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ABSTRACT The instantaneous reactive power theory (IRPT) has long been utilized for load compensation
through active power line conditioners (APLCs). IRPT effectively divides the current vector into two
components: the instantaneous power current and the instantaneous reactive current. Among these
components, only the former is necessary to transfer instantaneous real power to the load. However, the
commonly adopted approach faces challenges when extended tomulti-phase systems and their compensation
strategy design. This challenge is particularly pertinent today due to the consensus that treating a three-
phase system with a neutral wire as a four-conductor system is more appropriate. This paper introduces
a formulation of IRPT tailored for multi-phase systems within the framework of geometric algebra (GA).
GA is a mathematical structure that defines a single power variable, the instantaneous power multivector,
encompassing both instantaneous real power and instantaneous reactive power within a unifiedmathematical
entity. The current components can be directly derived from this power multivector. Additionally, this
paper establishes a connection with the original p-q formulations and lays the foundations for time-
instantaneous compensation (TIC) and time-average compensation (TAC). Finally, to validate the proposed
model, simulation and experimental results from a three-phase four-wire industrial system using a novel
approach are presented.

INDEX TERMS Geometric algebra, instantaneous power multivector, instantaneous reactive power theory,
multi-phase systems, load compensation.

I. INTRODUCTION
Currently, active power line conditioners (APLCs) are widely
used to mitigate the poor quality of electrical waveforms,
and different applications of APLCs in power systems can
be found in [1]. In the early 80s, Akagi et al. published
the instantaneous reactive power theory (IRPT), the original
theory, with the aim of providing a method for the design
of APLC control. Thus, in [2] and [3], they formally
introduced the concepts of instantaneous real power and
instantaneous imaginary power in the framework of the αβ0
coordinates. From these power variables, the instantaneous
active and instantaneous reactive currents in αβ coordinates
were obtained, as the current component in the 0 coordinate
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was treated independently. This formulation has been widely
used in the control of APLCs. Since the publication of the
original IRPT, several new formulations have been proposed.
All these can be considered alternative approaches within
the IRPT framework. Here, we briefly review the suggested
developments since the introduction of the original theory.
Thus, the following proposals can be made: the modified
instantaneous reactive power formulation, d-q transformation
(and id -iq, alternative formulation in a rotating frame), p-
q-r coordinates, and the vectorial approach. These studies
describe the energy transfer between the source and load
through the instantaneous power p(t) and other instantaneous
reactive power variables qj(t) according to a particular
development. In fact, in [4], a modified instantaneous reactive
power formulation was introduced, and the instantaneous
reactive power vector was defined by the cross-product
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of the voltage and current vectors; however, only two of
its three components were independent. The current vector
is obtained from the double cross-product of the voltage
vector and the instantaneous reactive power vector (cross-
product between the voltage and current vectors). Similarly,
in [5], an analysis is made of the possible meaning of the
power/current terms and the compensation process. Finally,
in [6], the most frequently used development in the literature
is given. Nevertheless, this same development in [6] can be
carried out in αβ0 coordinates as shown in [7] where the
conceptual differences between the original and the modified
theory are also established.

In contrast, in [8], the voltage and current signals
were transformed from a stationary frame in abc phase
coordinates to a rotating frame dq0 with a speed equal to
the fundamental pulsation of the grid. The latter requires
the use of a phase-locked loop (PLL), which is the main
drawback in determining reference signals in an APLC.
To overcome this drawback, the id -iq method is proposed
in [9], where the direction of one of the rotating axes is
adopted with the voltage vector in αβ coordinates, although
this procedure does not prevent the appearance of third
harmonics in conditions of grid unbalance. The so-called
pqr formulation [10] extends the id -iq method by a double
rotation that allows anchoring one of the axes with the voltage
vector so that the rotational speed of the coordinate system
will not be influenced by the imbalance and distortion of the
power grid. These new coordinates define three power terms:
a real power term and two instantaneous reactive power terms.
The main weakness of this method is the requirement of
several transformations. Finally, in [11], an approach for
generating reference signals in the control of an APLC for
different formulations was established, and a comparative
analysis of their performances was presented. In any case,
it should be said as a culmination of this review, that it
is the emergence of instantaneous reactive power variables
that differentiates the IRPT from other theories historically
proposed on electrical power. Some of the properties of the
power variables and current components introduced by the
IRPT are discussed in [12].
This issue is still topical because the implementation of

deregulation and distributed generation processes that require
APLCs and other devices based on power converters remains
a challenge. An example of this is shown in [13], where the
id -iq method is applied to the control of an APLC for load
compensation under different conditions of asymmetry and
voltage distortion. The performances of the control strategies
for the p-q theory, symmetrical component method, and
d-q formulation were compared. Moreover, in [14], a p-q
formulation was proposed as the basis of a decentralized
control strategy for voltage-source inverters in a microgrid.
In the same line of thought, an interesting extension of the
IRPT is presented in [15]. The efficient control design of
power inverters acting as an interface between the renewable
source and power grid requires a higher level of selectivity in

the decomposition of voltage and current signals. The authors
proposed the enhanced instantaneous power theory (EIPT)
for unbalanced and nonlinear three-phase systems, in which
the natural evolution of the IRPT can be considered. In the
same context, in [16], a series active power filter (SAPF) is
used as an interface between an electric vehicle and the grid
during its charging process. SAPF control was implemented
using an original method for estimating the dq components
of the voltage from a Lyapunov filter.

To date, most published formulations have been limited
to three-phase systems with three or four wires. In addition,
all of these present difficulties in their generalization to
systems with more than three phases. One of the first
works that did not consider the limitation of the number of
phases was [5]. The current vector is decomposed into two
orthogonal components. The first is obtained by projecting
the current vector onto the voltage vector, and the remaining
difference constitutes the instantaneous reactive current.
The instantaneous reactive power was determined using
the latter. Unfortunately, [5] does not indicate any way to
obtain the magnitudes of these components independently.
Other contributions to the IRPT in multi-phase systems
were subsequently published. In [17], the objective was
to decompose the current vector over an arbitrary set of
basis vectors subjected to a Schmidt orthonormalisation
process. However, these selected vectors do not seem to
be associated with any meaningful power term. Similarly,
in [18], a purely formal proposal was presented because no
operative expressions were established for these terms except
in the case of three phases. In [19] and [20] this issue was
overcome by introducing the outer product of the voltage
and current. Using the dyadic product of the two vectors,
an operating procedure can be employed to obtain the power
and current terms for systems with more than three phases.

Despite the recent advances mentioned above, there is no
general IRPT for obtaining the current from a single power
variable valid for 1-phase to n-phase systems. In contrast,
geometric algebra (GA) has recently been widely applied to
various engineering problems. Sufficient evidence for this
can be found in [21]. This is an alternative mathematical
environment derived from Clifford algebra. The inner and
outer products in the GA are handled in a unified manner
through the so-called geometric products. Furthermore, the
results can be extended naturally to an n-dimensional space.
Thus, a multidimensional environment that is particularly
suitable for developing instantaneous power analysis under
general conditions is available [22]. To date, the application
of GA in electrical power has been limited to single-phase
systems in the frequency domain. The application of GA
to electrical power analysis was first reported in a regular
journal [23]. The distorted voltage and current signals are
decomposed into orthonormal vectors associated with each
sine and cosine term of the Fourier series expansion. From
this, the geometric product between the voltage and current
vectors is obtained, and the multivector power is defined
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for the first time. Each multivector component is associated
with different apparent power values. This methodology
is applicable only to single-phase systems and is difficult
to extend to systems with a higher number of phases.
In [24], the procedure introduced in [23] was continued by
extending the concept of GA to that of generalized complex
geometric algebra, where each coefficient of the multivector
is represented by a phasor. The new generalized geometric
product achieves a multivector representation of power that
allows the identification of different powers reported in the
technical literature on electrical power in non-sinusoidal
regimes. However, it is limited to frequency-domain power
analysis environments and does not support extensions to
systems with more than one phase. In the same line, [25],
represents the harmonics of the signal by k-vectors which
are used to process the rms, phase angle, and pulsation of a
sine wave. In [26], the same authors applied their proposed
method to unveil the power phenomena under non-sinusoidal
conditions. This approach, although original, suffers from
the same limitations as in [24]. Recently, a generalized
coordinate transformation valid for multi-phase systems was
proposed [27]. The introduced transformation has a natural
visualization framework in the GA environment which allows
for a geometrical interpretation of classical transformations
such as Clarke’s or Park’s transformations.

The IRPT formulation was first addressed in the GA
framework in [28], and later, in a regular journal [29],
the issue was formalized mathematically. An application of
the proposed formulation for compensation using a series
of hybrid active filters can be found in [30]. In these
works, [28], [29], the formulation was subordinated from its
origin to an orthogonal coordinate system, and there was
no identification with the formulations established up to
that moment. Similarly, its application from an experimental
perspective has not been accredited.

In this study, a new analysis of IRPT, applicable to any
number of phases, was conducted. The original contributions
of this study are as follows:

1. The IRPT was developed from a systemic perspective.
It has been approached in a general (global) manner
based on a single power variable. This approach
defines an instantaneous power multivector that allows
for the analysis of multi-phase systems following a
model analogous to that of single-phase systems. This
approach adheres to the standard set by the IRPT,
defining a power variable and deriving the current
components from it.

2. It has been demonstrated that GA is a valid mathe-
matical tool for conducting an IRPT formulation for
systems with any number of phases, irrespective of
the coordinate system in use. Three-phase systems
can be considered a specific case derived from
multidimensional development.

3. The proposed methodology can identify various pub-
lished IRPT formulations, even when they have been
developed using different types of phase coordinates

(e.g., 0αβ coordinates). Hence, this methodology is
applicable in an environment employing any type of
coordinate system.

4. The concepts of time-instantaneous compensation
(TIC) and time-averaged compensation (TAC) have
been applied to an industrial three-phase system under
general conditions of imbalance and distortion, viewed
from the perspective of a four-conductor system.

This paper is structured as follows: it begins with a
multivector analysis of three-phase systems and subse-
quently extends its scope to encompass multi-phase systems.
Section II covers the concepts related to the formulation of the
IRPT under the framework of GA for both three-phase and
multi-phase systems. In Section III, we establish connections
between the developments carried out within GA and the
conventional formulations in 0αβ coordinates or phase
coordinates. Section IV delves into the multivector analysis
of TIC and TAC for multi-phase systems. To illustrate the
application of these concepts, SectionV presents an industrial
three-phase system that has been compensated by an APLC,
along with the implementation of a simulation model and an
experimental prototype. Waveforms showcasing the system’s
performance are provided. Section VI engages in a discussion
of the introduced IRPT topics, and finally, in Section VII,
we present the conclusions.

II. INSTANTANEOUS POWER MULTIVECTOR /
INSTANTANEOUS CURRENT COMPONENTS
The voltages of each phase and the line currents of a power
system with any number of phases can be represented by the
voltage vectors u and current i corresponding to the Euclidean
space. In the GA framework, it is well known that it is
possible to define a multiplication rule between both vectors,
called geometric products. The geometric products of vectors
u and i have been used extensively in technical studies to
identify different power terms, [22], [23], [24], [25], [26]. The
instantaneous power multivector is defined as

s(t) = iu = i · u + i ∧ u (1)

where i·u corresponds to the inner product and i ∧ u
to the outer product, respectively, between both vectors,
in the sense proposed by Grassmann, and whose explicit
expressions according to the chosen coordinate system will
be obtained later. The result of (1) is a mathematical entity
(multivector) consisting of a scalar part (0-vector) and a
bivector part (2-vector). Reference [23] provides a quick
overview of the basics of the GA.

The first term in s defines the instantaneous power p(t),
and the second term corresponds to the instantaneous reactive
power bivector q(t).

p(t) = i · u ; q(t) = i ∧ u (2)

Here, we define multivector s according to (1), as opposed
to another possible alternative definition in the form ui: This
is not relevant; it is simply a matter of sign conventions. In a
sinusoidal steady state situation, the magnitude value of q =
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i∧u is related to the classical reactive power. By convention,
this value is considered positive for inductive loads; thus,
to respect this convention, it is more appropriate to define s
according to (1).

From the instantaneous power multivector s it is possible to
obtain the current vector by multiplying it by u−1

= u/(uu).
In fact,

i =
su
(uu)

=
i(uu)
(uu)

=
pu
(uu)

+
qu
(uu)

(3)

where the associative and distributive properties of the
geometric product were used, [21]. As presented in (3), the
time dependence of the different variables will be omitted
to simplify the notation. The last relation, (3), shows the
partition of the current vector into two components: the
instantaneous power current ip and the instantaneous reactive
current iq:

ip =
pu
(uu)

; iq =
qu
(uu)

(4)

Both the current components are orthogonal as demon-
strated in the appendix.

The instantaneous norm of any multivector can be defined
using the concept of the ‘reverse’ of a multivector. The
reversing process, which will be identified here with the
symbol ’†’, is obtained from the original multivector by
inverting the order of the vectors in all the k-parts that make it
up. Thus, for example, the reverse of vector iwill result in the
vector itself, i† = i. The instantaneous norms of the voltage
and current vectors are defined as:

u =

(
u†u

)1/2
= (uu)1/2 ; i =

(
i†i

)1/2
= (ii)1/2 (5)

Preferably, the variables in italics indicate the instanta-
neous norms of the variable. Thus, given the orthogonality
of the current components in (3),

i2 =
(
ip + iq

) (
ip + iq

)
= i2p + i2q (6)

because the vectors ip and iq are orthogonal and their
geometric product is antisymmetric (ipiq =-iqip). In the case
of the instantaneous power multivector, its reverse s† is

s† = ui = u · i + u ∧ i = i · u − i ∧ u = p− q (7)

and therefore, from (5), its instantaneous norm satisfies the
relation,

s2 = s†s = uiiu = u2i2 = u2
(
i2p + i2q

)
= p2 + q2 (8)

Again, the associative property is applied to obtain (8).
This last equation provides the partitioning of the instan-
taneous squared norm of multivector s (or instantaneous
apparent power) with the instantaneous power squared and
instantaneous reactive power squared.

Thus far, the relationships presented in (1)–(8) constitute
a general development of the IRPT based on GA concepts,
without the voltage and current vectors being referenced to
any particular coordinate system. In the following section,
an application for the analysis of three-phase and n-phase

systems is presented. The objective is to obtain concrete
operational expressions for the power and current terms in
the GA framework. For this purpose, we assume that the
Euclidean space supporting the GA has an orthonormal basis
of vectors {ei}.

A. THREE-PHASE SYSTEMS
In a three-phase system, the current and voltage vectors u and
i are defined, respectively, by (9),

u =
[
u1 u2 u3

]t
; i =

[
i1 i2 i3

]t (9)

where the superscript ‘t’ denotes a transpose. Both vectors
consist of waveforms corresponding to the line-to-neutral
voltage and line currents, respectively. Each voltage can be
referenced to a neutral conductor or an artificial neutral point
when it does not exist.

Vectors u and i can be considered as elements of a three-
dimensional Euclidean space generated by an orthonormal
basis ej, with j = 1,2,3. Thus, the voltage and current vectors
can be decomposed into basis vectors, as shown in (10).

u = u1e1 + u2e2 + u3e3 ; i = i1e1 + i2e2 + i3e3 (10)

The geometric product of any two vectors of base {ei} is
defined as follows:

eiej = eij = ei.ej + ei ∧ ej = −ejei = −eji ∀i ̸= j (11)

constituted by an inner product and an outer product.
In (11), the first term is null because the vectors ei are
orthonormal and the second term is a basis bivector. That
is, the geometric product of two different basis vectors is a
bivector or 2-vector (the outer product of ei and ej). Through
the geometric product, the square of the two basis vectors is 1,
and the square of the two basis bivectors is −1.

eiei = 1; eijeij = eiejeiej = −ejeieiej = −1 (12)

Fig. 1 has been included for improved visualization. The
basis vectors and bivectors are shown, and the bivectors are
represented by a directed area.

FIGURE 1. Basis vectors (e1, e2, e3) and basis bivectors (e12, e23, e13) in
three-dimensional Euclidean space.

From (10) and (11), the following expression is obtained
for multivector s:

s = iu = p+ q12e12 + q13e13 + q23e23 = p+ q (13)
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The 2-vector part q is the three-phase instantaneous
reactive power bivector; as indicated in (13), it consists of
three components of instantaneous reactive power q12, q13,
q23, [1], [6],

q =
(
i1u2 − u1 i2

)
e12 +

(
i1u3 − u1 i3

)
e13

+
(
i2u3 − u2 i3

)
e23 = q12e12 + q13e13 + q23e23 (14)

From (8), (13), and (14), and the systematic application
of rules (11) and (12), the square value of the instantaneous
power multivector norm is obtained according to (15).

(s)2 = (p)2 +

((
q12

)2
+

(
q13

)2
+

(
q23

)2)
= (p)2 + (q)2

(15)

In contrast, the current components are obtained from
the power variables defined in the previous section. The
current was obtained from only an instantaneous power
vector. From (4) and by application of the rules given by (11),
we obtain each one of the components of the line currents (it
should be noted that qij=-qji).

Fig. 2 shows a geometrical representation of the current
vector decomposition in three-phase systems. Bivector q
determines the plane in which the voltage and current vectors
are arranged.

Each of the three component vectors, ip and iq correspond
to the generic expressions given in (16):

ipj =
puj
u2

; iqj =

3∑
k = 1
k ̸= j

qjkuk

u2
(16)

with j=1, 2, 3. Both are obtained from (5), consider-
ing (11) and (12).

FIGURE 2. Instantaneous reactive power bivector q, and orthogonal
decomposition of the current vector i.

B. MULTI-PHASE SYSTEMS
In multi-phase power systems, voltage and current vectors are
defined as (17),

u =
[
u1 . . . un

]t
; i =

[
i1 . . . in

]t (17)

which can be expressed as a linear combination of
the orthonormal basis vectors {ei} of the n-dimensional
Euclidean space in the form (18)

u = u1e1 + . . . + unen ; i = i1e1 + . . . + inen (18)

The rules for operating with the basis vectors are
established in (11) and (12).

Thus, the instantaneous power p(t) is defined as the inner
product of the voltage and current vectors (19).

p = i · u = u1i1 + . . . + unin (19)

and the outer product of voltage and current vectors, that
is, the instantaneous reactive power bivector q, consists of
n(n−1)/2 instantaneous reactive power components (20),

q(t) =
(
i1u2 − u1 i2

)
e12 + . . . +

(
i1un − u1 in

)
e1n + . . .

+
(
i2un − u2 in

)
e2n + . . . + (in−1un − un−1in) e(n−1)n

= q12e12 + . . . + q1ne1n + . . . + q2ne2n
+ . . . + q(n−1)ne(n−1)n (20)

Each of the n(n-1)/2 components of the instantaneous
reactive power bivector are given by,

qij =
(
iiuj − ui ij

)
∀i, j = 1, . . . , n ; i < j (21)

The instantaneous reactive power terms in (21) verify (22).∑
∀i,j,k
i̸=j̸=k

ukqij = 0 (22)

That is, only the (n(n-1)/2)−1 instantaneous reactive power
variables were independent. Equation (22) emerges from the
fact that vectors u and q are perpendicular; therefore, it is
verified that

u · q =
1
2
(uq + qu) = 0 (23)

From (23) it follows that an energy system of n-phases is
characterized by n(n-1)/2 variables; a variable p and (n(n-
1)/2)-1 variables of qij.
Finally, similar to (16), each component of the vectors ip

and iq corresponds to the generic expressions in (24).

ipj =
puj
u2

; iqj =

n∑
k = 1
k ̸= j

qjkuk

u2
(24)

with j=1, 2, . . . , n.
The model established using Eqs. (6) and (8) describes

the power system in the IRPT domain according to the same
pattern as that of the balanced system in a sinusoidal steady
state. Thus, the squared norm of the instantaneous power
multivector has an orthogonal decomposition in terms of the
instantaneous and reactive powers [1], [6].
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III. IDENTIFICATION WITH THE FORMULATIONS OF THE
P – Q THEORY
A. ORIGINAL/MODIFIED INSTANTANEOUS POWER
THEORY IN 0 α β COORDINATES
A GA handles mathematical objects that are not associated
with any particular coordinate system. This allows for
the formulation of power in the time domain for any
coordinate system in which the voltage and current vectors
are decomposed. This quality is especially interesting for
the identification of the formulation proposed here with the
IRPT formulation originally developed in 0αβ coordinates.
In the original p-q theory, the Clarke transformation was used
to express the voltage and current variables. An interesting
study on the handling of component transformations in a GA
environment can be found in [27]. The vectors u and i are then
expanded to a basis {e0 eα eβ} in the form,

u = v0e0 + vαeα + vβeβ = v0e0 + vαβ

i = i0e0 + iαeα + iβeβ = i0e0 + iαβ (25)

The basis vectors {e0 eα eβ} are governed by the same
rules established in (11) and (12). The original formulation
treats the zero-sequence component of voltage and current
independently of the αβ components. Thus, the instantaneous
power multivector in the αβ plane is defined by the following
geometric product,

sαβ = iαβvαβ =
(
vαiα + vβ iβ

)
+

(
iαvβ − vαiβ

)
eαβ

= pαβ + qαβeαβ (26)

In (26) pαβ is the so-named instantaneous power in the
αβ plane, and qαβ is the instantaneous imaginary power
in the αβ plane that constitutes the only component of the
instantaneous reactive power bivector. Similarly, the zero-
sequence instantaneous power multivector is defined as

s0 = i0v0 = i0v0 = p0 (27)

which only has a scalar part corresponding to the
instantaneous zero-sequence power.

From the instantaneous power multivector (26) and (27)
two current vectors are obtained: the current vector in the αβ

plane

iαβ = sαβ

vαβ

vαβvαβ

=
pαβvαβ

v2aβ
+
qαβeaβvαβ

v2αβ

= ipαβ + iqαβ

(28)

and the zero-sequence current vector,

i0 = s0
v0
v0v0

=
p0v0
v20

(29)

The components of each of the vectors (28) and (29)
are fully identified with the 0αβ components of the
p-q theory.

An analogous development can be followed for identi-
fication using the modified p-q formulation. In effect, the

instantaneous power multivector in the 0αβ plane is defined
by the geometric product

s0αβ = iu =
(
v0i0 + vαiα + vβ iβ

)
+ (i0vα − v0iα) e0α

+
(
i0vβ − v0iβ

)
e0β +

(
iαvβ − vαiβ

)
eαβ

= p0αβ + q0aβ (30)

where the scalar part (instantaneous power) and bivector
part are identified. The latter, on this occasion, includes
three components corresponding to the three variables of
instantaneous reactive power collected in the modified p-q
theory. From the power multivector in (30), the current vector
is obtained as

i = s0aβ
u
uu

= p0aβ
u

v20αβ

+ q0aβ
u

v20aβ
= ip0αβ + i q0aβ

(31)

where the instantaneous norm of the voltage vector in
coordinates 0αβ is

v20αβ = uu = v20 + v2α + v2β (32)

In (31), again, the vectors of instantaneous power current
and instantaneous reactive current are identified in coordi-
nates 0αβ, [7].

B. RELATION BETWEEN THE GA APPROACH AND THE
VECTORIAL FORMULATION
The modified p-q theory was initially developed from the
cross-product of the voltage and current vectors (9) to define
an instantaneous reactive power vector; therefore, it is also
known as a vectorial formulation. In the vectorial IRPT, the
vector q is,

q = i × u (33)

The components of vector q obtained from the develop-
ment of the cross-product in (33) are

q = (i2u3 − u2i3) e1 + (i3u1 − u3i1) e2 + (i1u2 − u1i2) e3
= q23e1 + q13 (−e2) + q12e3 (34)

The length of q, q, is the instantaneous reactive power, that
is

q = ∥q∥ = ∥u × i∥ =

√
q223 + q231 + q212 (35)

noting that q31 = -q13.
However, the vector of the instantaneous reactive power

in (34) matches the instantaneous reactive power bivector
defined in (14). In fact, in (14) the 2-vector q is expressed
in terms of the basis 2-vectors eij where the coincidence with
the instantaneous reactive power components is appreciated.

However, this point deserves further investigation. In (14),
the bivector q is expressed as a function of the basis bivectors
e12, e13, e23. In (34), vector q is expressed with the same
components as a function of vectors e1, -e2, e3. The basis
bivectors are elements of the GA, defined as oriented planes
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whose perpendicular directions for a right-handed basis {ei}
are shown in Fig. 1.

e∗23 = e1 ; e∗13 = −e2 ; e∗12 = e3 (36)

In (36), e∗ij indicates the duals of each basis bivector. In the
GA, the duality transformation applied to the basis bivectors
determines the vectors perpendicular to their defined oriented
planes. Mathematically, duality is formalized using the
pseudoscalar I defined in three-dimensional space by the
trivector I= e1e2e3 [21], [23]. The geometric product of -I
(the inverse of pseudoscalar I) with any bivector allows us to
obtain the dual vector. Thus, the concept of duality in the GA
can be used for the conversion between the representation of
the bivector type and vector representation.

Finally, Equation (16) allows us to check the equivalence
between the results obtained for the instantaneous reactive
current by means of the geometric product of bivector q and
vector u, with the cross-product between the instantaneous
reactive power vector and the voltage vector of the modified
p-q theory formulation given in the references. However, the
development in the GA framework allows natural generaliza-
tion to the case of multi-phase systems, as established in the
previous section.

IV. COMPENSATION STRATEGIES IN A FOUR-WIRE
THREE-PHASE POWER SYSTEM
This section discusses the topics reviewed for the compensa-
tion of an industrial load under the conditions of asymmetry
and distortion. The convenience of considering a three-phase
power system with a neutral conductor as a special type of
four-conductor system has been well established in technical
literature. That is, the measurement of the voltages of each
line conductor, including the neutral conductor, refers to
the virtual neutral point of a star formed by four resistors.
The currents in each of the four conductors, including the
neutral conductor, were considered in a similar manner.
This methodology leads to a more convenient formulation
of equations that describe the behavior of the system.
An extensive discussion of this issue took place in the 1990s.
Reference [31] summarizes this topic. In this respect, GA is
a particularly appropriate tool because it allows the handling
of four-component vectors in a natural form.

Here, the compensation of a non-sinusoidal unbalanced
three-phase system is presented by considering it as a four-
conductor system. Figure 3 shows a load consisting of three
single-phase rectifiers connected to a star with an accessible
neutral in parallel with a set of star RL branches. The
two comprise a nonlinear unbalanced load supplied by a
non-sinusoidal unbalanced power source. In addition, the
possibility of varying the value of the resistance on the
‘dc’ side of each of the rectifiers has been considered.
The connection of the shunt APLC enables the application
of various types of compensation. Each line conductor,
including the neutral conductor, had the same line resistance.
As indicated above, the virtual neutral point N of a star
formed by four resistors of the same value (a sufficiently

high value was chosen) was used as a voltage reference.
A generalization for the case of different line conductor
resistance values can be easily established.

Voltage and current vectors u and i for a four-conductor
system are defined as follows:

u =
[
u1 u2 u3 u4

]t
; i =

[
i1 i2 i3 i4

]t (37)

with the particularity, in this case, that

1t · u = 0 ; 1t · i = 0 (38)

where

1 =
[
1 1 1 1

]t (39)

FIGURE 3. Shunt compensation with an active power line conditioner in a
four-wire three-phase power system.

Table 1 presents the results of the geometric product of
the vectors (37). In the main diagonal are the terms that
constitute the instantaneous power, and the terms outside
the main diagonal are those that constitute the instantaneous
reactive power bivector.

TABLE 1. Terms of the instantaneous power multivector.

In contrast, from (24), Table 2 includes the explicit
current components of the four conductors as a function of
instantaneous power and the instantaneous reactive power
bivector terms.

TABLE 2. Current components of i.
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The current vectors referring to the supply, load, and
compensator are henceforth characterized by the subscripts
‘S’, ‘L’, and ‘C’, respectively, as shown in Fig. 3. Similarly,
instantaneous power multivectors are distinguished at supply
terminal sS, load terminal sL, and compensator terminal sC.

sS = iSu ; sL = iLu ; sC = iCu (40)

with

sC = sL − ss (41)

according to the references in Fig 3.

A. TIC
In the TIC [1], the objective is that the multivector
instantaneous power of the supply only includes the scalar
part:

sS = pL (42)

with

pL = iL1u1 + . . . + iL4u4 (43)

and therefore,

iS =
sSu
(uu)

=
pL
u2

u (44)

It is a vector of four components corresponding to
the currents through each line conductor that transfers
the instantaneous power of the load with the minimum
instantaneous power value of the transport losses. Other
source current vectors are possible, but always correspond to
vectors with a higher instantaneous norm value for the same
purpose. The compensation current vector is then

iC =
sCu
(uu)

=
qLu
u2

(45)

which includes the instantaneous reactive power bivector
given by

qL =

4∑
∀i,j=1
i<j

(
iLiuj − uiiLj

)
eij (46)

The previous relations correspond to concrete operational
expressions that allow determination of the compensation
current (45).

B. TAC
Two compensation strategies were considered: constant
power compensation, TAC_P, and unity power factor com-
pensation, TAC_PF.

1) CONSTANT POWER COMPENSATION, TAC_P
In this case, the compensation objective is

ss = PL (47)

where PL corresponds to the average power absorbed by
the load (and eventually, the compensator’s power self-loss).
Thus, for the references in Fig. 3, the multivector of the
instantaneous power transferred by the compensator is

sC = sL − sS = pL − PL + qL = p̃L + qL (48)

which includes the oscillatory component of the load
instantaneous power as a scalar part and the load instanta-
neous reactive power as a bivector part. Consequently, the
vector of the current generated by the compensator was

iC =
sCu
(uu)

=
up̃L
u2

+
qLu
u2

(49)

2) UNITY POWER FACTOR COMPENSATION, TAC_PF
In this compensation strategy, a unity power factor,
as observed from the power supply terminals, is sought. This
assumes that the source current is given by:

iS =
PL
U2 u (50)

where

U2
=

1
T

∫ T

0

4∑
j=1

u2j dt (51)

which represents the square of the RMS value in one period
T of the voltage (37) (voltages of each of the conductors to
virtual neutral). Therefore, the instantaneous supply power
multivector is

sS =
PLu2

U2 (52)

The instantaneous supply power multivector (52) contains
only a scalar component. The instantaneous power multivec-
tor of the compensator is obtained from (41).

sC =

(
pL −

PLu2

U2

)
+ qL (53)

Thus, the compensation current is

iC =
sCu
(uu)

=

(
pL
u2

−
PL
U2

)
u +

qLu
u2

(54)

The compensation currents for the different compensation
strategies are shown in Fig. 4. The diagram shows a schematic
of the proposed methods; TAC needs the aid of a low-pass
filter to obtain the average power and voltage RMS value.
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C. MODEL COMPENSATOR
The inferred compensation currents were generated by the
APLC. A four-leg inverter was used for this purpose. Each
branch of the IGBTs was triggered using hysteresis band
control. In other words, an error signal is generated by the
difference between the compensation current signal (as a
reference signal obtained by controlling (45), (49), or (54))
and the compensation current signal measured at the output
of the converter. This error signal acted as an input to
the hysteresis band comparator. Fig. 5a shows a schematic
of an equivalent circuit in which the power inverter is
modelled using voltage-controlled sources. However, the
source located in branch 4 could be shifted to the remaining
three branches, as shown in Fig. 5b. From a practical
perspective, this simplification enables the use of a three-
leg inverter according to the control technique illustrated in
Fig. 5. In the following subsection, a collection of selected
waveforms corresponding to different types of compensation
is presented.

FIGURE 4. Flow chart for obtaining the compensation currents in TIC and
TAC.

V. PRACTICAL APPLICATION
The system shown in Figure 3 was considered as a practical
application. It is a non-sinusoidal unbalanced three-phase
system with four conductors. Fig. 3 shows the star consisting
of four 10 M� resistors whose neutral will act as a voltage
reference. To apply the proposed methodology, a simulation
environment was first used, and then an experimental
prototype was implemented. The waveforms of interest are
presented in the following subsections.

FIGURE 5. Modelling of an active power line conditioner using controlled
sources: a) model of a four-leg converter, b) vswit_4 -shift through the
common node.

A. SIMULATION RESULTS
A simulation model in the MATLAB-Simulink environment
for the system shown in Fig. 3 was designed to validate the
compensation strategies outlined in Section IV. This model
permits clearer visualization of the waveforms and power
variables for different compensation methodologies. For this
purpose, we consider a voltage supply in the following form:

uj4 =
√
2230 kj sin

(
2π50 t − φj

)
+

√
2230

(
0.01 kj

)
sin

(
2π350 t − 7φj

)
(55)

with j=1, 2, 3. The parameters kj and ϕj of the voltages are
given in Table 3.

TABLE 3. Voltage parameters.

Consider that the voltages of each conductor, referred to as
artificial neutral N, are given by

uj = uj4 + u4 (56)
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Since the sum of the uj is zero, with j=1, 2, 3, 4, it is
verified that

u4 = −
u14 + u24 + u34

4
(57)

Each of the single-phase rectifiers has two 20 � parallel
resistors in series with an inductance of 0.1 H on the dc side
branch. In contrast, the linear asymmetric load is made up of
three RL branches in star with accessible neutral, R1 =60 �,
R2 = 0.9· R1, R3 =1.1· R1; L1 =L2 =L3 =0.01 H.
Fig. 6 shows the voltage uj and current ij waveforms.

A load variation at time t=0.16 s has been considered.
In fact, on the ‘dc’ side of the rectifiers of the nonlinear load,
a variation of the resistance value from R=20 � to R=10
� has been induced in order to verify the dynamic behavior
of the system. Fig. 6a shows the four voltages of each of
the four conductors, referred to as the virtual neutral N. The
voltage waveform of conductor ’1’ is highlighted. Fig. 6b
shows the four-conductor currents; similarly, the waveform
of the current of conductor ’1’ is highlighted against the rest
of the currents. Evidently, the current through conductor ’4’
corresponds to the neutral current.

FIGURE 6. Voltages and currents of a four-wire three-phase system. a)
Voltages (V) from each conductor to the virtual neutral point; b) Line
currents (A) of each of the four conductors. Phase 1 has been highlighted.

The TIC and TAC were applied to the system, as shown in
Fig. 3. For each compensation methodology, the following
waveforms before and after compensation are shown in
Fig. 7: conductor current ij(t), instantaneous power p(t),
instantaneous reactive power q(t) (norm of the bivector
q), and instantaneous apparent power s(t) (norm of the
multivector s).

Fig. 7a shows the current waveforms of each conductor
before and after the TIC. After the TIC, at t=0.06 s, the
currents transfer the instantaneous power with minimum
instantaneous power losses. That condition is maintained
after t=0.16 s when a load variation occurs. The current
through conductor 4 (a neutral conductor) was practically
zero. Fig. 7b shows the currents before and after TAC_P.
In this case, from t=0.06 s the currents transport the

FIGURE 7. Current waveforms (A) of each of the conductors before/after
compensation (t=0.06 s). The current of conductor 1 is highlighted. a) TIC;
b) TAC_P; c) TAC_PF. At t=0.16 s there is a variation in the load.

average power absorbed by the load (and eventually the
losses of the compensator) with minimum losses in the
transport. Similarly, Fig. 7c shows the currents before and
after the TAC_PF. After compensation, the currents were
collinear with the voltage, obtaining a unity power factor with
minimum possible transport losses.

Fig. 8a shows the instantaneous power p(t) before and
after the TIC; the instantaneous power variable is the same
regardless of the TIC. Fig. 8b shows that the instantaneous
reactive power q(t) is zero after the TIC. The variation of
the load at t = 0.16 s confirms this circumstance. However,
Fig. 8c presents the instantaneous apparent power s(t); here,
it is observed that s(t) includes only the instantaneous power
after the TIC. However, TAC requires a low-pass filter (LPF)
to determine the active power and rms value of the voltage
when required. This is a characteristic of TAC versus TIC.
As a compromise between settling time and speed of descent
in the stopband a third order Butterworth filter has been used.

Fig. 9a shows p(t) before/after TAC_P. After compensa-
tion, p(t) becomes a constant value equal to the average
power of the load (after the LPF settling time has elapsed):
q(t) follows the same behavior presented in Fig. 8b because
TAC_P completely eliminates q(t). Fig. 9b shows s(t); after
compensation, s(t) assumes a constant value that is identified
with the active power drawn by the load. Similarly, for the
TAC_PF methodology, Fig. 10a shows p(t) before and after
compensation; this time, it is no longer constant; it is the
instantaneous active power whose average value is the load
active power. Again, the graph corresponding to q(t) is shown
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FIGURE 8. a) Instantaneous power (W) before/after TIC (t=0.06 s); b)
Instantaneous reactive power (var) before/after TIC (t=0.06 s); c)
Instantaneous apparent power (VA) before/after TIC (t=0.06 s).
At t=0.16 s there is a change in the load.

FIGURE 9. a) Instantaneous power (W) before/after TAC_P (t=0.06 s); b)
Instantaneous apparent power (VA) before/after TAC_P (t=0.06 s).
At t=0.16 s there is a change in the load.

in Fig. 8b, because q(t) cancels out after compensation.
Finally, s(t) coincided with p(t) after compensation, Fig. 10b.

B. EXPERIMENTAL RESULTS
The proposed formulation was experimentally validated
using a laboratory prototype. The implemented model uses
the same parameters for the elements and power supply of the
system as those of the simulation platform described in the

FIGURE 10. a) Instantaneous power (W) before/after TAC_PF (t=0.06 s);
b) Instantaneous apparent power (VA) before/after TAC_PF (t=0.06 s).
At t=0.16 s there is a change in the load.

previous subsection. Thus, in the system shown in Fig. 3, the
shunt APLC is connected. Using Semikron SKM50GB 123D
modules consisting of two insulated-gate bipolar transistors
(IGBTs) with their respective freewheeling diodes, a three-
legged inverter was designed to form a three-phase converter.
A set of two 2200 µF, 600 V, electrolytic capacitors in series
were installed on the dc side of the converter. Both the
compensation strategies (TIC and TAC) were implemented
using the dSPACE acquisition and control system. Amodular
system that integrates a DS1005 PPC card that includes a
PowerPC 750GX processor communicates via a PHS bus
with specific input/output (I/O) cards. Specifically, DS2004
cards with 16 differential input channels and DS5101DWO
cards with 16 TTL-type outputs were used. The real-time
interface (RTI) tool allows a real-time interface between
cards andMATLAB/Simulink blocks, which manages to exe-
cute designs previously developed in MATLAB-Simulink.
Finally, from the RTW (real-time workshop) toolbox, C code
was obtained from the Simulink models to control the firing
of the IGBTs of the power converters. The current waveforms
on the three-phase side before and after compensation were
captured using the dSPACE ControlDesk tool, which allows
real-time interaction with the power system [1]. The system
was powered using a California Instruments 15003i/iX
programmable power supply according to the parameters
listed in Table 3.

Fig. 11 shows the waveforms of the supply voltage
of conductor 1 versus the load current (the current was
multiplied by 10 for plotting purposes).

Fig. 12a shows the source currents after the TIC. This
includes the voltage and current waveforms (the current is
scaled by 10) of conductor 1. After compensation, the source
current transfers only instantaneous power, and the current
waveform includes the ripple inherent to the hysteresis band
control. Fig. 12b shows the source voltage and current after
applying the constant-power compensation strategy TAC_P.
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FIGURE 11. Voltage (V) and current (A) waveforms of the conductor
1 considered in the experimental setup. The current appears multiplied
by 10.

The line currents transfer only the active power absorbed by
the load (and possibly the specific losses of the compensator)
after connecting the APLC. Fig. 12c shows the voltage and
current after applying the unity power-factor compensation
strategy TAC_PF. From the power supply, the currents of the
conductors are in phase with the voltage of each conductor
with respect to the virtual neutral.

FIGURE 12. Voltage (V) and current (A) waveforms of conductor 1 after
compensation. a) TIC; b) TAC_P; c) TAC_PF. The currents appear multiplied
by 10.

VI. DISCUSSION
In this section, we outline themost noteworthy features of this
study.

- The GA has proven to be an effective mathematical tool
to formulate the IRPT for any n-phase power system
in a general manner without the need to refer to any
particular coordinate system. This implies having a
multivector power variable that groups instantaneous
power and instantaneous reactive power. From this, the
two orthogonal current components of the IRPT are

obtained and are not linked to the previously prefixed
coordinates.

- The instantaneous power multivector s(t) is valid for
a system with any number of phases. This extended
the analysis from single-phase to n-phase systems. This
characteristic distinguishes it from the IRPT analyses
presented to date. In one-phase systems, if u= ue1 and
i= ie1, then the algebraic subspace generated under
the GA has a k-vector basis {1, e1}. In this case the
geometric product of u and i is s(t)=ui=u·i=p(t); that
is, it consists of one component, the 0-vector whose
value is the instantaneous real power. It follows that
ip matches i and the line losses cannot be reduced
by the compensation equipment without energy storage
elements. This fact is well known; however, it is of
interest that it is included in such a theory, which is valid
for multi-phase systems.

- The approach followed here has made it possible to find
concrete operational expressions for the power terms
and current components, both in phase coordinates and
in other types of coordinates, such as the coordinates
0αβ of the original theory of Akagi et al. [2]. This
made it possible to identify and compare the different
formulations proposed within the IRPT framework.

- From a practical perspective, the multidimensional
approachmakes it possible to treat industrial three-phase
systems by considering a neutral conductor as simply
another line conductor. This facilitates an analysis and
approach to the most current philosophy. This requires
arranging the voltages and currents as vectors of the
four components; the GA is an appropriate tool for this
purpose.

- The concepts of instantaneous real power/instantaneous
reactive power and instantaneous power/instantaneous
reactive currents allow for the generalization of the two
aspects of compensation introduced by the IRPT to
multi-phase systems. Thus, it is possible to speak of the
TIC and TAC for systems with any number of phases.

VII. CONCLUSION
In this study, a generalized formulation of the IRPT is
presented. This new approach allows us to identify the
power/current terms in both three-phase systems and systems
with any number of phases. This methodology was developed
in a GA environment. Thus, the instantaneous power multi-
vector is defined as a new power variable that incorporates
instantaneous power and instantaneous reactive power. The
present power multivector directly follows the decomposition
of the current into two perpendicular components: an instan-
taneous power current and an instantaneous reactive current.
This approach was first presented for three-phase systems
and was subsequently extended to multi-phase systems. The
fundamentals of the compensation of balanced/unbalanced
linear/nonlinear loads in the scope of the new methodology
are discussed. Thus, the control strategies of TIC and TAC
have been generalized to multi-phase systems. A discussion
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of the concepts of IRPT (power variables and current
components) and their application to the compensation of
nonlinear/unbalanced loads in the GA environment was
established. Finally, the topics were applied to a practical
power system compensated with an APLC. The results
from the simulation model and experimental platform are
presented. The GA methodology has proved useful for the
formulation of the IRPT; in that sense, an interesting and still
pending research would be its application in the formulation
of electrical power for multi-phase systems in the frequency
domain.

APPENDIX
In this section, the orthogonal relationship between ip and iq
for an n-phase system is demonstrated. For system voltage u,
the current vector is split into two components: one parallel
and one perpendicular to vector u, that is

i = i⊥u + i⌞u (A1)

Both components, by hypothesis, satisfy the following two
relationships,

u · i⊥u = 0 ; u ∧ i⌞u = 0 (A2)

From (A2), it follows that, for the geometric product of the
first current component with vector u,

ui⊥u = u · i⊥u + u ∧ i⊥u = u ∧ i⊥u

= u ∧ i⊥u + u ∧ i⊥u = u ∧ i (A3)

By applying the geometric product of the voltage vector
inverse by (A3), we obtain (A4).

i⊥u = u−1(u ∧ i) ≡ iq (A4)

Likewise, it follows that the current component parallel to
the voltage vector,

ui□u = u · i□u + u ∧ i□u = u · i□u

= u · i⊥u + u · i□u = u · i (A5)

Finally, by applying the geometric product of the voltage-
vector inverse by (A5), we obtain (A6).

i□u = u−1(u · i) ≡ ip (A6)

From (A4) and (A6), it follows that the ip component
is parallel to the voltage vector and the component iq
is perpendicular to the voltage vector; therefore, both are
orthogonal to each other.
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