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ABSTRACT The YOLOv4 network is widely used in object detection tasks as a representative network, but
there is also the problem that the complexity of the network model affects the detection speed. In this paper,
we propose an improved MV2_S_YE object detection algorithm based on the YOLOv4 network to improve
the detection accuracy while increasing the road object detection speed. Firstly, the backbone network
CSPDarknet53 of the YOLOv4 network is replaced by the Mobilenetv2 network to reduce the number of
parameters of the network; secondly, the channel attention mechanism is introduced, and the SENet module
is embedded in the structure of the PANet to optimize the object detection accuracy; finally, the EIOU
loss function is used to replace the CIOU loss function to improve the object detection accuracy further.
The MV2_S_YE network is obtained and tested on Pascal VOC, Udacity, and KAIST datasets. To evaluate
our approach, we compared MV2-S-YE with YOLOv4, YOLOv4-tiny, YOLOv7-tiny and YOLOv8s. The
results show that MV2-S-YE mAP@0.5 achieves 80.9%, 66.7%, and 94.8% on the VOC2007, Udacity,
and KAIST test sets, respectively, and is higher than YOLOv8s on both the Udacity and KAIST test sets.
On the VOC2007 test set MV2-S-YE achieves a detection speed of 45FPS which is higher than YOLOv8s.

INDEX TERMS Object detection, YOLOv4, Mobilenetv2, SENet, EIOU.

I. INTRODUCTION
The application of artificial intelligence in autonomous driv-
ing vehicles is getting more and more attention. With the
rapid development of computer technology, computer vision
technology has become one of the critical technologies for
automobile external object detection technology. The object
detection technology for autonomous driving systems needs
to accurately and in real-time perceive the vehicle’s external
environment, which is an essential prerequisite for making
correct decisions to ensure the vehicle’s safe driving [1], [2].

As computer vision technology continues to develop, con-
volutional neural networks based on deep learning play
an increasingly important role in the object detection task,
and many excellent object detection algorithms have been
successively proposed and applied and have been greatly
improved compared with traditional algorithms. Currently,
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object detection algorithms are usually categorized into
one-stage and two-stage detection algorithms. One-stage
detection algorithms mainly include regression-based YOLO
(You Only Look Once) algorithm [3], SSD (Single Shot
Multibox Detector) algorithm [4], etc. These algorithms clas-
sify and regress while generating the bounding box and have
faster detection speed. Two-stage algorithms mainly include
R-CNN (Region-Convolutional Neural Networks) [5], Fast
R-CNN [6], Faster R-CNN [7], etc.; these algorithms firstly
generate the proposed region and then utilize Convolutional
Neural Networks to categorize the proposed area and out-
put the location information, which relative to the one-stage
algorithms with more accurate detection results. However,
the one-stage detection algorithm extracts features only once
for detection, which is relatively faster, but the accuracy will
be degraded. The two-stage detection algorithm has higher
accuracy but is relatively slow and is not suitable for scenarios
and tasks such as vehicle object detection where real-time
requirements are high. In object detection in dynamic scenes
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such as autonomous driving, the algorithm is required to have
high detection accuracy and high real-time performance.

To solve the above problems, Redmon et al. [3] proposed
the first regression-based one-stage object detection network
YOLO in 2016, which eliminates the process of generating
candidate regions, the input image can get the position of
the object and the confidence probability of the category
that the object belongs to after one time of the network, and
merges the object border and category regression process
into one network, which realizes the end-to-end detection.
Redmon et al. later proposed YOLOv2 [8] and YOLOv3 [9]
networks.YOLOv2 introduces the a priori frame (Anchor).
It uses the K-means clustering method to compute better a
priori frame parameters, which improves the detection per-
formance of the network model and strengthens the ability
to detect small objects.YOLOv3 refers to the residual idea of
changing the backbone network into the Darknet-53, which
utilizes a Feature pyramid network (FPN) structure [10] to
achieve multi-scale detection and realizes multi-label clas-
sification.YOLOv3 has a faster detection speed along with
higher detection accuracy. In 2020, Bochkovskiy et al. [11]
proposed the YOLOv4 network model with many improve-
ments based onYOLOv3. YOLOv4 combines theDarknet-53
network with the Cross Stage Partial Network (CSPNet) [12]
idea to construct the CSPDarknet53 backbone feature extrac-
tion network and used SPP and Path Aggregation Network
(PANet) [13] in the neck of the network, inherited the detec-
tion head of YOLOv3 for multi-scale detection. However, the
detection accuracy and speed are improved, but the detection
speed is still slow. Haris and Glowacz [14] conducted a com-
parative study of R-FCN, Mask R-CNN, SSD, RetinaNet,
and YOLOv4 networks on the BDD100K dataset to analyze
the strengths and limitations of the five networks based on
parameters such as detection accuracy and detection speed.
The results show that YOLOv4 performs more accurately
detecting challenging road objects in complex road scenar-
ios and weather conditions in the same test environment.
However, the network model is more significant and not con-
ducive to conducting embedded research on mobile devices.
Chen et al. [15] used MobilenetV2 to improve the SSD
network with an optimized feature fusion module for vehicle
target detection study. Although it improves the detection
accuracy and reduces the single inference time of the SSD
network, its detection accuracy and real-time performance
need to be improved. Cai et al. [16] obtained the YOLOv4-5D
network by improving the backbone, improving the feature
fusion module, and network pruning for the YOLOv4 net-
work. Although many modifications were made in different
modules of the YOLOv4 network structure. However, its net-
work model is large, reaching 91.8 MB, and its mAP@0.5 is
only 70.45%, which is not suitable for autonomous vehi-
cle research that relies on high accuracy and fast inference.
Wang et al. [17] improved the YOLOv4-tiny algorithm by
improving the K-means clustering algorithm and improving
the NMS algorithm to enhance the extraction of small target

features and optimize the prediction results. However, the
mAP@0.5 of the improved YOLOv4-tiny algorithm is only
52.7%, which cannot satisfy the road target detection accu-
racy requirement.Although the above improvements have
improved the detection accuracy, they can still not be applied
in real-world scenarios. Wang et al. [18] proposed a new
detection network CenterNet-Auto, the backbone network
uses RepVGG model, and the average boundary model is
proposed, the accuracy and speed of this model still have a
gap with the unmanned demand.

Based on the above problems, this paper is based on
the YOLOv4 network [19], which currently has better
comprehensive performance. Firstly, YOLOv4 is lightly
improved using the MobileNet [20] series of networks
to obtain three new road object detection networks.
The three improved networks are compared and ana-
lyzed for the best MobilenetV2_YOLOv4 (MV2-Y) net-
work. Secondly, the object detection accuracy of the
YOLOv4 network is improved using SENet (Squeeze-and-
excitation Networks) channel attention mechanism [21],
and Mobilenetv2_SE_YOLOv4 (MV2_S_Y) network is pro-
posed. Finally, the road object detection network is optimized
by replacing the loss function CIOU of theMV2-S-Y network
with the EIOU loss function to get the MV2-S-YE network
and validated on the PACAL VOC, Udacity, and KAIST
datasets.

The main contributions of this paper are as follows:
(1) use a lightweight network MobileNetV2 instead of the

backbone network of YOLOv4;
(2) introduce the SENet attention mechanism in the feature

fusion network;
(3) improve the YOLOv4 loss function and optimize the

function training model using EIOU.
This paper is organized as follows, Section II intro-

duces YOLOv4, MobileNet and SENet networks, and the
dataset; in Section III we propose MV2_S_YE and present
its general structure. This paper mainly focuses on three
improvements to the YOLOv4 algorithm: lightweighting
improvement, feature fusion network improvement, and loss
function improvement. Section IV gives the experimental
results and discussion, which give the performance parame-
ters such as the number of parameters, computation, model
size, FPS, Loss curves and mAP. Also, in this section,
we compare MV2_S_YE with other state-of-the-art models.
Finally, conclusions are drawn in Section V.

II. RELATIONAL WORK
A. YOLOV4 NETWORK
YOLOv4 [19] network is a model obtained by Alexey
Bochkovskiy et al. based on YOLOv3 with several improve-
ments, achieving a better balance between detection accuracy
and detection speed. The backbone network of YOLOv4,
CSPDarknet53, is improved from the Darknet53 of YOLOv3,
which draws on the idea of CSPNet (Cross Stage Par-
tial Network) to improve the residual blocks in Darknet53
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and introduces the Mish activation function. CSPNet (Cross
Stage Partial Network) idea to enhance the residual block in
Darknet53, obtained the CSPDarknet53 structure and intro-
duced the Mish activation function.CSPDarknet53 backbone
network, compared to the Darknet53 backbone network,
reduces the amount of computation simultaneously to ensure
accuracy.

B. MOBILENET
MobileNet series network is a lightweight convolutional
neural network proposed by Google. The MobileNetV1 [22]
(MV1) network was first proposed in 2017, and improve-
ments have been made to this foundation with the suc-
cessive introduction of the MobileNetV2 [23] (MV2) and
MobileNetV3 [24] (MV3) networks.The MobileNet family
of networks uses Depthwise Separable Convolution (DSC)
[25], which significantly reduces the number of parameters
in the network model and improves the speed of network
operation.

C. SENET
After the lightweighting of the YOLOv4 network using the
MobileNet series of networks, there is a negative impact
on the detection accuracy of the network model. Therefore,
the SENet module was introduced to improve the detection
performance of the convolutional neural network by filtering
useless information and enhancing useful features by simu-
lating how humans observe things.

SENet is a one-way attention mechanism, known as
Squeeze-and-Excitation Networks, or Compression and
Excitation Networks, which is an attention mechanism that
focuses on the relationship with the channels. This module
enables the network to learn the importance of different
channel features in the feature map and weigh the channels
according to their importance.

D. DATASETS
In the process of building deep learning models, the quality of
datasets impacts the performance of network models. In this
paper, three common datasets are selected for the study, and
the three datasets are introduced as follows:

(a) The Pascal VOC dataset [26] is a dataset used for
the VOC challenge; it is a standard dataset widely used in
the field of object detection, including 21504 images with
20 categories. Pascal VOC dataset contains a rich variety and
more images of the same object; it is mainly used for image
classification and detection and image segmentation tasks.

(b) The Udacity Self-Driving dataset [27] is a dataset
for self-driving car algorithm competitions and includes
24423 images with four categories. This dataset has more
car and pedestrian objects and rich road scenarios, and it
is applied to study the object detection field of autonomous
driving.

(c) The KAIST (Korea Advanced Institute of Science
and Technology) dataset [28] is a multispectral pedestrian

FIGURE 1. MV2-Y network structure.

FIGURE 2. SENet structure.

detection dataset, which selects long-wave infrared image
data, including three categories of objects and 7600 images.
This dataset contains more pedestrian objects and more col-
lected scenes, which can be well used for pedestrian object
detection research.

III. IMPROVEMENTS TO THE YOLOV4 NETWORK
A. NETWORK LIGHTWEIGHTING IMPROVEMENTS
By improving the backbone network CSPDarknet53
of YOLOv4 can effectively reduce the training cost
and improve the detection speed, the MV1, MV2 and
MV3 network models are used to replace the back-
bone network CSPDarknet53 of YOLOv4 to obtain
Mobilenetv1_YOLOv4 (MV1_Y), Mobilenetv2 _YOLOv4
(MV2_Y), and Mobilenetv3_YOLOv4 (MV3_Y) networks,
and connects with the subsequent networks according to
the input sizes of each layer of the networks, so that the
MobileNet family of networks and the following detection
networks of the YOLOv4 network can match. Taking MV2
as an example, the structure diagram of the replaced network
is shown in Fig. 1.

B. NETWORK ACCURACY OPTIMIZATION
To reduce the computational parameters and improve the
detection speed, the MV2 network model is used to replace
the backbone network CSPDarknet53 of YOLOv4, sacri-
ficing part of the performance of the original YOLOv4
network model. Some scholars study that the channel atten-
tion mechanism SENet can effectively improve the model’s
performance [20]; in this paper, SENet is embedded into
the network model MV2_Y. SENet mainly focuses on the
relationship between the channel features and consists of two
parts, Squeeze and Excitation, as shown in Fig. 2.
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FIGURE 3. MV2-S-Y network structure.

SENet first performs a global average pooling operation on
the input feature layer to obtain a feature map of size 1 × 1 ×

C (C is the number of channels), after which it predicts the
importance of the channel features after two fully connected
layers, obtains a weight of size 1 × 1 × C, and uses this
weight to multiply it with the corresponding channels of the
original feature map, and finally outputs the result.

Embedding the SENet module into the PANet of the
MV2_Y network can increase the receptive field and enhance
the channel characteristics with a minor parameter cost.
As shown in Fig. 3, the SENet module is embedded in the
up-sampling and down-sampling processes of the PANet,
and the SENet is denoted by SE in Fig. 3, resulting in
richer semantic information. Meanwhile, to further lighten
the improved network, the MV2_SENet_Y (MV2_S_Y) net-
work model is obtained by using depth-separable convolution
to replace the rest of the standard convolution in the model.

C. NETWORK LOSS FUNCTION
In the computer vision-based road object detection task,
insufficient light, small objects, and object occlusion in the
road environment can cause difficulty detecting image sam-
ples. To further improve the detection ability of the object
detection network for complex samples, optimization is per-
formed in terms of the loss function of the network.

The EIOU loss function [29] separates the aspect ratio
based on the CIOU loss function. It calculates the difference
between the width and height of the prediction box and the
minimum outer rectangle, respectively, which can reflect the
actual difference between the width and height, thus accel-
erating the convergence speed of the network. In addition,
the EIOU loss function also adds the Focal idea; the Focal
idea can deal with the uneven problem of sample classifi-
cation, realize the detection of complex samples, and help
improve the network’s training effect. The EIOU loss func-
tion will judge the current training results of the strengths and
weaknesses of the recent training results during the training

FIGURE 4. Three kinds of network Loss changes during training.

process of the road object detection network and provide
feedback to the network for the adjustment of the parameters.

To further improve the detection accuracy of the MV2-S-Y
network, the EIOU loss function is introduced into the
MV2-S-Y network instead of the original CIOU loss function
in the network to obtain the MV2-S-YE network and train the
network.

IV. EXPERIMENTATION AND ANALYSYS
A. PLATFORM AND PARAMETER SETTING
1) The hardware platform used for the experiment: Intel

Core i9-10900X for CPU, two NVIDIA GeForce
RTX 3080 10G graphics cards for GPU, Windows
10 for operating system, TensorFlow2.5 for deep learn-
ing framework, and CUDA11.0 and CUDNN8.4 to
accelerate the model training process. CUDA11.0 and
CUDNN8.4 were used to accelerate the model training
process.

2) Parameter settings: The epoch is set to 100, the Batch
size is set to 8, the initial learning rate is set to 0.001,
the minimum learning rate is set to 0.000001, and the
learning rate decay strategy is used with a decay rate
of 0.5.

3) The dataset is divided by setting the training set and
the test set share to 90% and 10%, respectively [30].
We selected 19,352 samples as the training set and
2,152 samples as the test set in the Pascal VOC dataset,
21,081 samples as the training set and 3,342 samples
as the test set in the Udacity dataset, and 6,840 samples
as the training set and 760 samples as the test set in the
KAIST dataset.

B. EXPERIMENTAL ANALYSYS OF NETWORK
IMPROVEMENTS
1) NETWORK TRAINING
To verify the improvement of MV1-Y, MV2-Y, and MV3-Y
networks, training was performed on Pascal VOC and Udac-
ity datasets using the experimental platform and parameter
settings in IV-A, and the training results showed similar
changes in the loss values of MV1-Y, MV2-Y and MV3-Y
networks on the two datasets. The variation of Loss values
during training on the Pascal VOC dataset was chosen to be
plotted, as shown in Fig. 4.
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TABLE 1. Comparison of parameters of each network.

TABLE 2. Comparison of detection performance of networks in PASCAL
VOC data sets.

As seen in Fig. 4, the Loss values of MV2-Y and MV3-Y
networks decrease faster than those of MV1-Y at the begin-
ning of training, and then the convergence rate gradually
slows down. The fluctuation of the Loss value at the 50th
Epoch is because the network in the unfrozen part has not
yet learned, so that it will lead to a small increase in the
Loss value. The Loss value continues to decrease as training
proceeds, and eventually, the Loss value stays near two and
stops falling.

2) ANALYSYS OF RESULTS
To verify the improvement effect of MV1-Y, MV2-Y, and
MV3-Y networks, YOLOv4-Tiny [31] and YOLOv4 net-
works were added. After training using the experimental
platform and parameter settings in IV-A, the parametric quan-
tities, computational quantities, model sizes, and computing
speeds of the models of each network are compared, as shown
in Table 1.

As can be seen from Table 1, the complexity of the model
after improving the feature extraction network of YOLOv4
decreases dramatically. The number of parameters and com-
putational amount of the model of each improved network are
reduced substantially. The number of parameters of MV2-Y
is the smallest among the three improved networks, which is
only 10.55M, and it reduces the parameter amount by 83.6 %
compared with that of the YOLOv4 network. TheMV3-Y has
the smallest computation amount of 7.15 G. The model size
ofMV2-Y is 40.6MB, which is 204.3MB less than that of the
YOLOv4 network, and the detection speed of MV1-Y is the
fastest with 53 frames per second, and MV2-Y is the second
fastest with up to 49 FPS.

A comparison of the detection performance of each net-
work on the Pascal VOC dataset and the Udacity dataset is
shown in Table 2.

FIGURE 5. Loss change of network during training.

As can be seen from Table 2, in the test results of the
Pascal VOC dataset, the mAP@0.5 of the MV1-Y network
and MV2-Y network differs by 0.5% and is higher than
the detection accuracy of YOLOv4-Tiny and MV3-Y. The
mAP@0.5 of the MV2-Y network reaches 79.7 %, which is
in the middle of the three improved networks; in the Udacity
dataset test results, MV1 performs better as a feature extrac-
tion network, with a mAP@0.5 up to 66.1 %. the MV2-Y
network has the next best performance in terms of mAP@0.5,
which can reach 65.1 %.

The experiments show that although the improved network
model has increased detection speed, the enhanced feature
extraction network leads to different degrees of degradation
in network detection accuracy. From Table 3-6, it can be seen
that the MV2-Y network has a better performance in terms
of the number of parameters, the amount of computation,
and the size of the model, and the detection speed can be
up to 49 frames per second, which is 63 % higher than that
of YOLOv4. Regarding detection accuracy, the gap between
the MV2-Y network and the MV1-Y network is smaller,
and the difference in detection accuracy with the YOLOv4
network is 4.2 %. Still, the model of the MV2-Y network is
smaller, which is more advantageous in terms of the number
of parameters and the amount of computation. In summary,
the MV2-Y network was selected for further research.

C. EXPERIMENTAL ANALYSYS OF NETWORK ACCURACY
OPTIMIZATION
1) NETWORK TRAINING
To verify whether the performance of the MV2-S-Y net-
work is improved, training is performed on the Pascal VOC,
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FIGURE 6. Detection of Pascal VOC samples by four networks.

Udacity, andKAIST datasets using the experimental platform
and parameter settings in IV-A, and the training results show
that the MV2-Y network and the MV2-S-Y network have
similar changes in the loss values on the three datasets. The
variation of Loss values during training on the Pascal VOC
dataset was selected to be plotted, as shown in Fig. 5.
In the first 30 Epochs, the change in the Loss values of

the two networks does not differ much. After 30 Epochs, the
Loss values of the MV2-S-Y network converge faster. After
the 50th Epoch, when all network layers are unfrozen, both
networks’ loss values slightly increase and then gradually
decrease. The Loss values converge at a comparable rate,
but the Loss values of the MV2-S-Y network can connect to
smaller values, making the network more accessible to train.

2) ANALYSIS OF RESULTS
The mAP@0.5 is used as a metric to evaluate the model’s
performance. The performance test is conducted on the Pascal
VOC, Udacity and KAIST datasets, and the specific test
results are shown in Table 3.

The MV2-S-Y network improved the mAP@0.5 by 1.3 %,
2.2 %, and 0.5 % on the Pascal VOC, Udacity, and KAIST
datasets compared to the MV2-Y network. Compared to
the YOLOv4-Tiny network model, the mAP values were
improved by 4.0 %, 13.5 %, and 3.5 % on the Pascal VOC,
Udacity, and KAIST datasets, respectively. This shows that

TABLE 3. Comparison of detection results of four networks.

introducing the SENet module to the MV2-S-Y network can
effectively improve the detection of the network.

To compare the detection effect of the four algorithms
more intuitively, one complex sample image is selected from
Pascal VOC for detection, and the detection results of the
four algorithms on the sample image at a threshold of 0.5 are
shown in Fig. 6, respectively.
The image in Fig. 6 shows two types of objects, human

and sheep, resting on the side of the road, where there are six
objects for the human and six objects for the sheep, and the
specific results of the four networks for detecting samples of
the Pascal VOC dataset are shown in Table 4.
As shown in Table 4, the MV2-S-Y network is more

accurate. It has a low leakage rate for both types of object
detection in the figure, detecting six people and five sheep
respectively, with a confidence level of 87.2 and 96.4 for
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TABLE 4. Detection results of PASCAL VOC samples by four networks.

FIGURE 7. Loss changes during training of four networks.

human and sheep objects, respectively, and the mAP reaches
91.8%; the YOLOv4-Tiny algorithm has misdetections for
both human and sheep objects and has a high leakage rate,
and the confidence level of the detected objects is also lower
than that of MV2-S-Y network. Confidence is also lower than
that of the MV2-S-Y network.

D. EXPERIMENTAL ANALYSYS OF LOSS FUNCTION
OPTIMIZATION
1) NETWORK TRAINING
To verify whether the performance of the MV2-S-YE net-
work is improved, training is performed on the Pascal
VOC, Udacity, and KAIST datasets using the experimental
platform and parameter settings in IV-A, and the train-
ing results show similar changes in the loss values of
the YOLOv8s,YOLOv7-tiny, MV2-S-Y network and the
MV2-S-YE network on the three datasets. The plotting of
the change in loss values during training on the Pascal VOC
dataset was selected and is shown in Fig. 7.
From Fig. 7, it can be seen that the four networks sta-

bilize at the 80th-100th epochs of training, MV2-S-YE and
MV2-S-Y networks converge at a similar rate at the early part
of training, and theMV2-S-YE network converges faster after
30 epochs to around 2.0. YOLOv8s network only converges
around 2.5, and there is a gap with MV2-S-YE network.

2) ANALYSIS OF RESULTS
After using the EIOU loss function instead of the CIOU
loss function, the number of parameters, computation, model

TABLE 5. Comparison of two kind of network parameters and running
speed.

TABLE 6. Detection results of MV2-S-YE network.

size, and computational speed of the MV2-S-YE, MV2-S-Y,
YOLOv8s, and YOLOv7-tiny network models are shown in
Table 5.

As can be seen from Table 5, MV2-S-YE and MV2-S-Y
with the EIOU loss function are the same in terms of per-
formance parameters, and YOLOv8s has a larger number of
parameters, computation and model size than MV2-S-YE,
and the FPS is smaller than that of MV2-S-YE. YOLOv7-
tiny has a higher performance than MV2-S-YE in all the four
categories.

To verify the performance of MV2-S-YE, it was tested on
Pascal VOC, Udacity and KAIST datasets using the weight
files obtained from training, and the results are shown in
Table 6.
From TABLE 6, it can be seen that the MV2-S-YE net-

work using the EIOU loss function improves the mAP of the
network model by 0.3%, 0.2% and 0.4% after training on
the Pascal VOC, Udacity and KAIST datasets, respectively.
Combined with Table 5 it can be concluded that the EIOU
loss function can improve the detection accuracy.The mAP
of YOLOv8s on Pascal VOC is just 0.2% higher than that
of MV2-S-YE, and lower on the other two datasets. mAP of
YOLOv7-tiny is lower than that of MV2-S-YE on all three
public datasets.

For a more precise comparison of the performance
improvement of the object detection network using the EIOU
loss function, 1 sample image was selected from the KAIST
dataset for detection, and the detection results of the
MV2-S-Y and MV2-S-YE networks for the sample image at
a threshold of 0.5 are shown in Fig. 8, respectively.

The image in Fig. 8 is a nighttime intersection scene with
only 1 class of actual objects and seven pedestrians, and the
detection results are shown in Table 7.

As shown in Table 7, the two networks obtained better
detection results for distant roadside pedestrians, in which
the MV2-S-Y network showed one false detection. The
confidence level of the detection results of the MV2-S-YE
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FIGURE 8. Detection of KAIST samples by two networks.

TABLE 7. Detection results of KAIST samples by two networks.

network was higher than that of the MV2-S-Y network. The
localization of the pedestrians was more accurate, which is
advantageous for detecting the difficult samples in the com-
plex environment.

V. CONCLUSION
To meet the real-time requirement of object detection speed
for the autopilot in-vehicle network model, the Mobilenetv2
network model is used to replace the backbone network
CSPDarknet53 of YOLOv4, which makes the network model
significantly reduced and improves the detection speed while
sacrificing part of the detection accuracy. To compensate for
the degradation of the detection performance and to take
advantage of the channel attention mechanism SENet module
to improve the model performance, the channel attention
mechanism SENet is introduced in PANet to optimize the
feature extraction capability by adding the channel atten-
tion mechanism to assign different weights to each channel.
To further improve the detection ability of MV2-S-Y for
complex samples, the MV2-S-YE network is obtained by
using the EIOU loss function instead of the original CIOU
loss function in the network when the introduction of the
EIOU loss function does not bring adverse effects such as
an increase in the size of the model and computation of
the network. To increase the rigor of the work, YOLOv8s
and YOLOv7-tiny networks are introduced as comparisons,
and MV2_S_YE has advantages in various detection perfor-
mances.MV2_S_YE network not only has the advantages of
high detection accuracy and fast detection speed in complex
environments, but also has a powerful real-time monitoring
capability.In the future, we intend to continue to optimize the
MV2_S_YE network in terms of parameter count, accuracy,

and real-time performance and apply it to small embedded
devices. Eventually, compared with other network models in
the paper, the MV2_S_YE network has a real-time detection
speed of up to 45 FPS on the KAIST test set, mAP@0.5 is
94.8%, and improves by 3.2% compared with the YOLOv8s
networ. Thus, MV2_S_YE is innovative and can fulfill
the requirements of the vehicle network model for object
detection.

Our work is still in its early stages, and in the future,
we will continue to try to compress the model, utilize channel
pruning methods to reduce the number of parameters and
increase the detection speed, so as to piggyback the model
on low-cost hardware devices and reduce the cost of target
detection applications; at the same time, we are considering
to continue to look for ways to improve the accuracy of
the model. Ultimately, we are committed to applying low-
cost, high-precision and high-efficiency models to real-world
object detection projects.
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