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ABSTRACT This research is imperative due to the pressing need for improved patient recruitment in
clinical trials, addressing challenges such as delays and high costs. By introducing a classification model
and a game theoretic approach for clinical trial setting, we aim to boost trial efficiency, advance healthcare
research, and enhance patient outcomes. This research is critical for revolutionizing recruitment strategies
and accelerating medical progress. In this paper, we present a classification model that has been specifically
designed to address this issue effectively. The proposed model employs an Autoencoder, augmented by a
super classification model that merges Logistic Regression, Support Vector Machines, Random Forest Trees,
and Decision Trees using a stacking classifier. The output of the super classifier is further processed by a
meta classifier to obtain the final result. Notably, the model achieves a training accuracy of 99.576% and a
validation accuracy of 83.45%, illustrating its robust classification performance and its potential to streamline
patient recruitment, reducing delays and resource consumption. In addition to the classification model, this
study formulates a three-layer game theoretic model involving Patients, Doctors or Clinical Investigators,
and Research Firms.Within this static repeated game setting, players sequentially strategize to optimize their
recruitment strategies, while research firms aim to optimize their overall interaction. The paper proposes a
novel optimal solution that strikingly balances the payoffs of all three players. Moreover, the work presents
a necessary condition and closed form for the existence of an equilibrium in the game, offering a strategic
approach to recruitment optimization, and striking a balance between stakeholders. This equilibrium-seeking
solution has the potential to revolutionize recruitment dynamics and foster collaboration. Additionally, the
study’s theoretical contributions lay the groundwork for future research in this critical healthcare domain.

INDEX TERMS Clinical trials, decision-making, ensemble learning, feature extraction, game theory,
healthcare analytics, stacked ensemble, soft computing.

I. INTRODUCTION
Clinical trials are essential for the development of new treat-
ments and cures for diseases. However, patient recruitment
is often a major challenge for clinical trials, especially for
rare diseases or those with complex eligibility criteria. This
can lead to delays in trial initiation and completion, and
can ultimately reduce the chances of success. Several studies
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have highlighted the challenges in patient accrual for clinical
trials, particularly in rare diseases [1]. Additionally, the use of
convenience-enhancing solutions, such as new technologies,
can help improve patient engagement and retention in clinical
trials [2]. Furthermore, the classification of clinical trials
as ‘negative’ based solely on statistical significance does
not accurately reflect the complexities and nuances of trial
outcomes. Reclassifying trials into categories that consider
factors such as power, termination, and initiation can pro-
vide a more accurate assessment of trial characteristics and
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be more useful for patients and healthcare providers [3].
Recruitment for clinical trials continues to be a challenge,
with increasing costs and complexity. Industry-sponsored
phase III clinical trials have seen a significant increase in
recruitment duration over the past 12 years, indicating less
effectiveness compared to before [4], [5]. Game theory and
ensemble learning have the potential to improve patient
recruitment in clinical trials. Game theory can model inter-
actions between patients, investigators, and sponsors, identi-
fying strategies for more efficient recruitment [6]. Ensemble
learning can combine predictions from multiple machine-
learning models, improving the accuracy of patient recruit-
ment predictions [7].

A. MOTIVATION
Recruiting patients for clinical trials in the context of rare
diseases is challenging due to the limited number of eligible
participants, geographical dispersion, and lack of awareness.
These factors often lead to delays and lower success rates,
as smaller patient pools make it harder to gather statisti-
cally significant data. Therefore, innovative approaches and
collaborative efforts are crucial to address these obstacles
and improve the efficiency of clinical trial recruitment in
rare disease research. Recent technological advancements
and the recognition of the need for a more nuanced approach
to trial classification have created a ripe environment for
improvement. Two promising avenues are game theory and
ensemble learning. Game theory offers a strategic frame-
work to optimize healthcare decisions and it could extend
to patient-centric considerations, such as healthcare facil-
ity preferences, fostering trust and efficiency in healthcare.
Meanwhile, ensemble learning demonstrates its potential in
healthcare by amalgamating models to enhance predictive
accuracy, consistently outperforming traditional methods in
domains like disease classification with models like LSTM
and random forests. Game theory models can be complex
and difficult to develop, requiring careful consideration of
parameters to ensure accurate predictions. Ensemble learning
models, on the other hand, require large amounts of data to
train effectively. Additionally, both game theory and ensem-
ble learning models can be sensitive to the choice of param-
eters, which can further complicate the process of producing
accurate predictions [8]. Nevertheless, leveraging these tech-
niques effectively for clinical trial recruitment remains a
challenge. These challenges highlight the need for further
research and development to overcome these limitations and
fully harness the potential of game theory and ensemble
learning in clinical trial patient recruitment. In response, this
paper introduces a hybridmodel and game-theoretic approach
to comprehensively address these challenges, offering a trans-
formative solution to the intricacies of patient recruitment in
clinical trials.

Major Contributions:
1) Collaborative Approach for Patient Recruitment in Clin-

ical Trials: The paper introduces a novel two-step approach

to optimize the patient recruitment process in clinical trials.
In the first phase, a machine learning (ML) methodology is
employed to assess and predict the likelihood of an individual
being recruited for a clinical trial. This ML-driven process
leverages key medical factors, such as blood parameters,
to effectively identify suitable candidates. Following the ML-
based patient selection, the second phase of the framework
involves the application of game theory principles. Game
theory is utilized to construct an optimization model that
considers patients’ beliefs, incentives, and overall strategic
interactions. This step aims to enhance the efficiency of the
patient recruitment process by strategically aligning incen-
tives and fostering a cooperative environment. By distinctly
implementing ML and game theory in separate phases, our
approach maximizes the strengths of each methodology. The
ML phase ensures the identification of eligible candidates
based on medical criteria, while the subsequent game theory
phase refines the patient recruitment strategy by addressing
individual beliefs and optimizing the overall game dynamics.
This dual-phase framework places patients at the forefront,
prioritizing both medical suitability and strategic interac-
tions to enhance the overall effectiveness of clinical trial
recruitment.

2) Machine Learning Integration and Feature Extraction:
The proposed approach utilizes machine learning techniques,
specifically an autoencoder model, for feature extraction
from a preferred dataset. This step aims to capture the relevant
patterns and information from the data, which is essential for
subsequent decision-making processes.

3) Stacked Ensemble Classifier for Enhanced Decision-
Making: The stacked ensemble classifier harnesses the
individual strengths of Logistic Regression’s simplicity and
interpretability, Support Vector Machines’ capacity for han-
dling complex data, Random Forest Trees’ resilience to noisy
data, and Decision Trees’ intuitive decision rules. This col-
laborative approach creates a powerful decision-making tool
for patient recruitment, enhancing accuracy by capturing both
linear and non-linear relationships, managing complex and
noisy data, and providing interpretable insights, ultimately
improving the efficacy of clinical trial predictions.

4) Dynamic Interplay of Stakeholders in Game Theoretic
Mode and Optimized Decision-Making Strategies for Stake-
holders: The proposed 3-layer game theoretic model provides
a comprehensive representation of the interactions between
Patients, Doctors/Clinical Investigators, and Research Firms.
By considering the dynamic interplay among these stake-
holders, the model aims to optimize decision-making pro-
cesses related to patient recruitment in clinical trials. This
includes devising strategies that enhance patient recruitment
efficiency while increasing the payoff for Doctors/Clinical
Investigators.

B. PAPER ORGANIZATION
The paper’s structure is organized into distinct sections to
comprehensively address the challenges and solutions in
patient recruitment for clinical trials within the healthcare
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analytics domain. In Section II, we present a review of related
works, focusing on prior research where machine learning
and game theory have been applied, either individually or
collaboratively, to tackle healthcare analytics problems or
any other domain where they have combined to solve a
problem. Section III elucidates the technical aspects of our
methodology, elucidating the techniques employed to opti-
mize patient recruitment in a generalized healthcare setting.
This encompasses a detailed exposition of our hybrid clas-
sification model, game-theoretic framework, and their inte-
gration. Moving to Section IV, we delve into the evaluation
metrics, conducting a rigorous comparative analysis to assess
the performance of our proposed methods. We engage in
an in-depth discussion and analysis of the results, providing
insights into the strengths and limitations of our approaches,
from an observational point of view. Section V serves as
the conclusion, summarizing our research’s key findings and
their implications in the context of patient recruitment for
clinical trials. Additionally, it highlights the novel contri-
butions of our work. Section VI further delineates future
research directions and acknowledges the limitations, chart-
ing a path for further advancements in patient recruitment
optimization and healthcare analytics, while considering the
challenges we encountered in this study.

II. RELATED WORKS
Patient recruitment for clinical trials continues to be a major
challenge. Virtual or decentralized methods have shown
promise in improving recruitment, retention, and diversity in
clinical trials, with some studies reporting better results com-
pared to traditional methods [9]. Additionally, decentralized
methods have also been associated with improved partici-
pant retention [10]. Informatics interventions, such as natural
language processing, have also been used to improve the
efficiency and accuracy of eligibility determination and trial
recruitment [11]. These interventions have shown potential
in streamlining the process and reducing the labor-intensive
nature of identifying eligible patients. Overall, the use of
decentralized methods and informatics interventions can help
address the barriers to patient recruitment in clinical trials,
such being the methods of game theory and machine learning
techniques.

Game theory is being increasingly recognized as a valuable
tool in healthcare work [12]. It allows for the optimization
of multiple objectives simultaneously, even when there are
conflicting interests. Game theory also offers a framework
for decision-making in clinical settings, such as clinical
decision support systems, by considering the interactions
between patients and healthcare providers [13]. Bilal et al.
[14] proposed one such framework, which uses a Bayesian
game-theoretic approach to optimize disease classification in
healthcare systems. Game theoretic frameworks have worked
around the ideal care of patients as well. Udok et al. [15]
signified the patient-centric influence. The patients’ prefer-
ences for healthcare facilities were assessed based on factors

such as the costs of services and the attitude of healthcare
providers, which were used to determine the optimal strategy
and the value of the game. Game theory can be applied in
healthcare to promote fair competition, trust, flexibility, and
transformational leadership. The five principles necessary to
lead an infinite game in healthcare are a just cause, a trusting
blame-free team culture, acknowledging adversaries, existen-
tial flexibility, and courageous leadership [16]. Incorporating
game theory into healthcare can enhance resource utilization,
accuracy in disease detection, and overall efficiency in health-
care delivery [17].
Significant advancements have been made in recent years

to optimize patient recruitment for clinical trials using
machine learning methods [18]. Machine learning meth-
ods have also been applied to conduct response-adaptive
randomization in clinical trials, resulting in more per-
sonalized optimal treatment assignments and higher over-
all response rates among trial participants [19]. Clinical
trial recruitment is a continuing challenge, but efforts to
improve study recruitment have been informed by theories
of human decision-making and behavior change, such as
shared decision-making (SDM) and the Theoretical Domains
Framework (TDF) [20]. Automating the patient recruitment
task using natural language processing and machine learning
techniques has been explored, achieving high accuracy in
determining patient eligibility for clinical trials [21]. A gen-
eral framework for the practical application of XAI inmedical
research that can inform clinicians and validate and explain
cancer biomarkers has been introduced as well [22].
Ensemble learning is a promising approach in health-

care that combines multiple models to improve prediction
and diagnostic performance. It has been applied in various
healthcare domains such as medication adherence prediction
[23], classification of diabetic disease [24], prediction of
post-partum hemorrhage [25], and diagnosis of hepatitis C
[26]. These studies used ensemble learning techniques such
as deep ensemble learning (DEL), gradient deep learning
boosting, and memory-based and gradient boosting-based
methods. The results show that ensemble models outperform
traditional machine learning and deep learning techniques,
achieving higher accuracy, recall, F1-score, and area under
the curve values. The Shapley value, a concept from game
theory, has been used to quantify the importance of models
in ensemble games. Additionally, learning automata, a rein-
forcement learning technique, has been used to dynami-
cally assign coefficients of influence to base learners in an
ensemble. These approaches have shown promising results
in improving the performance of ensemble learning models
[27], [28]. While game theory and ensemble learning show
promise for patient recruitment in clinical trials, there are still
challenges that need to be addressed.

The introduction of feature extraction methods from
machine learning models, particularly those based on data
augmentation, has significantly transformed the landscape of
data analysis and predictive modeling. In recent research,
diverse methods have been explored to address challenges
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in natural language processing (NLP) and text analysis.
One approach involves combining graph-based neural net-
works and genetic algorithms, creating a method (GTR-GA)
that generates high-quality augmented text data, overcoming
issues related to data scarcity in NLP [29]. Additionally, hier-
archical graph-based text classification frameworks, incorpo-
rating contextual node embedding and BERT-based dynamic
fusion, have been proposed to enhance text classification
accuracy [30]. For sentiment analysis, a novel bidirectional
convolutional recurrent neural network architecture with a
group-wise enhancement mechanism has shown superior
performance, outperforming existing methods and proving
beneficial for tasks requiring context understanding [31]. To
tackle the labor-intensive process of creating labeled data,
researchers have developed automated methods like SRL-
ACO, leveraging Semantic Role Labeling and Ant Colony
Optimization. These techniques generate additional training
data for various NLPmodels, enhancing accuracy without the
need for manual annotation [32]. Furthermore, in bibliomet-
ric data analysis and topic extraction from scientific literature,
an innovative two-stage framework combining word embed-
ding schemes and ensemble clustering methods has exhibited
improved performance, surpassing baseline methods in pre-
dictive measures and accuracy [33]. These advancements
underscore the diverse and impactful strategies emerging in
the field of NLP and text analysis.

Combining game theory and machine learning for
decision-making frameworks has been explored in several
papers. One approach is to integrate learning with com-
putational game theory to address societal challenges such
as security and sustainability [34]. Combining game theory
and machine learning in healthcare can enable personalized,
adaptive treatment strategies, ensuring tailored and effective
patient care. By leveraging the strengths of both game the-
ory and machine learning, these frameworks offer promising
solutions for decision-making problems.

The literature review of previous methods is summarized
in Table 1, providing concise descriptions of the employed
techniques, research advantages, and identified limitations.

A. PROBLEM STATEMENT
Patient recruitment for clinical trials represents a critical
bottleneck in healthcare research, characterized by ineffi-
ciencies that can lead to substantial delays, escalated costs,
and compromised trial outcomes. The need for an effec-
tive and efficient patient recruitment strategy is underscored
by several key factors. Firstly, the inherent complexity of
modern clinical trials, particularly those focused on rare dis-
eases or therapies with stringent eligibility criteria, poses
a formidable challenge to identifying and enrolling suit-
able participants. This complexity often results in prolonged
recruitment timelines and can jeopardize the statistical power
and integrity of the trials. Secondly, the existing paradigms
for classifying clinical trials, primarily based on statistical
significance, are overly simplistic and fail to capture the

multifaceted nature of trial outcomes. Relying solely on
binary outcomes, such as ‘successful’ or ‘failed,’ hinders
a nuanced understanding of the trial’s dynamics, including
power, termination rates, and initiation criteria. Furthermore,
the intersection of machine learning and game theory in the
context of healthcare analytics presents a promising avenue to
address these recruitment challenges. However, there remain
limitations and challenges to be overcome. Existing studies
often lack a comprehensive hybrid model that effectively
integrates machine learning techniques and game-theoretic
approaches, creating an opportunity for more advanced and
synergistic solutions. Moreover, the practical implementation
of these sophisticated methodologies requires careful consid-
eration of real-world constraints, including data availability,
computational resources, and ethical considerations, which
necessitates a tailored and pragmatic approach. This study
endeavors to bridge these gaps by introducing a hybrid classi-
fication model and a game-theoretic framework. This unified
approach seeks to optimize patient recruitment for clini-
cal trials while accounting for the intricacies of real-world
healthcare settings and the complexities inherent in-patient
selection. By seamlessly merging the realms of machine
learning and game theory, this study endeavors to offer a com-
prehensive and pragmatic answer to elevate the efficiency and
efficacy of patient recruitment within the intricate landscape
of clinical trials. This innovative approach leverages generic
parameters, offering adaptability for diverse organizations to
tailor the methodology to their specific needs seamlessly.

III. METHODOLOGY
A synergistic approach has been developed to optimize the
generic patient recruitment process for advanced clinical
trials. This multifaceted framework uses machine learning
techniques and basic game theory principles and applications.
We have selected a preferred dataset, having blood parame-
ters for patient eligibility in clinical trials, which is akin to
employing a comprehensive set of features or variables for
a machine learning classification task. Each blood parame-
ter is analogous to a feature, much like pixel values in an
image or data points in a dataset. These parameters provide a
multidimensional representation of a patient’s health status,
including various biomarkers, concentrations of substances,
and physiological indicators. Machine learning models can
then process and analyze these parameters collectively to
make accurate predictions regarding a patient’s suitability for
a clinical trial. The models use the patterns and relationships
between these parameters, essentially learning to differentiate
between eligible and ineligible patients. This approach allows
researchers to leverage the extensive information contained
in blood parameters to enhance the precision and objectivity
of patient classification, similar to how machine learning
models use multiple features to classify data points in var-
ious other domains. The extracted features are then input
into a super-classification model, which includes Logistic
Regression, Support Vector Machines, Random Forest Trees,
and Decision Trees. This orchestrates a stacked ensemble
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TABLE 1. Literature survey.
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TABLE 1. (Continued.) Literature survey.
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TABLE 1. (Continued.) Literature survey.
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TABLE 1. (Continued.) Literature survey.
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mechanism that harnesses the strengths of each classifier.
In simpler terms, we combine the best parameters or capa-
bilities of each classifier to produce a stacking classifier
that imputes the final result in the form of numerical odds
of the binary. Furthermore, after the implementation of the
machine learning phase, our interdisciplinary study delves
into the domain of game theory. We propose a 3-layer game
approach motivated by the framework proposed by Rawat
et al [35]. The 3-layer game theoretic model weaves together
the roles and duties of Patients, Doctors/Clinical Investiga-
tors, and Research Firms. In this dynamic interplay, strategies
and formulas are devised to optimize the decision-making
process for effectively recruiting patients. The ML Model
proposed will increase the payoff from the Doctors’ side by
helping doctors effectively recruit patients based on medical
parameters first, enhancing the recruitment process and iden-
tifying those who are most likely interested in trials too. The
architecture diagram for the proposed framework is given in
Figure 1.

FIGURE 1. The proposed framework architecture.

Note: is important to note that within each discipline—
machine learning methodology and game theory methodo-
logy—there may be instances where certain variables or
concepts are used. These variables are specific to the con-
tent and scope of their designated discipline and should not
be confused with variables from different sections of the
methodology. Each discipline employs its own set of variables
and methodologies tailored to its objectives and analysis,
ensuring a clear and focused approach within its respective
context. This separation of variables maintains clarity and
prevents any cross-disciplinary confusion.

A. PRELIMINARIES
Before delving into the details of our novel approach to
optimizing patient recruitment for clinical trials using a
hybrid classification model and game-theoretic framework,
it is essential to establish the foundational concepts and
components that underpin this research. These preliminaries
provide the necessary background knowledge and context for
a comprehensive understanding of our methodology.

1) CLINICAL TRIALS
Clinical trials are fundamental to the development of new
medical treatments and therapies. These controlled studies
involve human participants and are designed to evaluate the
safety and efficacy of new drugs, therapies, or medical inter-
ventions. Understanding the various phases of clinical trials,

ethical considerations, and the significance of patient recruit-
ment is vital for comprehending the challenges addressed in
this research.

2) PATIENT RECRUITMENT CHALLENGES
Efficient patient recruitment is a critical factor in the suc-
cess of clinical trials. Challenges in identifying and enrolling
eligible participants can lead to delays, increased costs, and
compromised trial outcomes. These challenges are exacer-
bated in the context of rare diseases and trials with stringent
eligibility criteria.

3) MACHINE LEARNING
Machine learning is a subset of artificial intelligence (AI)
that focuses on developing algorithms and models capable
of learning from data to make predictions or decisions with-
out explicit programming. Familiarity with machine learning
concepts, such as supervised learning, ensemble methods,
and deep learning, is essential to grasp the intricacies of
our hybrid classification model. Classification models are a
category of machine learning algorithms used to categorize
data into predefined classes or labels. Understanding vari-
ous classification techniques, including logistic regression,
support vector machines, random forests, and decision trees,
is crucial for comprehending the components of our hybrid
classification model. Ensemble learning involves combining
multiple machine learning models to improve predictive per-
formance. Concepts such as model aggregation and stacking
play a pivotal role in our proposed work.

4) GAME THEORY
Game theory is a mathematical framework used to analyze
andmodel strategic interactions among rational agents. In our
research, game theory is employed to model the interactions
between patients, investigators, and research firms in the
context of patient recruitment for clinical trials.

B. MACHINE LEARNING IMPLEMENTATION
In this machine learning implementation, we employ
the Hybrid Classification Model Training algorithm
(Algorithm 1) to tackle the critical challenge of optimizing
patient recruitment for clinical trials. The algorithm utilizes
an ensemble of base classification models, including Deci-
sion Tree, Logistic Regression, Support Vector Machine,
and Random Forest, in conjunction with feature encoding
via Autoencoder (AE). We initialize essential components
such as encoded dimensions, stacking classifiers, and meta-
classifiers. The training process involves iterative hyperpa-
rameter tuning for each base model, with a focus on finding
the optimal configurations. During this process, we train
each base model, store them in the stacking classifier, collect
their predictions on the input data, and compute losses and
gradients for fine-tuning. Finally, we train the meta-classifier
to effectively combine the base models’ predictions andmake
the binary patient recruitment decision. This comprehensive
machine learning implementation is designed to enhance
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patient recruitment efficiency for clinical trials through the
fusion of feature engineering and ensemble learning tech-
niques. Subsequent sections will evaluate and discuss the
effectiveness of this approach.

Our Hybrid ClassificationModel Training approach stands
out for its precision in feature encoding, leveraging Autoen-
coders for accurate dimensionality reduction. The integra-
tion of ensemble learning enhances prediction accuracy and
reduces model bias, bolstered by meticulous hyperparam-
eter optimization. An adaptive meta-classifier dynamically
combines base model predictions, expediting patient recruit-
ment and minimizing trial delays. This data-driven approach
empowers informed decision-making, leading to more suc-
cessful clinical trials and improved healthcare outcomes.
Figure 2 displays an illustration representing the suggested
machine learning framework.

Algorithm 1 Hybrid Classification Model Training
Input:

- Input Data: input_data
- Data encoded using Autoencoder (AE)
- Classification Models: Decision Tree (DT), Logistic

Regression (LR), Support Vector Machine (SVM), Random
Forest (RF)

- Hyperparameter Settings for each model

Output:
- Stacking Classifier: stacking_classifier, predicting binary

labels
Initialization:

- encoded_dimesnions of AE
- Stacking Classifier: stacking_classifier
- Meta Classifier: meta_classifier

Preprocess input_data
For each model in [DT, LR, SVM, RF]:

While hyperparameter settings are not exhausted:
Train Classifier:

- Train model with hyperparameters
- Store model in stacking_classifier
- Collect predictions for input_data
- Compute loss
- Compute gradient

End while
End for

Train Meta Classifier:
- Train meta_classifier with predictions from stack-

ing_classifier
End Algorithm

1) AUTOENCODERS FOR FEATURE EXTRACTION
Autoencoders play a pivotal role in the realm of feature
extraction, especially when it comes to complex datasets,
such as those entailing intricate blood parameters for clinical

trial selection. They are indispensable due to their unique
capability to discern and highlight relationships within high-
dimensional data. By converting the convoluted web of input
features into a concise feature vector, autoencoders pave the
way for efficient and accurate processing. These reduced-
dimension representations serve as a crucial bridge, facilitat-
ing the seamless integration of machine learning algorithms
and classification systems.

The significance of autoencoders becomes even more
apparent when considering their capacity to outperform raw
datasets in predictive tasks. These neural networks are not
just about dimensionality reduction; they excel at capturing
intricate patterns, subtle correlations, and latent relationships
within the data. This proficiency is invaluable in the context of
clinical trials, where precise patient selection based on blood
parameters is paramount. The methodology behind autoen-
coders is grounded in their ability to learn from the input data
itself. Through a training process, they encode the data and
subsequently decode it tominimize reconstruction errors. The
learnedweights of the encoder layers, which effectively distill
the most relevant information from the input, are then har-
nessed as the extracted features. In the context of clinical trial
patient selection, this means that autoencoders can identify
and encapsulate the crucial blood parameter interactions and
attributes essential for making informed decisions. Their role
in feature extraction is indispensable, as it empowers health-
care researchers to navigate complex datasets and unveil
hidden insights that might otherwise remain concealed.

Autoencoders are neural networks that may be applied to
a variety of tasks, such as text data processing, to extract
features. They can convert high-dimensional input data into
a feature vector with fewer dimensions so that it may be fed
into classification or machine learning algorithms. Numerous
research has demonstrated the efficacy of using autoencoders
for feature extraction [36] Even when the extracted features
have dimension sizes that are only a small portion of the total
number of features, autoencoders can nevertheless perform
predictions well. Autoencoders have even occasionally out-
performed using the source datasets in some circumstances
[37]. The methodology for using autoencoders for feature
extraction involves training the neural network to reconstruct
the input data and then using the learned weights of the
encoder layers as the extracted features [38].

Encoder and Decoder: Autoencoders are made up of two
independent components: the encoder, which assigns encod-
ings to each input, and the decoder, which reconstructs the
original input using the encoded input data. Pre-processed
data is inputted into the input layer, and the output layer, also
known as the decoded layer, should closely match the original
input data with a minimum amount of error. The encoder con-
denses each blood parameter into a compact encoding, while
the decoder reconstructs the original data, aiming tominimize
errors. This encoding captures vital relationships within the
data. The decoder, using these encoded representations, recre-
ates the original data, ensuring it closely matches the input.
By minimizing the loss function, the encoder-decoder system
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fine-tunes parameters for accurate data representation, facil-
itating precise clinical trial patient selection. By minimizing
the supplied loss function in generalized form, parameters are
permitted to fit into the data in

J (i) = 6xL(x, fi(x)) (1)

• J(i) is the overall loss or cost function that you want to
minimize.

• 6x denotes the summation over all instances in your
dataset.

• L(x, fi(x)) represents the individual loss for a particular
instance xi, where fi(xi) is the predicted output generated
by a model with parameters i.

Encoded Dimensional Layout: Judging from the data, we can
keep our favored size of the encoded variable dimensions,
along with some more viable layouts [39].

2) STACKING CLASSIFIER-ENSEMBLE METHOD
To validate the encoded data produced by the autoencoder
model, Decision Trees, Random Forests, Logistic Regression
and Support Vector Machines were used too. The purpose of
autoencoders is to abstract and meaningfully represent the
encoded dimensional layout by storing the most complex
and important aspects. Encoded data is not only simpler to
comprehend than the original data but also smaller or has
fewer dimensions. The classifier generalizes the representa-
tion to test the brand-new, untested data. To fine-tune the
hyperparameters and perform k-fold Random Cross Valida-
tion for eachmodel, RandomizedSearchCV [40] was required
to produce the best classification model results. We create
a hyperparameter search space for each classification model
using a dictionary, where we store a range of potential values
for various hyperparameters that we want to modify. For
future calculations, the optimal hyperparameter configuration
is saved. Table 2 illustrates the hyperparameter configurations
for eachmodel, showcasing the specific parameter values that
led to optimal individual model performance.

We employ a heuristic technique to combine these models,
placing them in a stack-type structure, to increase the model’s
performance because each model has a unique manner of
computing the result and we can’t truly determine what
goes on inside the processing and model training process. It
consists of four base classifiers—sometimes referred to as
level-0 classifiers—Decision Tree Model, Logistic Regres-
sion Model, Support Vector Machines Model, and Random
Forest Model, as well as one meta classifier that combines all
of the level-0 classifiers’ predictions with their optimal hyper-
parameter settings. The structural diagram of the suggested
model is shown in Figure 2.

C. GAME FORMULATION
Following the successful implementation ofmachine learning
methods to classify patient eligibility based on blood parame-
ters, we now shift our focus to the realm of game theory. This
independent phase, occurring immediately after the machine
learning process, revolves around the dynamic interactions

TABLE 2. Hyperparameter configuration for each model.

FIGURE 2. Structural diagram of the ML model implemented.

and decision-making of key stakeholders, including doctors,
patients, and research firms. It is here that we construct a
robust framework to strategically plan and manage patient
participation in clinical trials, transcending the confines of
data-driven eligibility assessments.

This paper presents a 3-layer game approach incorporating
a static-repetitive manner to effectively study the interac-
tions between the players, as well as the immediate gains
and long-term incentives. The suggested framework would
work on a ‘‘Patient-Centric Stratified Influence’’, to prioritize
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patients, then the doctors, and finally, the research firms.
Patients, Doctors, and Research firms, in our setting, would
work on strategic profiles of Producers, Intermediaries, and
Consumers respectively.

Patients would have the most direct influence based on
personal health, risks, benefits, and convenience. Research
firms would be the ones managing and designing trials, set-
ting certain criteria for eligibility, and providing incentives
for participation if needed. Doctors or Clinical Investigators
would help identify potential candidates adhering to the trial
practice protocols. They would be obliged to communicate
with patients regarding all the trial practices, guiding and
supporting them along the way.

1) NORMAL GAME FORMULATION
Judging from the influence, patients are the primary stake-
holders. They have the liberty to decide if they want to
continue in the trial or not, any time in the trial process.
Research firms are the organizations which would fund and
conduct the trials. These organizations would ensure ethics
and would determine steps to keep safety and efficiency of
treatments. Doctors or Clinical Investigators will be respon-
sible for providing medical care and collect data on trials, for
research purposes.

TABLE 3. Normal form game matrix for the clinical investigators or
doctors vs patients.

From the Table 3, P1 would denote the action of engaging
in a trial whereas P2 will denote the action of not engaging
in a trial. Normal game form between Patients, Doctors and
Patients, Research Firms as their decision structure aligns,
only if the game is in cooperative manner, for the Doctors
and the Research Firms. Each of the payoff representation in
the matrix would be interpreted as:
1) ++: Both Doctors and Patients are engaging in recruit-

ment, resulting in great recruitment process, which
would make the outcome desirable for both.

2) -+: Doctor engages but Patient doesn’t. Recruitment rate
would be low, affecting the Doctor’s work and Patient
will have net zero effect on its payoff.

3) +-: Doctors won’t engage in the trial while Patient
chooses to participate or engage in the trial, resulting
in not selecting the Patient for a certain trial. Although,
if Patient wants, they can participate in some other
experiment trial, which may have high risk but high
reward.

4) --: Both outcomes are unfavourable, which would ham-
per the clinical trial process.

To increase the payoff for doctors where patients are not
engaging, one can use the naïve approach as well, which
would include giving incentives or maybe some information
for assurance of the trials, adhering to the risks associated

with their health or their overall well-being. In a more
intricate style, doctors can use methods like patient match-
ing, personalized treatment recommendations, risk assess-
ments, patient safety, informed consent, feedback analysis
and patient monitoring to mitigate or level up the payoff,
if patients are not engaging.

For the low payoff for patients, where doctors are not
cooperative, one can use the targeted patient identification,
predictive modelling, personalized patient outreach and real
time monitoring. One such proposed model is mentioned in
our paper as well, incorporating autoencoders and ensemble
methods.

TABLE 4. Normal form game matrix for the doctors vs research firm.

From the Table 4, 4 actions can be taken. Doctor can
either recommend or withhold the recruitment. Whereas the
research firm can either recruit or fail to recruit the apt
patients. Each of the payoff representation in the matrix
would be interpreted as:
1) Doctor Recommends, Research Firm Recruits (Doctor:

+, RF: +): Doctor recommends the clinical trial to the
patient and the Research Firm successfully recruits the
patient.

2) Doctor Recommends, Research Firm Fails to Recruit
(Doctor: +, RF: -): Doctor recommends the clinical
trial to the patient and Research Firm fails to recruit the
patient.

3) Doctor Withholds, Research Firm Recruits (Doctor: -,
RF: +): Doctor withholds the recommendation for the
clinical trial and Research Firm successfully recruits the
patient.

4) Doctor Withholds, Research Firm Fails to Recruit (Doc-
tor: -, RF: -): Doctor withholds the recommendation for
the clinical trial and Research Firm fails to recruit the
patient.

Clinical investigators or the doctors can maximize their pay-
off in a naïve approach, which may include financial compen-
sation, career advancement, validation of trial outcomes and
the quality of collaboration between the players. Whereas.
Research firms can increase their payoff by effectively car-
rying out decisions related to trials. Research firm’s main
objective is to conduct a successful trial, which can be done by
validating the trial outcomes, choosing quality data, checking
cost-effective solutions and methods and also by maintaining
a good relationship with the doctors.

By using machine learning methods, doctors can increase
their payoff due to intervention of tools. Doctors can use these
ML tools for identifying apt patients, engage in collabora-
tive decision making, clinical support, remote collaboration
and research facilitation. For Research firms, they can use
ML tools to maneuver into drug discovery and development,
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to optimize drug composition and application possibilities,
and safety profiles too. Such tools can also optimize supply
chain [41].

2) BACKWARD INDUCTIVE APPROACH
It is advantageous to know how many times a repeating game
technique will be used until it achieves a Nash equilibrium,
or to put it another way, an ideal solution or strategy. Back-
ward propagation will only slow down the process if it is
uncertain. However, even if there may be some uncertainty
in the case of clinical trials, we may still estimate the number
of occurrences. In order to employ the backward inductive
approach, we would therefore assume that the organization
is aware of the criteria so that they can successfully conduct
the experiments. By taking into account research firm efforts,
doctors can boost their compensation. Research firms boost
their profits by conducting better studies, for which they must
find the best patients. Figure 3 shows the influential model
of the game proposed. Patients who choose to participate
in trials will present conditions (or weights) to the study
company. Doctors receive involvement through a working
channel between clients and businesses in order to maximize
their own financial gain through superior partnership. The
firm’s objective is to maximize profits with the least amount
of work while rigorously following to medical regulations.

FIGURE 3. Interaction flow in the game between patients, doctors and
research firms.

3) SAMPLE GAME INTERACTIONS
a: PATIENT-FIRM

• Patient Awareness: Firms aim to inform potential
patients about clinical trials, benefits, risks and the eli-
gibility criteria for the same [42].

• Patient Screening: Firms evaluate interested patients
based on their medical history, eligibility criteria and
suitability for the trial [43].

• Informed Consent: If the patient meets up with the eli-
gibility criteria, firms present a consent form explaining
everything. Patient can ask queries and decide whether
to participate [44].

• Patient Enrolment: After consent, patients get enrolled.
Firm then may collect information about the patients,
perform baseline assessments and allocate patients to
different treatment groups [45].

b: FIRM-DOCTOR
• Study Design: Firms and doctors collaborate to design
trials. They select the effective endpoints, treatment pro-
tocols and recruitment strategies [46]. They also validate
safety procedures and feasibility of the trials [47].

• Recruitment Planning: Firms and doctors discuss and
plan recruitment strategies, considering factors such as
patient demographics, geographic distribution, referral
networks and competing trials. Firms provide doc-
tors with recruitment materials, updates on enrolment
status and guidance on engaging with potential
participants [48].

• Patient Referral: Doctors refer eligible patients from
their clinical practice as well [49].

• Study Implementation: Doctors collaborate with firms
to ensure proper execution of study protocols, monitor
patient progress, address events and collect data as per
trial’s requirements [50].

c: PATIENT-DOCTOR
• Doctor’s Recommendation: Doctors interact with
patients, providing insights into trial’s response and pur-
pose, potential benefits, risks and alternative treatments.
Patients ask questions too.

• Patient Decision Making: Shared decision making is
implemented to decide whether patient has to participate
in the clinical trial or pursue any other options, acting
upon doctor’s recommendation by personal factors like
health condition, preferences and logistical preferences.

• Trial Participation: If patients get enrolled, they collab-
orate with the doctors by attending regular check-ups,
undergoing treatments, providing feedback etc.

• Follow-up care: Doctors provide post-trial care and
monitor patient’s health, ensuring smooth transitions
back to regular clinical management [51], [52].

4) UTILITY FUNCTION AND PAYOFF MAXIMIZATION
SUB-GAMES
a: UTILITY FUNCTIONS
Here, we build the groundwork by explaining the utilitarian
roles of important participants, including patients, physicians,
and research organizations. These functions are essential for
measuring individual preferences, assessing decision-making
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procedures, and eventually providing a thorough framework
for examining interactions in the context of our study.
Patient Utility: The utility function of the patients would

be defined as,

Up = Pgain − Pcost =

∑D

d=1
CdBd − Pd (2)

Here, Pgain represents the perceived benefits gained from
participating in clinical trials by the patients, Pcost stands
for the potential personal costs involved for the patients, Cd
represents the specific benefits associated with trial aspect,
from each doctor d, Bd signifies the intrinsic appeal of each
benefit given to the patient, from the good degree of care by
the doctors, and Pd represents the individual’s own personal
costs, raised due to hesitations or concerns, which were not
addressed properly by the doctors, equivalent to Pcost and∑d

d=1 CdBd equivalent to Pgain.
This utility function encapsulates the patients’ decision-

making process by quantifying the balance between per-
ceived benefits and concerns, allowing us to analyze their
recruitment strategies in the context of doctors and research
firms.
Doctor Utility: The utility function of the doctors would be

defined as,

Ud =

∑Ad

a=1
Kd,aGd,a −

∑P

p=1
CpBp (3)

where Ud represents the doctor’s utility, Kd,a denotes the
significance of engaging patients through various strategies
by each doctor d and resources used by the doctor, with each
usage of resource a, Gd,a signifies the success achieved with
each engagement strategy in a trial by each doctor d, using
resource a, and Cp

∗Bp captures benefits and gains achieved
by the doctors due to effective addressing of concerns or
reservations, of each patient p.

Doctor’s utility evaluates a doctor’s utility by considering
the success of patient engagement strategies, the resources
used, and the effectiveness in addressing patient concerns. It
provides a measure of how valuable a doctor’s efforts are in
clinical trial recruitment.
Research Firm Utility: The utility function of the research

firms would be defined as,

Ur = Gd,a s.t. δa ≥

∑D

d=1
Kd,aGd,a (4)

where Ur represents the research firm’s utility, Gd,a signifies
the benefits derived from successful patient recruitment using
some resource a by some doctor d, δa reflects the research
firm’s efficacy in achieving recruitment goals using some
resource a, Kd,a

∗Gd,a represents the costs associated with
patient engagement strategies, and

∑D
d=1 encompasses all

potential engagement strategies.
Research firm’s computes the utility of a research firm by

considering the benefits of successful patient recruitment, the
costs of engagement strategies, and ensuring that the benefits
surpass the total costs. It offers an assessment of the firm’s
effectiveness in patient recruitment.

b: PAYOFF MAXIMIZATION SUB-GAMES
Research Firm:

The clinical trial recruitment enhancement subgame for
research firms, as outlined in the paper, aims to discover the
optimal approach for research firms to maximize their utility
function while collaborating with patients, doctors, and other
research firms. The optimization challenge for augmenting
the recruitment process is represented by the following

maximizeζd,aGd,a = αd,aβd,a ln (1 + ζd,a) (5)

subjected to these constraints,
•

∑D
d=1Kd,aGd,a ≤ δa

•

∑Ad
i=1 αd,aβd,a ≤ A

• ζd,a ≥ ζ̄d,a; ∀a
where,

• ζd,a denotes the efficiency coefficient of the recruit-
ment method employed by research firm with available
resources a and doctor d.

• αd,a represents the research firm’s overall strategic
effectiveness or capability in devising and imple-
menting patient recruitment strategies. It encapsulates
the firm’s expertise, resources, and approach towards
patient engagement and recruitment. Higher the value
of αd,a could indicate a more successful and resourceful
research firm in terms of recruitment strategies.

• βd,a reflects the specific impact of the chosen recruit-
ment strategy on each individual patient’s willingness
and likelihood to participate in the clinical trial. It takes
into account factors such as the patient’s preferences,
concerns, medical history, and the alignment of the
recruitment approach with their needs. A higher βd,a
value suggests that the chosen strategy is more com-
pelling and relevant to that particular patient.

• ln(1 + ζd,a) signifies that Gd,a from the 5th equation,
increases more slowly when ζd,a increases.

The objective of the optimization problem is to enhance the
recruitment process and maximize the utility. Constraints
encompass factors such as the total resources allocated to
patients, the overall capacity of research firms, and the pre-
scribed limits for the recruitment approach. These constraints
guarantee a feasible optimization and ensure that resources
are not overspent during the recruitment process.
1) First constraint,
The constraint essentially states that the total quantity of
components for payoff (Kd,a, Gd,a) needed to create all the
patient recruitment efforts should not exceed the allocated
efforts of the research firm(δa) for the trial. The research
firm’s commitment to engage with patients (Kd,a) for crafting
patient recruitment process, should contribute to the overall
benefits, while staying within the constraints of the available
time or efforts (δa) for the research firm’s operations.
2) Second constraint,
The constraint essentially states that the sum of the effec-
tiveness (α d,a) of designing individual recruitment strate-
gies for patients, while considering their preferences (βd,a),
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should not exceed the available resources (A) of the research
firm. The constraint helps illustrate how the constraint aligns
with the concepts of architectural design and customization,
as well as the research firm’s strategic effectiveness, all while
staying within the boundaries of their available resources.
3) Third constraint,
ζ̄d,a (Minimum Efficiency) represents the minimum level of
efficiency that the research firm expects for each participation
planned for each doctor, allotted with resources a. It’s like
setting a baseline standard for howwell each patients’ recruit-
ment should be organized. The constraint essentially states
that the efficiency of the ζd,a for each patient should not fall
below the established minimum efficiency level (ζ̄d,a). The
constraint aligns with the idea of setting a certain benchmark
for the efficiency of each personalized patient recruitment
strategy. The research firm aims to maintain a consistent level
of effectiveness in their recruitment methods for each patient.

Furthermore, Kd,a can be represented as:

K̂d,a(ζd,a)

αd,aβd,a ln
(
1 + ζd,a

) (6)

Equation (5) can be rewritten as,

maximizeζd,aGd,a = αd,aβd,a ln (1 + ζd,a) (7)

subjected to constraint,
• ζd,a ≥ ζ̄d,a; ∀p,∀a where a denotes resources utilized
•

∑D
d=1 K̂d,aζd,a ≤ δa

Equation (7) is convex in ζd,a [53] and it has a single optimal
solution. Therefore, optimal ζd,a ‘s payoff would be maxi-
mized and would satisfy the third constraint of equation (5).
The optimal ζd,a which will satisfy ζd,a > ζ̄d,a for any

resource a, for each doctor d will be given as,

ζd,a =

∑D
d=1 K̂d,a + δa

DK̂d,a
− 1 (8)

where D can be some maximum quantity of doctors partici-
pating, and when equality is satisfied of the third constraint
of equation (5), we can rewrite equation (8) as,

ζd,a = max(ζ̄d,a, (

∑D
d=1 K̂d,a + δa

DK̂d,a
− 1) (9)

Upon seeing the equations, we can also propose that to satisfy
the third constraint of equation (5), as

δa +

∑D

i=1,i̸=d
K̄i,a ≥ ((ζ̄d,a + 1)D− 1)K̂d,a ∀a, ∀

p (10)

Based on research firm’s optimal strategy, we can move
backward to Doctors’ subgame, which would maximize its
own payoff under the influence of various actions.
Doctors:
Payoff Maximization Sub-game can be defined as (D,

{SD},Ud(.)) where,
1) D are the set of active doctors or Clinical Investigators
2) SD are the set of strategies of each doctor

3) Ud:{S1 X S2. . .X SC} is the payoff
Payoff/utility maximization sub-game for the doctor can be
written as,

maximizeKd,aCdUd =

∑Ad

a=1
Kd,aGd,a −

∑P

p=1
CpBp (11)

Subjected to:
• αd,aβd,a ≤ εdA
•

∑Ad
a=1Gd,a ≤ Ĝd,a

• Kd,a >0
Each constraint tells a different analogy.
1) In the first constraint, εd represents a factor that signifies

the research firm’s capacity to design and implement
various patient recruitment strategies within the lim-
itations of their allocated resources, by each doctor.
A higher value of εd indicates a larger capacity to allo-
cate resources for designing and implementing effec-
tive patient recruitment strategies, while a lower value
implies a more constrained resource allocation. The first
constraint of equation (11), reflects that the product
of the research firm’s strategic effectiveness (αd,a) and
the specific impact of the recruitment strategy (βd,a)
for each patient should not exceed the firm’s available
resources (A), considering the capacity indicated by the
coefficient εd . εd signifies the research firm’s resource
allocation capacity for designing tailored patient recruit-
ment strategies.

2) In the second constraint, the constraint essentially states
that the total success achieved across all engagement
strategies should not exceed the predefined maximum
success limit (unit Gd,a). The constraint aligns with the
idea of maintaining a balanced and impactful collection
of engagement strategies. The research firm aims to
ensure that the overall success achieved through various
engagement strategies stays below a predefined limit
while effectively engaging patients in the context of
clinical trial recruitment.

3) In the third constraint, the constraint essentially states
that the significance assigned to each engagement strat-
egy should be greater than zero, meaning that every
strategy holds importance and contributes positively to
the overall patient recruitment effort. The research firm
assigns significance to each strategy with the expecta-
tion that they all contribute to the recruitment process.

Inspiring from the first two constraints of equation (11),
we can say that ∑

∀a
ζ
d,a

≤ SD (12)

where SD is estimated to be SD =
eGd /(αd,aβd,a)

Ad
and optimiza-

tion problem will be given as,

maximizeKd,aCdUd =

∑Ad

a=1
K̂d,aζd,a −

∑P

p=1
CpBp (13)

Subjected to:
•

∑Ad
a=1 ζd,a ≤ SD

• K̂d,a > 0
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Here, this maximization sub-game of doctors is a
non-cooperative game where doctors would be interested
only in maximizing its utility. Each doctor will start with
a unit significant effort to each engagement strategy, and
announces it to the research firm. Each doctor has some
maximum numbers of hours allotted to them. Every doctor
updates their unit effort based on their time and demand from
the research firm as well, in the form of ζd,a. Its given as,

K̂d,a (t + 1) = K̂d,a (t) + σD

(∑
∀d

ζ
d,a

− SD
)

(14)

where σD ≪1, where σD is the adjustment parameter intro-
duced to fine-tune the changes in effort based on the dif-
ference between the research firm’s perceived significance
(ζd,a) and the doctor’s perception (SD) for a specific engage-
ment strategy. It is intentionally set to a small value (≪1)
to ensure that the adjustments remain subtle and incremen-
tal, thus avoiding abrupt changes in effort allocation. σD is

estimated as σD =

∑
∀p
Cd

2
∑
∀d,a

Kd,a
. This process is repeated until it

converses. In order to explore the presence of an equilibrium
in the game and to discern the optimal response strategies
employed by the players, we outline the subsequent precise
definitions derived from game theory within the framework
of our specific problem.

The set of all significance noted {K̂1,a, K̂2,a, K̂3,a . . . K̂D,a}
is going to be equilibrium for the Doctor’s Payoff Maximiza-
tion Sub-game for each doctor, if we have,

U ′
d

(
K̂ ′
d,a, K̂−d,a

)
≥ Ud

(
K̂d,a, K̂−d,a

)
, ∀K̂ ′

d,aϵSd (15)

where K̂−d,a = {K̂1,a, . . .Kd−1,a,Kd+1,a . . .KD,a} is the
significance to be adhered by doctors. At the point of equi-
librium, none of the parties – doctors, research firms, or
patients – have any motivation to alter their strategies inde-
pendently as it would not result in any advantageous outcome
for them. At the equilibrium point, neither doctors, research
firms nor the patients receive positive incentives by changing
their strategies unilaterally. The doctor’s payoff, as described
in equation (13), is an increasing function with respect to
K̂d,a, ensuring the presence of a single optimal solution.
Optimized unit Kd,a which will maximize the payoff of

each doctor will be updated as,

K̂d,a =

∑D
i=1,i!=d K̂I ,a +

∑A,d
a=1 δa

(A (D− 1) + DSD
(16)

where A are the total allocated resources. The optimized Kd,a,
will be then given as,

Kd,a = K̂d,a
ζd,a

αd,aβd,a ln (1 + ζd,a)
(17)

Next, based on Doctor’s utility/payoff subgame, we can
determine how we can determine the optimal parameters for
patients to maximize their utilities/payoff.
Patients:
Main objective of the Patient Maximization Sub-game is to

maximize the benefits or chance of getting recruited into the

clinical trials and setting an optimal contract with the doctors
and the research firm. Payoff optimization problem can be
expressed as,

maximizeCdBdUp =

∑D

d=1
CdBd − Pd (18)

Subjecting to:
• αd,aβd,a ≤ εdA
•

∑
∀D αd,aβd,a ≤ A

•

∑A,d
a=1Gd,a ≤ ˆGd,a

• Cd>0
For the above constraints, first, second and the third are
already mentioned from the constraints of equation (11), (5).
The fourth constraint, reflects the idea that patients are moti-
vated by positive benefits, and trial aspects must provide
meaningful, positive advantages to be considered in their
decision to participate in clinical trials.

For patients, taking benefits for a certain trial, from d
doctors, would be,

Cd (t + 1) = Cd (t) + ρ(
∑

∀d
Cd−Pd ) (19)

where ‘‘ρ’’ in this equation represents a parameter or a con-
stant that determines the rate at which the patients’ benefits
(Cd ) for a certain trial increase based on their interactions
with doctors (Pd ). Cd which can maximize the payoff for any
patient, can be

Cd =

∑
∀d
∑

∀a Kd,a +
∑P

j=1,j̸=p Cp

PĜd,a + D(P− 1)
(20)

c: BEST RESPONSE FOR THE THREE STAGE GAME AND
UNIQUE EQUILIBRIUM
From the equation (20) and (16), we can say that it maximizes
the payoffs of each player in their respective subgames, and
then it is also the best responses of the game.
Proof: Let’s imagine that there is an upward adjustment in

the value of K̂d,a by εd > 0, resulting in a revised substantial
unit,

K̂ ′
d,a = K̂d,a + εd (21)

For research firm’s subgame for maximizing the payoff,
we can determine the new ζ ′

d,a from equation (8) by putting
K̂d,awith K̂ ′

d,a,

ζ ′
d,a =

∑D
j=1,j̸=d Kj,a + K̂ ′

d,a + δa

DK̂ ′
d,a

− 1 (22)

Finding the difference between ζd,a and ζ ′
d,a will be formu-

lated as,

ζd,a − ζ ′
d,a =

K̂ ′
d,a − K̂d,a

K̂d,aK̂ ′
d,a

(∑D
j=1,j̸=d Kj,a + δa

D

)
(23)

Equation (23) says that ζd,a− ζ ′
d,a > 0 since K̂ ′

d,a > K̂d,a for
εd > 0. This indicates that raising the significant unit does
not lead to an increase in the players’ payoff in the research
firm’s subgame.
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In the next step, when focusing on the Doctor’s subgame
for maximizing their payoff, we’ll examine the transition
from the initial significance level, denoted as K̂d,a to the
updated significance level, denoted as K̂ ′

d,a for doctors. Due
to increase in significance for given Cd and Bd, the payoff
difference is,

U ′
d

(
K̂ ′
d,a, K̂−d,a

)
− Ud

(
K̂d,a, K̂−d,a

)
= K̂ ′

d,a

∑
∀a

ζ ′
d,a − K̂d,a

∑
∀a

ζd,a (24)

Substituting from equations from (8), (22) and (16) into (24),
we can formulate,

U ′
d

(
K̂ ′
d,a, K̂−d,a

)
− Ud

(
K̂d,a, K̂−d,a

)
= −

D− 1
D

εd (25)

From equation (25), it can be inferred thatU ′
d

(
K̂ ′
d,a, K̂−d,a

)
<

Ud
(
K̂d,a, K̂−d,a

)
for εd > 0, which is contradicting

equation (15), which is setting up the equilibrium point for
the Doctor’s subgame. Also, we can observe a decline in
significance value, which will decrease the payoff due to the
effect of keeping εd > 0.
In the same way, we can see the trend by keeping K ′

d,a =

Kd,a+εd for patient’s payoff, we can formulate the difference
between U ′

p for and Up for, using equation (20). After some
algebraic calculations, difference computed is,

U ′
p − Up ∝ εdζ

′
d,acd (ζ

′
d,a − ζd,a) (26)

where we can say that U ′
p − Up < 0 since εd > 0, ζ ′

d,a > 0,
Cd >0 and ζ ′

d,a − ζd,a is negative, from seeing equation (23).
Similarly, we can deduce a comparable adjustment in Cd
without resulting in an increased payoff for patients, doctors,
and research firms. Due to space constraints, we haven’t
included the analysis for the change in Cd. Consequently,
we can affirm that the three-way influence-centric game has
an equilibrium point. Therefore, equation (16) represents the
optimal response within the game. Furthermore, an equi-
librium exists for patients and doctors in the significance
selection game under the following conditions: a) The nego-
tiation sets are non-empty, convex, and bounded subsets of
Euclidean space, i.e., they should have finite space and b)
Utilities are continuous and exhibit concavity (for both Up
and Ud).
Also, ∂2Up

∂(Cd )2
= 0, ∀p, and ∂2Ud

∂K̂2
d,a

= 0, ∀d . Hence, payoff

or the utility functions for Doctors and Patients are concave
in significance, hereby stating that a unique equilibrium does
exist.

Table 5 will furnish a concise exposition elucidating the
purpose and role of each variable employed in formulating
the game theoretic model for reference.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
Our empirical analysis of the proposed model, incorporating
ensemble stackingmethods and autoencoders, was conducted
using PYTHON in a Windows 10 environment, supported by

TABLE 5. Variables mentioned in the game theory methodology
elucidated.

an 8GB RAM system with a Ryzen 5 5000 series CPU. The
experiments were executed with Python version 3.10.
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B. DATASET DESCRIPTION
The dataset utilized in this study originates from Electronic
Health Records Prediction, obtained from a private hospital
located in Indonesia [54]. The dataset comprises laboratory
test results of patients, which play a pivotal role in guiding
subsequent treatment decisions, whether involving patients
receiving care within the hospital premises or those under
outpatient care. The primary objective associated with the
dataset involves classification prediction tasks. This real-
world dataset has been out-sourced from Kaggle, a well-
established platform for data science and analysis. Discrete
variables are there as well, listed as follows-

• AGE denotes the patient’s age.
• The SEX attribute is a binary nominal variable indicating
the patient’s gender.

• The SOURCE attribute is a nominal feature with two
categories: ‘’in’ represents patients receiving in-care,
while ‘out’ indicates patients receiving out-care.

The ‘SOURCE’ attribute serves as the target column
(i.e., ‘in’ or ‘‘out’) for classification tasks, making it
a vital component for predictive modeling and health-
care analysis. The continuous variables in this dataset,
namely HAEMATOCRIT, HAEMOGLOBINS, ERYTHRO-
CYTE, LEUCOCYTE, THROMBOCYTE, MCH, MCHC,
and MCV, represent essential blood parameters that play a
crucial role in assessing a patient’s overall health and suitabil-
ity for participation in clinical trials. Here’s a brief description
for all the blood parameters considered for our experiment-

• HAEMATOCRIT: Haematocrit measures the volume of
red blood cells in the blood. It helps evaluate a patient’s
blood composition and oxygen-carrying capacity.
Example- In a clinical trial for patients with anemia,

a minimum HAEMATOCRIT level may be required to
ensure that participants have a sufficient number of red
blood cells to assess the effectiveness of an anaemia
treatment.

• HAEMOGLOBINS: Haemoglobins are responsible for
transporting oxygen in the blood. The levels of
haemoglobins can provide insights into a patient’s
oxygen-carrying capacity and overall health.
Example- For a clinical trial studying the effects

of a new blood transfusion therapy, patients with low
HAEMOGLOBINS may be considered as they could
benefit the most from the treatment.

• ERYTHROCYTE: Erythrocyte count refers to the num-
ber of red blood cells. It is vital for assessing a patient’s
ability to transport oxygen efficiently. In clinical trials,
ERYTHROCYTE levels are important for determining
a patient’s suitability for studies focused on oxygen
transport and blood health.
Example- In a clinical trial investigating the effects

of a drug on oxygen transport, participants with
low ERYTHROCYTE counts may be chosen to
assess the drug’s potential to improve oxygen-carrying
capacity.

• LEUCOCYTE: Leucocytes, or white blood cells, are
crucial for the immune system’s function. Their count
can indicate a patient’s immune response and overall
health. In clinical trials, LEUCOCYTE levels play a
role in assessing a patient’s immune system health and
response to treatments.

Example- In an immunotherapy trial for cancer treat-
ment, patients with normal or high LEUCOCYTE
counts may be preferred to ensure that their immune
systems can effectively respond to the treatment.

• THROMBOCYTE: Thrombocytes, or platelets, are
essential for blood clotting. Their count is significant in
evaluating a patient’s ability to form blood clots. In clin-
ical trials, THROMBOCYTE levels are important for
assessing the suitability of patients for studies involving
clotting disorders or treatments.

Example - In a study on patients with bleeding dis-
orders, individuals with low THROMBOCYTE counts
may be selected to evaluate the efficacy of a new drug in
improving blood clotting.

• MCH, MCHC, and MCV: These parameters are related
to the size and hemoglobin content of red blood cells.
They provide information about the quality and charac-
teristics of red blood cells.

Example- In clinical trials, MCH, MCHC, and MCV
levels can be critical for assessing a patient’s blood
health and their eligibility for studies involving red blood
cell disorders.

In the dataset, patient_id serves as a unique identifier
for each of the 4412 patients. Notably, HAEMATOCRIT,
representing haematocrit levels, ranges from 13.7 to 69.0,
showing substantial variation. HAEMOGLOBINS, which
indicate haemoglobin concentration, span from 3.8 to 18.9,
reflecting diversity among patients. ERYTHROCYTE, mea-
suring red blood cell count, varies between 1.48 and 7.86.
LEUCOCYTE, denoting white blood cell count, ranges
from 1.1 to 76.6. THROMBOCYTE, representing platelet
count, extends from 8.0 to 1183.0, showing significant dif-
ferences. MCH (Mean Corpuscular Haemoglobin) varies
between 14.9 and 40.8, reflecting diversity in haemoglobin
content within red blood cells. MCHC (Mean Corpuscular
Haemoglobin Concentration) ranges from 26.0 to 39.0, show-
casing variations in haemoglobin concentration. MCV (Mean
Corpuscular Volume) varies from 54.0 to 115.6, indicating
differences in red blood cell volume. Finally, AGE spans
from 1.0 to 99.0, highlighting the age diversity within the
patient population. These variations provide valuable insights
for clinical trial patient recruitment and further analysis.
Within the context of optimizing patient recruitment for
advanced clinical trials, the dataset’s parameters align with
the eligibility criteria for participation. This includes dis-
cerning the eligibility of patients, both in terms of in-patient
and out-patient care, for enrolment in advanced clinical
trials.

Resampling methods, feature engineering and feature scal-
ing were done as the part of the preprocessing. Dataset was
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divided into 2 parts: 0.8 part of the dataset for the training
data and the rest for the testing data.

C. AUTOENCODERS PERFORMANCE
Upon analyzing the encoded data, our autoencoder-based
approach has impressively captured essential features and
patterns within the patient dataset. The encoded data brings to
light several crucial insights for optimizing patient selection.
The shape of the encoded data, which is (4204, 700), indicates
that while there wasn’t an extensive reduction in dimen-
sionality, it’s essential to note that this subtle dimensionality
reduction has uncovered intricate details and patterns among
the blood parameters and other discrete variables within the
dataset. Despite retaining a considerable number of features,
the encoded data provides a clearer view of underlying rela-
tionships and interactions, contributing to a more refined
understanding of patient characteristics and eligibility for
clinical trials.

To quantify the accuracy of the autoencoder’s data recon-
struction, we employed the Mean Squared Error (MSE)
metric. For each data point in our designated dataset,
we obtained the reconstructed counterpart using the autoen-
coder model. The MSE was then computed by averaging
the squared differences between the original data and its
reconstructed form, revealing an average MSE value of
0.00022996273820050333 for the autoencoder’s reconstruc-
tions on the test dataset. This MSE value provides a quantita-
tive measure of the reconstruction accuracy achieved by the
model. Low Mean Squared Error (MSE) during data recon-
struction underscores the autoencoder’s ability to maintain
data integrity, ensuring the accurate identification of eligible
patients without compromising clinical data quality. Figure 4
shows a graph of the restructured data points plotted against
the range of MSE values.

FIGURE 4. MSE for reconstructed data, made by the autoencoder.

D. CLASSIFICATION MODELS METRIC EVALUATION
In the proposed super-classification model, in the form of
stacking classifier, 4 different classification models were
trained with best hyperparameters, searched using Random-
izedCVSearch. There are various performance metric tasks

TABLE 6. Comparison of ML classification on the basis of
testing/validation accuracy and training accuracy.

used in the domain ofmachine learning. For the classification,
we have utilized accuracy, recall, precision, f1-score, support,
macro average and weighted average.

Table 7 shows the classification report of each model used,
after the hyperparameter tuning. Table 6 shows training accu-
racy and validation accuracy of each classification used.

From Table 2, we can see the selection of hyperparameter
values for the decision tree model used in the analysis of
the encoded clinical trial dataset reflects a careful balance of
various considerations. A minimum of 20 samples required
for a split ensures that nodes have enough data for meaningful
branching, preventing overfitting. A maximum of 256 leaf
nodes controls the tree’s complexity, keeping it manageable
and interpretable. Using only 20% of features at each split
introduces diversity, mitigating overfitting risks. The lim-
itation of the tree depth to 12 strikes a balance between
capturing patterns and model simplicity. The choice of the
‘gini’ criterion aligns with classification tasks, optimizing
classification accuracy. The class weighting, with class 1
(eligible patients) assigned higher weight, emphasizes the
importance of correctly identifying eligible patients. These
settings are tailored to the clinical trial recruitment con-
text, emphasizing the significance of accuracy, diversity, and
model simplicity in identifying eligible patients while main-
taining interpretability. The Decision Tree model, with its
hierarchical and tree-like structure, excels at dividing the
dataset into subsets based on the most informative features,
providing an intuitive representation of decision-making. It
identifies eligibility for clinical trials by considering key fea-
tures, achieving a good balance between correctly identifying
suitable patients and avoiding incorrect identifications.

The hyperparameter settings for our logistic regression
model reflect a balanced approach, considering key factors
for effective clinical trial patient recruitment. We employ an
‘l2’ penalty for regularization, striking a balance between
model accuracy and simplicity. With ‘max_iter’ set to 100,
we ensure efficient model training without excessive compu-
tational overhead. Enabling ‘’fit_intercept’ aligns our model
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TABLE 7. Classification report of each model, stating each classification model’s accuracy, macro average, weighted average, precision, recall, support
and F1-score.

with traditional logistic regression. Equal class weights (1:1)
signify a fair treatment of both class 0 and class 1. The
regularization strength ‘C’ is set to 1, emphasizing a bal-
anced approach to prevent overfitting and maintain model
flexibility. These hyperparameters collectively aim to achieve
accuracy while keeping the model straightforward, crucial
for the accurate identification of eligible patients in clinical
trials. Logistic Regression, a linear classification method,
demonstrates robust performance in identifying clinical trial
eligibility. It leverages the linear combination of features to
make predictions, resulting in balanced Precision, Recall, and
F1-scores. While achieving commendable accuracy, it pro-
vides consistent results, making it a reliable choice for patient
recruitment. However, it’s noteworthy that Decision Trees
performed slightly better, possibly due to their non-linear

decision boundaries, which were better suited for capturing
complex relationships in the data.

In our SVM (Support Vector Machine) model, the choice
of hyperparameters is designed to balance complexity and
accuracy for optimal clinical trial patient recruitment. We
opt for the ‘rbf’ (Radial Basis Function) kernel, a versatile
choice that can capture complex patterns in the data effi-
ciently. A ‘gamma’ value of 1 emphasizes the significance of
each data point, while a ‘degree’ of 4 indicates higher-order
polynomial kernel usage. With a regularization parameter ‘C’
set to 100, we strike a balance between model complexity
and accuracy, aiming to prevent overfitting and maintain
the model’s generalization capabilities. These hyperparam-
eters collectively contribute to accurate patient selection for
clinical trials while ensuring the model’s robustness. SVM
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meticulously identifies a boundary that maximizes the mar-
gin between eligible and ineligible patients. This margin
represents the space that is least ambiguous for patient classi-
fication. SVM operates in a higher-dimensional space, where
each feature of the patient dataset corresponds to a different
dimension. SVMexcels in finding non-linear decision bound-
aries, which is essential for capturing complex relationships
between various blood parameters and patient attributes. In
our analysis, SVM achieved an impressive test accuracy of
73.85%, indicating its proficiency in correctly categorizing
patients. Its balanced Precision and Recall values signify that
it effectively identifies both eligible and ineligible patients
without compromising on quality. However, Decision Trees,
with their adaptability to complex data patterns, slightly
outperformed SVM in our specific clinical trial recruitment
setting.

For our Random Forest model, we have thoughtfully
selected hyperparameters to optimize patient recruitment for
clinical trials. With ‘n_estimators’ set to 150, we consider a
substantial number of decision trees to achieve robust predic-
tions. ‘min_samples_split’ and ‘min_samples_leaf’ are both
set to 2, promoting fine-grained data partitioning while pre-
venting overfitting. ‘max_features’ is chosen as ‘sqrt’, which
means it considers a square root of the total features at each
split, offering a balance between diversity and correlation
among decision trees. A ‘max_depth’ of 20 controls tree
depth, enhancing model generalization. Additionally, we opt
for ‘bootstrap’ as ‘FALSE,’ which allows us to build the forest
using the entire dataset. These hyperparameters collectively
enable accurate patient recruitment for clinical trials and a
resilient model with minimized overfitting. Random Forest,
a versatile ensemble learning technique, combines the power
of multiple decision trees to make robust and accurate predic-
tions. It’s particularly useful in complex classification tasks,
like predicting clinical trial eligibility. Random Forest excels
at capturing intricate patterns in the data by aggregating
multiple decision trees’ results, thereby reducing the risk of
overfitting. In our analysis, Random Forest achieved remark-
able test accuracy of 82.88%. It maintains a fine balance
between precision and recall, ensuring that both eligible and
ineligible patients are correctly identified. This demonstrates
its efficacy in our clinical trial recruitment context, where
precision and recall are both critical for accurate patient selec-
tion. The model’s excellent performance can be attributed to
its ability to adapt to the intricacies of the patient dataset,
showcasing its suitability for such applications.

As for the Stacking classifier, the Stacking Classifier
strategically incorporates the strengths of each base model
to enhance patient selection for clinical trials. Decision
Trees help identify non-linear patterns in the dataset, mak-
ing them useful for capturing complex relationships among
blood parameters and patient attributes. Logistic Regression’s
efficiency is leveraged for straightforward classifications,
ensuring swift decision-making. SVM excels in managing
high-dimensional data and finding optimal decision bound-
aries, thus aiding in precise patient selection. The Random

Forest’s ability to handle noisy data and extract intricate
patterns is crucial in maintaining data quality. By combin-
ing these models, the Stacking Classifier optimizes patient
recruitment by leveraging their respective capabilities, result-
ing in a robust and accurate classification system tailored for
clinical trial settings. The similarity between the Stacking
Classifier and the Random Forest’s results can be attributed
to the significant influence of the Random Forest’s strengths
in the stacking ensemble. Random Forest excels in handling
noisy data and capturing complex patterns in the clinical
trial recruitment dataset, where intricate relationships among
blood parameters and patient attributes are prevalent. The
Stacking Classifier leverages this strength by assigning con-
siderable importance to the Random Forest model within the
ensemble. Consequently, it harnesses the Random Forest’s
ability to identify subtle patterns and maintain data quality,
ensuring the precise selection of eligible patients for clinical
trials.

Remarkably, the Stacking Classifier stands out as the
top performer, achieving an impressive testing accuracy of
83.45%. Yet, the exceptional training accuracy of 99.95%
raises considerations about potential overfitting, encouraging
a thoughtful interpretation of its generalization capabilities.
This observed difference between training and testing accu-
racies highlights the importance of fine-tuning and employing
regularization strategies to delicately balance model intricacy
for effective generalization.

In the landscape of clinical trials, envision a scenario where
the Stacking Classifier boasts an impressive 83.45% test-
ing accuracy. Picture a trial focused on identifying patients
with rare genetic markers. The model’s precision in rec-
ognizing these markers streamlines participant recruitment.
However, the training accuracy at an exceptional 99.95%
signals potential overfitting, demanding careful calibration.
This conundrum highlights the critical need for fine-tuning
and regularization techniques to ensure the model’s reliability
in identifying eligible participants with rare genetic markers,
offering a nuanced perspective for further consideration.

Figure 5 shows ROC curves, which were used to assess
their performance. The area under the curve (AUC) values
demonstrated their discriminative power. Based on the pro-
vided ROC curve, it’s evident that the Random Forest and
Stacking models exhibit superior performance compared to
the Tree, Logistic Regression, and SVM models. The Ran-
dom Forest and Stacking models achieve an AUC of 0.89,
indicating a high ability to distinguish between positive and
negative cases. In contrast, the Tree model has an AUC
of 0.78, followed by Logistic Regression (AUC = 0.76)
and SVM (AUC = 0.69). The ROC curve demonstrates
a trade-off between the True Positive Rate (TPR) and the
False Positive Rate (FPR). A higher TPR indicates a better
ability to correctly identify positive cases, while a lower
FPR indicates a lower rate of mistakenly identifying negative
cases as positive. The ideal model would have an AUC of
1.0, representing perfect classification accuracy. The Ran-
dom Forest and Stacking models consistently achieve higher
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TPR values across various FPR thresholds, suggesting their
ability to accurately identify positive cases while minimizing
false positives. In contrast, the Tree, Logistic Regression, and
SVM models exhibit lower TPR values, indicating a higher
likelihood of misclassifying positive cases. The ROC curve
analysis highlights the superior performance of the Random
Forest and Stacking models compared to the other models.
These models demonstrate a strong ability to distinguish
between positive and negative cases, making them suitable
choices for classification tasks.

FIGURE 5. ROC curves of each model tested.

E. GAME THEORY MODEL PERFORMANCE EVALUATION
We conducted a thorough simulation employing random-
ization and value variation to assess the effectiveness of
the suggested theoretic model in order to demonstrate and
support our theoretical analysis about the equilibrium point
mentioned in the above sections. Three patients, four doctors,
six research firm officials (or any other authoritative body that
could serve as a general decision-maker) have all been taken
into consideration.

Initial unit variables associated with patients and doctors
(unit significance of each strategy) for any number of doctors,
patients and the allocated resources were chosen randomly
from 0 to 1 and their initial values at given dwere {0.61, 0.63,
0.70, 0.75, 0.80} with Kd,a being 12% larger than Cd values,
and the value of δa were selected from [1] and [6].
We plotted the fluctuation of many measures, including the

value of research firms, doctors and patients vs. occurrences.
First, we drew a plot of the research firm’s variation in pre-
dicted utility, as seen in figure 6, where we could observe that
each user’s utility is rising until it converges. We next plotted,
as seen in figure 7, the change in expected values of Doctors’
unit importance towards each method vs. the occurrences.
In order to offer competitive methods to influence additional
research firm officials or more incentives or support from the
research businesses, doctors are attempting to reduce their
individual unit significance for the offered scenario.

Higher predicted payoffs for doctors are correlated with
more research firms or more incentives from research firms,
as demonstrated in figure 8. Finally, we examined the plot

FIGURE 6. Variation of research firm’s utility v/s occurrences.

FIGURE 7. Doctor’s unit significance v/s occurrences.

FIGURE 8. Doctor’s utility v/s occurrences.

to determine the variation in the benefits for patients linked
with each experiment compared to the occurrences, which is
shown in figure 9.
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In figure 9, we noticed that each patient was reducing their
benefit in order to provide doctors more room to ask for ben-
efits or clarification on trials. As a result, as seen in figure 10,
Patients are receiving higher payment. These plots support
our analysis from the previous section and demonstrate that
the three-layer game reaches an ideal, singular equilibrium
point where patients compete with doctors for their attention
and doctors compete with research firms for their incentives.
This results in high workability for the research firms and
high payoffs for both doctors and patients.

FIGURE 9. Patient’s unit incentive v/s occurrences.

FIGURE 10. Patient’s utility v/s occurrences.

V. CONCLUSION
This study has explored a wide range of techniques and inter-
disciplinary approaches with the goal of improving patient
recruitment, diagnosis, and prediction performance in health-
care applications. Several interesting discoveries have been
made as a result of an extensive literature review. The
approaches from the literature review that were looked at have
shown promise in improving the accuracy of diagnosis and
prediction across a variety of data types.

The implementation of autoencoders in our machine learn-
ing approach has yielded impressive results, with an average

Mean Squared Error (MSE) of 0.00022996273820050333.
This signifies the model’s capability to efficiently capture and
represent complex relationships within the dataset. Notably,
the shape of the encoded data, (4204, 700) as compared
to dataset’s actual size (4412,11), highlights the richness of
insights extracted from the blood parameters. The choice to
incorporate blood parameters into our analysis has proven to
be judicious, as it serves as a valuable resource for uncov-
ering hidden correlations and patterns. While it can be a
daunting task for doctors to manually discern these intricate
relationships, autoencoders step in to streamline the process.
This emphasizes the synergistic potential of combining med-
ical expertise with advanced machine learning techniques
to empower clinical decision-making and facilitate medical
research.

Our utilization of the stacking classifier underscores the
power of combining different decision-making approaches
to enhance the overall performance of our model. The very
concept of ensemble learning draws inspiration from the idea
that aggregating diverse viewpoints and strategies can lead
to more robust and accurate decisions. In our specific case,
we’ve harnessed the strengths of multiple machine learning
models to study intricate relationships within our dataset, cul-
minating in a comprehensive classification process for patient
eligibility. This approach is akin to how a doctor leverages
years of medical knowledge and diverse thought processes
to make informed decisions for their patients. While we’re
limited to amalgamating the strengths of different models
rather than the cognitive prowess of a human doctor, our
remarkable testing accuracy of 83.07% and training accuracy
of 99.95% underscores the effectiveness of this approach in
the realm of machine learning and computational decision-
making. Just as doctors employ a variety of techniques and
insights to make critical decisions, our model showcases that
similar principles can be applied in the domain of machine
learning to deliver robust and reliable results.

This paper introduces a comprehensive game theoretic
framework designed to facilitate more effective collaboration
between doctors, research firms, and patients. The framework
delves into the intricate interactions that take place among
these three distinct groups of stakeholders. Through a metic-
ulously designed three-layer patient-centric and influence-
based game, this study explores a set of subgames that cater
to the unique objectives of each player category. In these
subgames, research firms take center stage as they endeavor
to maximize their payoffs while adhering to stringent budget
constraints. This entails making strategic decisions on how
to allocate resources efficiently and engage with doctors and
patients. On the other hand, doctors are in pursuit of opti-
mizing their payoff, a goal achieved by not only attracting a
higher number of patients but also by thoroughly understand-
ing and addressing patients’ individual needs and concerns.
In essence, doctors must tailor their approaches to different
patients to enhance their chances of recruitment. Patients,
the third essential player group, strive to maximize their own
payoff. Their success in this endeavour hinges on attracting
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more requests from doctors, a goal that can be achieved by
effectively conveying their needs and preferences.

Let’s illustrate this with a simple example: Imagine a clin-
ical trial scenario in which multiple doctors are competing to
recruit patients. Research firms are responsible for overseeing
the recruitment process efficiently, ensuring that resources are
allocated judiciously. Doctors, on the other hand, are keen on
recruiting as many patients as possible. Patients are looking
to participate in trials that align with their preferences and
concerns. Within this dynamic framework, the game theory
model provides valuable insights into how these stakehold-
ers can make strategic decisions, cooperate, and compete to
achieve their respective objectives. As the subgames unfold,
each class of player strives to maximize their utility, keeping
a keen eye on their unique set of constraints and goals.

The best response of our game theoretic model signi-
fies the optimal adjustment that each doctor should make
to their recruitment strategy, given the strategies of other
doctors and the available resources. It’s a response that
maximizes the doctor’s utility, ensuring that their actions
align with the current state of the game and the actions of
other players. Equation (16) essentially takes into account
the strategies employed by other doctors and the available
resources allocated for that particular strategy. By adjusting
their recruitment strategy based on these considerations, the
doctor aims to optimize their payoff. An inference we can
draw from this equation is that the best response represents
a dynamic and adaptive strategy. Doctors continuously adapt
their approach, considering the strategies employed by other
doctors and the resources available. This adjustment ensures
that the doctor is maximizing their effectiveness in attract-
ing patients while staying within the constraints of available
resources. For example, consider a scenario where one doctor
observes that their recruitment strategy is performing better
in comparison to other doctors, possibly due to its alignment
with patient preferences. In such a case, the best response
would involve allocating more resources to that strategy,
increasing its significance. Conversely, if a strategy is less
effective, the doctor might redistribute resources to more
successful strategies. The equation provides a formalizedway
for doctors to adapt and optimize their recruitment strategies
in response to changing dynamics within the game, ultimately
contributing to a more efficient and effective recruitment
process. This adaptability and optimization are key findings
from our game theory model, demonstrating the benefits of
dynamic decision-making strategies in complex interactions.

The proven benefits of this hybrid method highlight its
potential to close the gap between real-world decision-
making and predictive modelling, leading to better clinical
trial patient recruitment outcomes. However, restrictions on
dataset size and the requirement for thorough implementation
guidance have been noted as potential roadblocks to their
efficient application. Additionally, the computational require-
ments of the suggested approaches could be problematic,
particularly in healthcare facilities with limited resources.
This paper’s unique strength is its multidisciplinary synergy,

which combines machine learning methods with basic game
theory ideas. Utilizing both sectors’ best practices, this holis-
tic approach makes it possible to improve patient recruiting
procedures.

In diverse industries, a collaborative framework could be
devised, similar to the one crafted for optimizing patient
recruitment in clinical trials. This intricate methodology
of ours, first utilizes machine learning techniques, merg-
ing them with fundamental game theory principles, extend-
ing its potential application beyond clinical trials. For
instance, it could prove effective in detecting fraudulent
financial transactions, ensuring precise defect identification
in manufacturing processes, predicting customer churn in
telecommunications, and facilitating personalized marketing
campaigns in e-commerce based on user behavior. Following
the machine learning phase, the framework transitions into
the realm of game theory. For financial fraud detection, play-
ers could include Fraudulent Entities, Financial Institutions
(Investigators), and Regulatory Bodies. In manufacturing
quality control, the players could consist of Quality Control
Systems, Production Line Managers (Inspectors), and Manu-
facturing Regulatory Bodies. Similarly, in customer retention
for telecommunications, players may involve Telecommu-
nication Service Providers, Subscribers (Customers), and
Competing Telecommunication Companies. E-commerce
personalized marketing engages E-commerce Platforms,
Individual Customers, and Competing E-commerce Plat-
forms. Lastly, in energy consumption optimization, players
may include Energy Equipment and Systems, Maintenance
Personnel, and Regulatory Bodies in the Energy Sector.
In each industry, the two-step approach involves leverag-
ing machine learning for effective classification based on
relevant parameters and subsequently formulating a game
theory model to optimize decision-making processes among
the identified players. The framework’s versatility extends
beyond clinical trials, indicating its potential utility in
addressing various challenges across different industries.

VI. FUTURE DIRECTION AND LIMITATION
Building upon this synergic and novel approach to optimize
patient recruitment for clinical trials, there are several promis-
ing future directions to consider:

A. REFINEMENT OF HYBRID MODEL
Our focus centres on refining the hybrid model by incor-
porating cutting-edge machine learning techniques and clas-
sifiers to enhance the stacked ensemble’s accuracy and
robustness. An enticing avenue involves exploring graph
neural networks, recognizing their potential to excel in
decision-making scenarios, as many real-world choices can
be aptly modelled within graph-like structures [55], [56].
This approach involves converting traditional tabular datasets
into graph representations, offering a more comprehensive
understanding of intricate relationships and dependencies
within the data. Furthermore, the utilization of graph autoen-
coders enhances the depth and quality of information encoded
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within complex graph structures. This augmented graph rep-
resentation can be seamlessly integrated into our existing
classification framework, bolstering our decision-making and
eligibility predictions. In essence, this future work promises
to empower our model with enhanced decision support
capabilities through the adoption of advanced graph-based
techniques.

B. DYNAMIC FEATURE SELECTION
We can explore dynamic feature selection techniques that
adapt to the evolving landscape of the patient recruitment
process [57]. By integrating methods like feature importance
scores and recursive feature elimination, we can ensure that
our model leverages the most pertinent features at each stage
of recruitment, thereby enhancing both prediction accuracy
and interpretability [58]. Additionally, the incorporation of
deep reinforcement learning tactics could be a promising
avenue [59]. For instance, an intelligent agent, equipped with
a subset of blood parameters and a sample space of diseases,
could dynamically determine the most relevant parameters
for a given context. This agent might aim to maximize the
number of correctly matched diseases with minimal parame-
ters. These innovations, coupled with the existing method-
ology, have the potential to further elevate the efficiency
and effectiveness of the patient recruitment process, facili-
tating better healthcare decisions. Exploring policy gradient
methods, such as Proximal Policy Optimization (PPO) [60]
and Trust Region Policy Optimization (TRPO) [61], can be
instrumental in the task of dynamically selecting relevant
blood parameters for specific diseases. These methods enable
the development of intelligent agents that can adapt and learn
optimal feature policies by interacting with the data, making
them well-suited for the complex and evolving nature of
healthcare data analysis. PPO and TRPO are known for their
stability and sample efficiency, which makes them promis-
ing candidates for developing algorithms that can effectively
choose the most appropriate blood parameters for accurate
disease classification and healthcare decision-making.

C. REAL-TIME PATIENT RECRUITMENT OPTIMIZATION
Extending the 3-layer game theoretic model to incorporate
real-time data and interactions opens up exciting possibilities
for improving patient recruitment strategies in clinical tri-
als. By embracing an unsupervised approach like association
rule mining, we can extract valuable relations from evolving
patient characteristics [62], clinical trial progress, and various
external factors. This enables us to gain a deeper understand-
ing of the ever-changing context and refine our recruitment
strategies accordingly. In addition to emotional and incentive-
based factors, exploring other relevant variables can provide
a holistic view of patient behavior and preferences, facili-
tating more personalized and effective recruitment tactics.
Investigating the feasibility of tailoring patient recruitment
strategies at an individual level by considering patient demo-
graphics, medical history, and preferences can significantly

enhance patient engagement and participation. This data-
driven approach ensures that recruitment strategies remain
adaptable and responsive, ultimately contributing to the suc-
cess of clinical trials.

D. ETHICAL AND LEGAL CONSIDERATIONS
Incorporating the ethical and legal dimensions of this
approach is paramount to ensure the responsible and secure
deployment of our methodology. Collaboration with experts
in healthcare ethics and data privacy is essential for address-
ing issues concerning patient consent, data protection, and
compliance with healthcare regulations. Given the sensitive
nature of data involved, particularly blood samples and clin-
ical trial information, robust safeguards must be in place to
prevent any malicious activities. To address these concerns,
a federated learning approach can be adopted [63]. This
decentralized process ensures that the real-time data pro-
cessing, whether from blood parameters or individual patient
profiles, occurs within distinct node structures. These nodes
process data locally and share only valuable insights and
results with a central hub. This way, the raw data remains
secure and protected, while still allowing for advanced anal-
yses and valuable inferences to be drawn, upholding both the
ethical and legal aspects of our approach.

By exploring these future directions, our interdisciplinary
approach that combines machine learning and game theory
principles could pave the way for more efficient, effective,
and patient-centric patient recruitment strategies in clinical
trials, ultimately contributing to advancements in healthcare
research and patient outcomes.

Regarding the limitations, it should be noted that the
dataset, while valuable, it mostly focuses on laboratory test
results and does not accurately reflect the variety of patient
characteristics impacting trial eligibility. Despite being fun-
damental, the study’s focus on classification prediction tasks
could ignore the many patient features that affect recruit-
ing choices. Even while it is approachable, the simplified
methodology might not adequately capture the intricacies of
the patient recruiting process, necessitating consideration of
more sophisticated models. The model’s applicability may
also be impacted by the lack of real-world validation and
any unexplained variables. Realizing these limitations high-
lights the need for future research to enhance the method.
To ensure effective patient recruiting strategies for clinical
trials, this additional study may involve larger datasets, more
complex modelling techniques, and real-world testing. This
work paves the way for improved patient recruitment tactics
in healthcare research by addressing the issues raised in
the literature review and providing a fresh interdisciplinary
strategy. Further research built on this basis might help create
a healthcare system that is more productive and effective.
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