 x 1073
minio 0.01 189.36  9.02x 1075
ml-pipeline-ui 0.01 511.34 6.74 x 10~2
ml-pipeline-visualizationserver 0.01 763.44 3.41 x 1071
workflow-controller 0.01 301.26 4.59 x 10~1
tran-pipeline 2.39 1500.28 1.00 x 10~1
ml-pipeline-persistenceagent 0.01 286.53 1.57 x 10~2
EdgeX foundry  edgex-device-rest 0.01 3198 5.11 x 10~10
edgex-core-consul 0.01  1.65 1.00 x 1.02-10
edgex-core-command 0.04 18.41 1.04 x 1079
edgex-support-scheduler 0.01 45.31 2.41 x 1073
edgex-redis 0.12 9941 1.19 x 1073
edgex-coredata 0.03 124.55 2.51 x 10~2
edgex-coremetadata 0.08  28.52 5.05 x 1072
edgex-support-notification 0.10  29.61 5.14 x 1073
edgex-sys-mgmt 0.01 15.31 2.25 x 1072
Sock shop orders-db 0.01 80.11 6.18 x 10~4
user-db 0.02  169.93 9.09 x 104
rabbitmq 0.10  180.60 5.21 x 1075
session 0.01  96.20 4.02 x 1073
carts-db 0.01 186.91 7.81 x 1073
catalogue-db 0.01  445.84 6.82 x 1076
orders 0.04  37.38 7.42 x 1075
user 0.04  499.16 9.80 x 1073
queue-master 0.10  39.51 1.18 x 10—6
carts 0.10  75.04 2.22 x 1074
catalogue 0.02  21.53 3.55 x 1073
front-end 0.17  38.03 3.29 x 104
shipping 001  1.10 6.76 x 1012
payment 0.01 093 5.07 x 1010

from monitoring and measurement, measured in Cores
and Mbytes, respectively. The Network Interaction column
represents the total amount of network communication
(send/receive) per second.

VIl. PERFORMANCE EVALUATION

To assess the effectiveness of the proposed resource allo-
cation scheme, the performances of three related algo-
rithms (i.e., Multiopt algorithm [24], Greedy-based heuristic
algorithm [37], and Kubernetes default algorithm [55]) are
compared and contrasted in three distinct cloud environments
with respect to resource utilization, network communication
overheads, and reliability. The experiments are conducted
using the data measured by the framework with user requests,
ranging from 1 to 10 at an interval of 1.

A. SYSTEM PERFORMANCE

This subsection explores the characteristics of the pro-
posed system. Assume the failure rate Fail of the
multi-heterogeneous clusters is in a given range, which
yields Fail = [0.01, 0.03] [56]. In a multi-heterogeneous
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cluster, there may be variations in the performance (e.g.,
reliability and failure rates) among different nodes, which
are the factors we need to consider in resource allocation
and load management. Similarly, in the context of multi-
heterogeneous networks, we set the distance in a given
range, which is Distance = [1.0, 4.0]. Notice that the
variation in distance is an important consideration in network
communication and transmission overheads, especially in
scenarios with diverse node characteristics and geographic
locations.

To further depict the performance efficiency, a test is
conducted with varying the percentage of the number of
failed requests to the total number of user requests (e.g.,
1%, 1.5%, 2%, 2.5%, and 3%, respectively). and executed
on three different microservices. The results are shown
in Figures 11(a), 11(b), and 11(c). It can be observed
that the overall number of failed requests increases rapidly
when the percentage of the number of failed requests to
the total number of user requests exceeds 2.5%, which
effectively demonstrates the system usability with respect
to the number of failed requests. Through this analysis,
we can gain insights into the overall system performance and
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TABLE 5. Network interactions and resource requirements with ten user requests.

Application Container CPU  Memory Interaction
Kubeflow application-controller 0.03  232.64 6.14 x 10~2
metadata 0.03 19931 1.02 x 1072
metadata-writer 0.0l 65321  3.41x107*
metadata-envoy-deployment 0.05 314.60 8.23 x 10~4
cache-server 0.01 311.24 4.52 x 1072
ml-pipeline-viewer 0.01 224.42 6.68 x 10—3
ml-pipeline-scheduledworkflow  0.01 316.52 5.61 x 10—3
mysql 002 152401 857 x 1073
minio 0.02 35224  151x107%
ml-pipeline-ui 0.01 592.58 1.14 x 10—2
ml-pipeline-visualizationserver ~ 0.01 843.52 9.64 x 10~ 1
workflow-controller 0.03 421.14 826 x 107!
tran-pipeline 4.39 1678.91 5.84 x 10~1
ml-pipeline-persistenceagent 0.02  351.23 2.62 x 10~2
EdgeX foundry  edgex-device-rest 0.02  63.68 4.15 x 10~8
edgex-core-consul 0.05  88.49 6.12 x 1.0277
edgex-core-command 0.08 3942 6.23 x 10—8
edgex-support-scheduler 0.53 42463 3.15 x 1073
edgex-redis 0.43 103.21 5.51 x 10—3
edgex-coredata 0.35 42571 3.12 x 10—2
edgex-coremetadata 032 75.15 8.23 x 10~2
edgex-support-notification 0.21 58.12 7.53 x 1073
edgex-sys-mgmt 0.01 42.51 7.99 x 10~2
Sock shop orders-db 0.29  381.84 2.95 x 10~2
user-db 0.25 193.10 1.03 x 1072
rabbitmq 0.18  173.45 5.00 x 10~5
session 0.10 126835 5.41 x 1072
carts-db 0.10 114819  4.90 x 1072
catalogue-db 0.04  156.86 2.42 x 1075
orders 0.02 2523 5.01 x 1075
user 0.02 2837 6.19 x 1073
queue-master 0.24  144.87 4.33 x 106
carts 023 797 2.38 x 1075
catalogue 0.19 6.15 1.01 x 103
front-end 035 020 1.89 x 102
shipping 004 1.10 7.26 x 1078
payment 003  7.72 5.14 x 1075
EdgeX foundry Socks Shop Kubeflow
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FIGURE 11. Performance efficiency with varying the percentage of the number of failed requests to the total number of user requests.

identify its condition, which may further enhance the system
capabilities.

B. COMPARATIVE PERFORMANCE ANALYSIS

This subsection presents a comparative analysis of the effec-
tiveness of the MOMA algorithm, comparing to Multiopt
algorithm [24], Greedy-based heuristic algorithm [37], and
Kubernetes default algorithm [55]. The key characteristics of
these algorithms are outlined as follows.
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For the Kubernetes default algorithm [55], similar to the
Binpack algorithm used in Docker Swarm [57], it seeks to
allocate nodes with the lowest resource utilization, which
sorts the nodes based on their available resources and assigns
pods to nodes with the lowest resource utilization. For the
multiopt algorithm [24], it considers CPU and memory usage
of every node, the association between containers and nodes,
and the clustering of containers, where these objectives align
with the goals considered in the proposed algorithm as well.
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For the greedy-based heuristic algorithm [37], it aims to
place all microservices in the same cluster by selecting the
target cluster and then prioritizing the placement based on
the high interaction value among the microservices. After
examining the characteristics of these algorithms, they will
be examined from the perspectives of resource utilization,
network communication overhead, and reliability.

1) RESOURCE UTILIZATION

Figures 12(a), 12(b), and 12(c) depict the computing resource
usage in three different applications. Similarly, Figures 12(d),
12(e), and 12(f) respectively indicate the utilization of
memory resources. We observe that the standard deviation of
CPU and memory usage for Kubeflow is lowest compared
to EdgeX Foundry and Socks Shop. This is primarily
because Kubeflow experiences a higher workload, requiring
more significant resource consumption. As a result, the
standard deviation is lower due to the consistent and sub-
stantial resource utilization demands placed on the system,
distinguishing it from EdgeX Foundry and Socks Shop.
Moreover, it is evident that regardless of the application,
the proposed algorithm consistently exhibits the lowest
resource utilization, indicating greater efficiency in resource
consumption. From a statistical perspective, the overall
standard deviation of a cluster o,y can be obtained by
combining the two standard deviations of cpu and memory,
Ocpu and Oyem, Which is given by

Ocluster Zl 02+ Ol om- 9)
7V Cepu mem

Referring to equation (9), Figures 13(a), 13(b), and 13(c)
show that the greedy algorithm [37] has the largest standard
deviation among all the algorithms in terms of resource
utilization. This is because it focuses more on the interaction
of microservices and does not prioritize and balance the
cluster workloads. In Multiopt [24], the performance is
similar to the default Kubernetes algorithm [55] due to the
consideration of CPU and memory utilization for placement.
However, none of these algorithms take into account the
heterogeneity of the architecture, so their performance is
slightly inferior to the proposed algorithm.

Observe that for the EdgeX Foundry application, given
a smaller number of user requests, say 2, the Multiopt and
the proposed MOMA algorithms respectively realizes 5.6%
and 11.1% improvement of cluster resource utilization with
respect to the default Kubernetes algorithm. In contrast, for
a larger number of user requests, say 8, only the proposed
MOMA algorithms realizes 7.0% improvement of cluster
resource utilization with respect to the default Kubernetes
algorithm. Similarly, for the Socks Shop application, with
the number of user requests equal to 2, the Multiopt and
the proposed MOMA algorithms respectively realizes 6.5%
and 11.3% improvement of cluster resource utilization with
respect to the default Kubernetes algorithm. In contrast, for
the number of user requests equal to 8, the Multiopt and
the proposed MOMA algorithms respectively realizes 8.3%
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FIGURE 12. The comparison results of standard deviations in resource
utilization.

(e) Computing

and 10.0% improvement of cluster resource utilization with
respect to the default Kubernetes algorithm. Furthermore, for
the Kubeflow application, with the number of user requests
equal to 2, the Multiopt and the proposed MOMA algorithms
respectively realizes 4.7% and 7.0% improvement of cluster
resource utilization with respect to the default Kubernetes
algorithm. In contrast, for the number of user requests equal
to 8, the Multiopt and the proposed MOMA algorithms
respectively realizes 2.6% and 5.3% improvement of cluster
resource utilization with respect to the default Kubernetes
algorithm.

2) NETWORK COMMUNICATION OVERHEAD
Given different number of user request scenarios, Figure 14
shows that with a smaller number of user requests (e.g.,
less than or equal to 3), the four algorithms have similar
performance of the network communication overhead for
these three applications. However, with a larger number of
user requests (e.g., larger than 3), the default Kubernetes
algorithm [55] contributes the largest number of communi-
cation overhead due to the only consideration of resource
aspect. Moreover, Multiopt [24] attempts to place related
containers together but does not consider the placement
order, while Greedy [37] places all containers in the same
cluster, significantly reducing network transmission costs
and approaching the performance of the proposed MOMA
method.

In the three different applications, as shown in Fig-
ures 14(a) and 14(b), EdgeX Foundry and Socks Shop
have significantly higher overheads because of higher
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network demands, involving data creation and transmission
to databases and employing socket-based communication
mechanisms. In contrast, as shown in Figure 14(c), Kubeflow
primarily tests data through standard databases and does not
require redundant data fetching. Therefore, the overhead in
Kubeflow is not as high when compared to EdgeX Foundry
and Socks Shop.

3) RELIABILITY

Due to the neglect of the node failure rate, the default
Kubernetes [55], Multiopt [24] and Greedy [37] algorithms
obtain degraded performances compared with that of the
proposed algorithm. However, observe that as shown in
Figures 15(a), 15(b), and 15(c), Greedy’s approach of placing
the majority of services in the same cluster may mitigate the
impact of the failure rate to some extent. Nevertheless, as the
user requests increase (e.g., greater than 6), there is still an
issue of increased failure rates. As user requests increase, the
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number of failures gradually becomes more challenging to
control.

Different applications exhibit varying proportions of
failures. For instance, in the case of Kubeflow, where
training units require substantial resources, a failed unit
creation can result in significant cascading errors, leading
to a higher rate of failures. In EdgeX Foundry, the high
interdependency among units means that a failure at an earlier
stage can have a pronounced ripple effect, contributing to a
higher rate of failures. Conversely, Socks Shop, with fewer
constraints among its web microservices, doesn’t exhibit as
much interdependence in the event of failures, allowing it to
continue functioning relatively independently.

C. COMPARATIVE SUMMARY

The comparative analysis explores the characteristics and
performances of the Kubernetes default algorithm [55],
Multiopt algorithm [24], Greedy algorithm [37], and the
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TABLE 6. A summary of the results of EdgeX Foundry.

TABLE 7. A summary of the results of Socks shop.

EdgeX foundry
User Kubernetes Multiopt Greedy Ours
Request

Clu Tra Fai Clu Tra Fai Clu Tra Fai Clu Tra Fai
x1.0 0.54 6.90 29 0.51 4.60 27 0.58 4.00 23 048 3.80 19
x2.0 0.58 9.15 44 0.53 7.08 45 0.6 6.30 40 050 6.00 39
x3.0 0.6 11.61 63 0.53 9.75 64 0.64 9.20 56 0.51 8.30 57
x4.0 0.57 17.38 77 0.60 13.5 75 0.62 10.11 69 053 9.77 67
x5.0 047 2248 85 0.58 18.13 87 0.60 17.03 79 0.5 14.39 81
x6.0 049  29.60 91 0.50 26.40 93 052 1932 83 045 1631 84
x7.0 044 3655 103 041 28.88 101 047 2373 91 04 1941 88
x8.0 056 4288 134 053 3440 131 058 27.13 120 05 23.13 113
x9.0 0.57 49,50 161 058 4094 163 0.60 30.09 142 0.53 27.13 128
x10.0 044 57.04 198 050 47.31 192 044 3410 168 041 3001 157

! Clu represents the cluster resource utilization in Figure 13(a).
2 Tra represents the network transmission overhead in Figure 14(a).
3 Fai represents the mean count of fail requests in Figure 15(a).

Socks shop
User .
Request Kubernetes Multiopt Greedy Ours

Clu Tra Fai Clu Tra Fai Clu Tra Fai Clu Tra Fai
x1.0 0.58 7.11 31 0.62 4.60 29 0.61 4.00 22 0.56 23.80 25
x2.0 0.62 11.16 54 0.58 7.09 43 0.64 6.31 43 0.55 6.01 40
x3.0 0.59 11.62 73 0.56 9.76 59 0.60 9.21 59 0.53 7.31 61
x4.0 0.61 17.40 77 0.64 13.51 69 0.67 10.12 69 0.59 N)\ 67
x5.0 0.59  26.50 85 0.55 2331 79 0.60  18.31 79 0.57 14.02 77
x6.0 0.55 29.63 91 0.56 2642 83 0.60 2134 83 0.52 16.33 84
x7.0 0.53 3259 103 055 28091 91 0.57 2375 91 0.53 19.53 88
x8.0 0.60 4292 114 055 3443 102 063 27.16 102 0.54 23.15 93
x9.0 0.61 4955 128 0.63 4098 113 0.65 3423 113 0.59 29.16 101
x10.0 0.57 57.10 149 059 4736 125 0.6 37.73 125 0.55 33.04 109

' Clu represents the cluster resource utilization in Figure 13(b).
2 Tra represents the network transmission overhead in Figure 14(b).
3 Fai represents the mean count of fail requests in Figure 15(b).

TABLE 8. A summary of the results of Kubeflow.

proposed MOMA algorithm. As shown in Figures 14 and 15,
for the Greedy algorithm [37] with consolidating most
services within the same cluster, the network communication
overheads may be suppressed and the failure rates may have
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Kubeflow
User .
Request Kubernetes Multiopt Greedy Ours

Clu Tra Fai Clu Tra Fai Clu Tra Fai Clu Tra Fai
x1.0 0.40 6.90 35 0.43 4.6 31 0.48 4.00 25 0.38 3.80 28
x2.0 0.43 9.15 63 0.41 7.08 58 0.50 6.30 53 0.40 6.00 50
x3.0 048 11.61 76 0.41 9.75 81 0.47 9.20 68 0.38 8.30 73
x4.0 046 14.38 97 042 12.5 95 0.55 10.11 89 0.44 9.77 87
x5.0 042 2048 109 045 18.13 107 053 17.03 99 0.40 15.00 97
x6.0 0.36 21.6 130  0.40 20.4 123 048 1832 111 0.33 17.31 103
x7.0 0.38 2355 141 036 21.88 135 047 19.73 124 0.33 18.41 117
x8.0 0.38 2488 162 0.37 214 155 055 2013 148 036 19.13 139
x9.0 044 3299 189 046 3294 171 052 30.09 160 041 29.13 145
x10.0 043 39.04 199 042 3731 18 0.53 34.10 179 037 33.01 169

! Clu represents the cluster resource utilization in Figure 13(c).
2 Tra represents the network transmission overhead in Figure 14(c).
3 Fai represents the mean count of fail requests in Figure 15(c).

less of an impact on network reliability. However, as shown in
Figures 12 and 13, this operation may deteriorate the perfor-
mance of cluster resource utilization. As to the Kubernetes
default algorithm [55] and Multiopt algorithm [24], they
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respectively only allocate nodes with the lowest resource uti-
lization and consider CPU and memory usage of every node
to handle microservice interaction. Therefore, as depicted
in Figures 12 to 15, these two algorithms perform sim-
ilarly for the microservice task with respect to resource
utilization, network communication overheads, and network
reliability.

Overall, the proposed MOMA algorithm outperforms the
Kubernetes default algorithm [55], Multiopt algorithm [24],
and Greedy algorithm [37] in terms of resource utilization,
network transmission overhead, and reliability usage in
the three applications within multi-heterogeneous cluster
environments. This is because the above three algorithms
that are being compared lack consideration for node failure
rates and heterogeneous architectures, resulting in relative
performance degradation. Moreover, the proposed system
is scalable to be able to ingest an increasing number of
heterogeneous Kubernetes clusters and services. For instance,
when the system includes a new heterogeneous Kubernetes
cluster or a service, the proposed MOMA algorithm can be
applied to optimize resource allocation. For the robustness
issue, the proposed framework can be employed to implement
a robust microservices environment with resource balancing.
Referring to the analysis in Section VII-B3, the architecture
principle and design pattern of the proposed framework
architecture can help in building a reliable microservice
architecture. The summarized findings are presented in
Tables 6-8.

VIIl. CONCLUSION

This work establishes a bi-objective optimization model:
(1) maximum resource utilization and (2) reducing network
communication overhead. To evaluate the performance of the
proposed MOMA model, we apply three different microser-
vice applications (i.e., edgex foundry, socks shop, and kube-
flow) and examine the framework via microservice workload
analysis with the measurement data from heterogeneous
architectures of real-world scenarios. To achieve a more
diverse and better set of solutions, we develop the MOMA
algorithm based on the improved Elitist NSGA-II. We design
a genetic representation, utilize SBX crossover operator, and
employ two different mutation operators. To evaluate the
quality of our solutions, hypervolume is used as a metric.
Compared with the existing algorithms, the experimental
results show that the proposed algorithm demonstrate sig-
nificant improvements in resource utilization, network trans-
mission overhead, and reliability across the three different
applications.

To further extend this study on resource allocation in mul-
tiple heterogeneous clouds, possible future works include (1)
considering GPU management in microservice resource
allocation due to emerging microservice applications with
GPU utilization, (2) integrating cloud-native services from
certain Graduated projects into our framework, (3) deriving
the theoretical bounds of the resource matrices for further
investigating important characteristics of a microservices
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system and providing a baseline for the overall health of
the system, (4) exploring platform metrics for monitoring
the microservice health, energy consumption, or the entire
microservices application, (5) investigating the algorithm’s
performance by enlarging the number of heterogeneous
Kubernetes clusters and services, and (6) using a large and
diverse evaluation set to abstract the system characteristics
(e.g., scalability, generalizability, and reliability), and to
benchmark cloud/edge computing platforms [58], [59].
We plan to explore and experiment with a wider array of
meta-heuristic algorithms through comparative analysis to
further optimize our approach and extend the current research
by incorporating a larger heterogeneous resource pool, such
as investigating the possibility of adding virtual machines
as additional work nodes in the architecture and making
the heterogeneous infrastructure more comprehensive and
versatile.
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