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ABSTRACT Physicians typically measure deep tendon reflexes visually, leading to ambiguity and
disagreement over exact reflex classification. Millimeter-wave radar addresses this problem by providing an
accurate, unambiguous measurement of reflex limb motion and features noncontact sensing for convenience
and patient comfort. Radar spectrograms closely match optical motion capture results, supporting radar’s
viability as a clinical assessment tool. This study analyzes data from 60 radar and motion capture
measurement trials across four subjects. Six reflex characteristics are defined and extracted. The extracted
parameters show a high level of agreement between the two different techniques, with a mean relative error
of only 10.39%. Additionally, a positive correlation was observed between hammer tap speed and reflex
response speed, with maximum leg velocities showing a slope of 0.4. This study also quantifies and discusses
the effects of hammer tap speed and leg length. An analytical model is derived to describe the patellar DTR
system dynamics. In the future, physicians may use a specialized radar system to assess reflex performance
quickly, accurately, and comfortably for a patient under test.

INDEX TERMS Human activity recognition, body sensor networks, biomedical applications of radiation,
millimeter wave radar, clinical neuroscience.

I. INTRODUCTION
Deep tendon reflexes (DTR) are fundamental biomechanical
responses that can help demonstrate general neurological
health of a human patient [1]. Also known as a muscle stretch
reflex, a DTR is an involuntary motor reaction caused by
striking a tendon and stretching the nearby muscle tissue.
Medical professionals use DTR tests to identify possible
medical conditions like stroke, injury, neurodegenerative
diseases, or damage from invasive surgery [2], [3]. To test for
a reflex response, the clinician strikes the tendon of interest
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with a specialized reflex hammer [4] and visually observes
the motor reaction.

Two well-established scales are currently used to quantify
a reflex response, the NINDS (National Institute of Neu-
rological Disorders and Stroke) myotatic reflex scale [5]
(Table 1) and the Mayo Clinic scale [6]. Both scales provide
an approximate description of reflex magnitudes such as
‘‘reflex in upper half of range,’’ ‘‘brisk’’, or ‘‘low response.’’

While administering a DTR test is relatively simple and
efficient, physicians may struggle to collect unambiguous
quantitative information from DTRs by visual observation
alone [2], leading to disagreement between doctors’ diag-
noses. This problem is intensified when attempting to discern
small changes in one patient’s reflex over time,
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TABLE 1. NINDS myotatic reflex scale.

like when the patient is recovering from an injury involving
nerve damage. A higher level of measurement detail would
enable physicians to better evaluate DTR motion with
extreme precision.

Many previous works have developed techniques to
quantify the DTR response with precision unmatched by the
human eye. Salazar-Muñoz et al. [7] constructed a controlled
hammer-strike and leg swing detection system using an
angular displacement accelerometer and gyroscope. After
applying principal component analysis and running different
combinations of data parameters through four data classifier
models, the researchers found that a Naïve Bayes classifier
could classify the data into the appropriate NINDS scale
with 89.62% accuracy. Tham et al. [8] used motion capture
(mocap) technology to evaluate the effect of increasing
hammer tap velocity on patellar reflex reaction. Across
100 subjects (50 male and 50 female), the study showed
a positive correlation between tendon tap velocity and leg
swing angle. This study focused on the repeatability and
reliability of mocap as a measurement tool and evaluated the
coefficient of determination for the regression line modeling
the relationship between tap speed and leg velocity to be
98.9%. Zhang et al. [9] created a reflex torque measurement
system where the subject leg is linked to a mechanical force
sensor while the hammer strike is applied. This researcher
studied the custom-defined reflex parameters across tens
of subjects and developed a model for classifying healthy
and hemiplegic DTR performance. Other types of sensing
techniques including EMG and ultrasound [10], [11], [12],
[13] have also been used to measure DTRs. Table 2
summarizes a broad range of previous works and their main
characteristics.

The above research works have mainly employed wearable
sensors (accelerometer and gyroscope, mechanical force
sensor, etc.) to quantify DTR responses, but little to
no work has been conducted regarding noncontact reflex
sensing. Short range, millimeter-wave radar is well-suited for
noncontact, precise, and unambiguous DTR measurement.
Millimeter-wave radar costs substantially less than motion
capture systems, requires a fraction of the space, and features
contactless sensing for minimum patient interaction and
setup time. Radar has been successfully applied in many
prior human motion studies such as gait analysis [14], [15],
driver head motion detection [16], [17], and vital signs

TABLE 2. Summary of previous DTR studies.

detection [18], [19], and is expected to perform well in
capturing the micro-Doppler effects [20], [21], from limb
motion caused by a DTR elicitation.

Our previous study demonstrated the first use of radar
to capture human patellar and triceps DTR motion [22].
However, the previous measurement was limited to a single
test subject and one hammer striking speed. The focus
of this work is to expand the scope of our study to use
both a millimeter-wave radar and an optical motion capture
system to simultaneously measure and characterize DTR
responses for varying experiment variables such as hammer
tap speeds, multiple subjects, left and right legs, and different
leg lengths. This pilot study provides evidence for the
accuracy and reliability of radar as a non-contact method for
measuring human DTRs. With further validation in larger-
scale studies, radar may serve as a standalone measurement
tool without the need for additional motion capture systems.
The technical objectives of this work are threefold: 1) to
introduce and validate millimeter-wave radar as a noncontact
method to measure human DTR motion, 2) to visualize the
time-varying features of the DTR response by generating
spectrogram images from radar data, and 3) to quantify the
relationship between reflex hammer tap speed and various
reflex parameters.

II. DATA COLLECTION METHODOLOGY
This study was conducted using the Texas Instruments®
AWR1642BOOST [23] and DCA1000EVM [24] assembly.
The 3.6 GHz bandwidth of this mm-wave FMCW radar
facilitates a 4.17 cm range resolution. A shorter chirp period
allows for a higher maximum measurable velocity, which
is set at 7.33 m/s in this case. The frame period controls
the slow time sampling rate (50 fps), which is sufficiently
high for capturing a DTR response. Four human subjects
were measured for this study; their physical information
is tabulated in Table 3. Human testing was approved by
the Baylor University IRB, protocol number IRB00002777.
Informed consent was received from all human test subjects.
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TABLE 3. Test subject physical information.

FIGURE 1. Data collection and processing pipeline.

A flowchart of the data collection and processing pipeline
is shown in Fig. 1. Sections II and III explain this process in
detail.

FIGURE 2. Experiment setup showing placement of test subject, radar,
and reflex hammer user for the patellar reflex. The subject is seated on a
wooden table with mocap markers on her leg.

Fig. 2 shows the measurement setup for recording the
patellar reflex motion. The radar assembly is positioned on
a tripod and is pointed 45◦ below the horizontal with respect
to the ground to aim at the test subject’s leg. The subject is
seated on a wooden table one meter away from the radar with
his or her legs allowed to swing freely.

A Vicon Nexus® [25] passive motion capture system is
used in tandem with the radar to provide an alternative way
to record DTR. The radar and motion capture system are
triggered simultaneously to capture DTR data at a rate of
50 frames per second. Six motion capture markers are placed
on the subject’s leg: on the kneecap (M1), shin (M2), ankle
(M3), middle-back of leg (M4), top of toes (M5), and back
of heel (M6). One marker is placed on the reflex hammer to
capture the hammer tap speed (M7), and a reference marker is
placed on the stationary radar (M8). Fig. 2 shows the marker
placement for the patellar reflex measurement.

An Arduino®microcontroller is used to simultaneously
trigger the radar and mocap system at the press of a button.
After triggering the start command, a researcher uses a reflex
hammer to strike the subject’s patellar tendon. The limb reacts
with the characteristic forward jerk of the deep tendon reflex,
and the limb is allowed to swing back and forth naturally
until it comes to a rest. This procedure is repeated for
multiple cycles during the recording to ensure a consistent,
repeatable response is recorded. Nine trials are conducted
for each test subject. The reflex hammer tap speed is varied
across the nine trials, approximately ‘‘slow’’ (1.5–2 m/s),
‘‘medium’’ (2–3 m/s), and ‘‘fast’’ (3–4 m/s). Three trials of
each speed are collected for each subject. The hammer tap is
not mechanically controlled, resulting in a spread of different
tap speeds.

The radar data is post-processed using custom MAT-
LAB®
code. Each radar frame is processed using the two-
dimensional fast Fourier transform, which resolves the
downrange distance and velocity information. Then, each
frame is compressed into a single range bin and concatenated
in chronological order to create the spectrogram of target
velocity versus time. We characterize the DTR using velocity
relative to the radar since it is similar to the perspective of
a clinician eliciting and observing a DTR. The acceleration
or distance information could be acquired by taking the
derivative or integral of velocity, respectively.

FIGURE 3. Spectrogram of a single patellar DTR trial showing velocity
across time with parameter annotations.

III. PARAMETER EXTRACTION RESULTS
Fig. 3 shows a radar-measured sample spectrogram of a single
DTR response (subject 1, left leg, medium hammer speed).
The vertical axis corresponds to velocity with respect to
the radar (positive values represent forward movement and
negative values represent backward movement), and the color
represents the radar return signal strength on a relative decibel
scale. The DTR response starts around 0.5 seconds, where the
leg begins to swing toward the radar. The leg achieves its first
positive velocity peak at 0.65 seconds, and it gradually decays
to zero at 0.88 seconds where the leg stops at its swinging
peak. Then the leg begins to swing backward, away from
the radar, finishing its first backward swing at 1.3 seconds.
Such forward-backward swing cycles repeat as time goes
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on, but with decaying reflex magnitude. The DTR response
diminishes to zero around 4 seconds.

FIGURE 4. Motion capture of a single patellar DTR trial showing velocity
across time for each leg marker.

Fig. 4 plots the mocap-measured velocity vs. time series
for each of the six markers used in the same trial as that
of Fig. 3. The velocities are all calculated relative to the
stationary radar marker (M8) to directly correlate with the
radar’s velocity measurements. Clearly, the marker with the
best fit to the radar spectrogram envelope is M5, which is
placed in the lowest position on the leg and generates the
largest velocity component. All other markers move more
slowly due to the pendulum-like nature of the swinging leg.
By visual inspection, there is a clear agreement between the
radar and mocap results.

In this study, we extract the following six parameters
from both radar and mocap measurement data to succinctly
quantify the DTR response: maximum positive velocity
(V+), maximum negative velocity (V-), duration of the first
forward swing (TF), duration of the first backward swing
(TB), period between first and second peak (T), and damping
factor between first and second peak (D). These parameters
have been annotated in Fig. 3. In total, 60 DTR experimental
trials are conducted (3 subjects ∗ 2 legs ∗ 9 hammer speeds,
plus 1 subject ∗ 2 legs ∗ 3 hammer speeds), resulting in
360 data points (6 parameters of interest ∗ 60 trials).
As an example, the extracted maximum positive velocity

(V+) values from radar and mocap measurements are plotted
in Figs. 5(a) and (b), respectively. The two plots are very
similar to each other. Each plot has 60 data points, with
four different colors representing four subjects and two
different shapes representing two legs (circle for right leg
and square for left leg). To analyze the data, we used
linear regression to model the correlation between the DTR
parameter magnitudes (velocity, period, duration, damping)
and the hammer tap speed. The linear regression analysis
produced two lines for each DTR parameter, one for the
right leg data (solid black) and one for the left leg data
(dashed black) across all subjects, respectively, indicating a
significant positive correlation between hammer tap speed
and the magnitude of the DTR parameter. It is apparent that
the maximum positive velocity of the DTR increases as the
hammer tap velocity increases. Although not shown here,
similar observations can be made for the maximum negative
velocity (V-).

FIGURE 5. Scatter plots showing max positive velocity (V+) vs. hammer
tap speed: (a) radar and (b) mocap. Each color is a unique test subject.
Circles are right leg and squares are left leg. Right leg regression line is
solid and left leg regression line is dashed.

FIGURE 6. Scatter plots showing period (T) vs. hammer tap speed:
(a) radar and (b) mocap. Each color is a unique test subject. Circles are
right leg and squares are left leg. Right leg regression line is solid and left
leg regression line is dashed.

The extracted period (T) values from radar andmocapmea-
surements are plotted in Figs. 6(a) and (b), respectively. The
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data series shape, color, and regression line representations
are the same as in Fig. 5. Figs. 6(a) and (b) are very similar
to each other, showing good agreement between radar and
mocap. The regression line slopes in Fig. 6 are much less
steep compared to those of the V+ values in Fig. 5, indicating
the period is less sensitive to a changing hammer tap speed.
Although not shown here, similar observations can be made
for the duration of the first forward swing (TF) and duration
of the first backward swing (TB).
To quantify the difference between the radar and motion

capture results, the average absolute relative error for each
DTR parameter is computed using equation (1) below. N
(=60) represents the number of data points in each scatterer
plot, and r(i) and m(i) represent corresponding individual
extracted values for each point in the radar and mocap scatter
plots, respectively.

Rel.Error =
1
N

N∑
i=1

∣∣∣∣ r (i) − m (i)
r (i)

∣∣∣∣ × 100% (1)

The average relative error results for all six DTR parameters
are displayed in Table 4. The backward duration (TB) and
period (T) have the smallest relative error, while max positive
velocity (V+) and damping factor (D) have the greatest.
The differences are explained as consequences of limited
radar velocity resolution compared to the extreme precision
of motion capture cameras. Nevertheless, there is no relative
error that exceeds 15%, which supports the viability of the
radar as a clinical DTR measurement device.

TABLE 4. Average relative error per DTR parameter.

IV. DISCUSSIONS
Themeasurement results collected above can provide insights
on the patellar DTR response and its relationship with the
test subjects and the striking hammer. Between Figs. 5 and 6,
three common observations are made: (1) the V+ plots have
a much steeper slope than the T plots, (2) the slower hammer
speeds appear to have a wider vertical spread of data than
the faster speeds, and (3) the test subjects appear to occupy
separate regions of the scatter charts, albeit substantial
overlap. These observations are discussed in detail next.

A. DTR SENSITIVITY DUE TO TAP SPEED
Previous works have documented a relationship between
hammer tap speed and DTR response parameters.
Tham et al. [8] presented a chart showing maximum leg
angular velocity versus hammer drop release angle. They
found a distinctly linear relationship between the two
variables. Zhang et al. [26] also found a correlation between
hammer tap speed and reflex torque through linear regression.

In our analysis, we also investigate the sensitivity of the
DTR parameters due to tap speed of the striking hammer. The
maximum positive velocity (V+) is substantially correlated
with the hammer striking speed, as shown by the steep slope
of the regression lines in Fig. 5. In contrast, the period (T)
is much less sensitive to varying hammer striking speeds,
as shown by the relatively flat slope of the regression lines
in Fig. 6. Therefore, the slopes of the regression lines provide
a good indication of how sensitive each DTR responses with
respect to changing tap speed.

FIGURE 7. Bar chart showing the slopes of respective regression lines of
all parameters for the left and right patellar reflex as measured by the
(a) radar and (b) Vicon®motion capture system.

We extract the regression line slopes from the radar results
for all six parameters, as shown in Fig. 7 (a) for both left
and right patellar data. The max positive and max negative
velocities (V+, V-) clearly exhibit the greatest sensitivity
to tap speed, while the other parameters show very little
sensitivity to tap speed. The mocap data shown in Fig. 7
(b) are similar and confirm the findings. Furthermore, the
left and right patellar reflexes are reasonably balanced across
all parameters, as indicated by the similar slopes. This is
expected since none of the test subjects suffer from peripheral
neuropathy that would cause an imbalance in reflex laterality
such as nerve damage or lesions in the reflex arc.

B. DATA SPREAD DUE TO TAP SPEED
To ensure a properly stimulated DTR response, the hammer
speed must be above a certain threshold value. At the
same time, clinicians cannot strike the patient too hard
lest they cause pain or damage to the limb in question.
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Archambeault et al. [27] showed that there is a nonlinear,
sigmoid-shaped function approximating the tendon EMG
response amplitude versus hammer impact velocity with
R2 of 96%. Similar phenomena were documented by [28].
Hammer strikes that are too weak or too strong will not help
clinicians classify DTRs, but the approximately linear region
in the middle is the most helpful model for building a reliable,
consistent reflex stimulus profile.

By quantifying the spread of the data relative to the
total linear regression line (including left and right leg
data), we can find the tap speed region that best creates
a consistent and predictable DTR response with the least
variation from the regression line. From the visual inspection
of the Figs. 5 and 6 in section III, we surmised that the data
caused by slower tap speeds, approximately 2.5 m/s or less,
were more spread out from the regression line than the data
caused by faster tap speeds. By separately calculating the
coefficient of determination (R2) for the two segments of the
data, we can compare the spread of data before and after
2.5 m/s tap speed on the horizontal axis. R2 is given as

R2 = 1 −
RSS
TSS

(2)

where RSS is the sum of squares of the residuals, and TSS
is the sum of squares of each data point relative to the mean.
‘‘Residual’’ is defined as the difference between the data point
and the regression line. This comparison is shown in the bar
chart in Fig. 8(a) for the radar data and Fig. 8(b) for the mocap
data.

FIGURE 8. R2 values for two sections of the (a) radar and (b) mocap
dataset: those data with less than 2.5 m/s tapping speed, and those data
with greater than 2.5 m/s tapping speed.

In both figures, the data from the higher tap speeds (green)
is substantially more fit to the total regression line than the
data from lower tap speeds (pink), as indicated by the higher
R2 values. This finding leads credence to the notion that
clinicians administering a DTR test must strike the tendon
with a firm, moderately fast tap as opposed to a soft, slow
tap. The highest R2 values belong to the max positive and
max negative velocity parameters, indicating that the total
regression lines for those scatter plots do the best job of
modeling the variation in their respective data. The timing
parameters do not achieve similarly high R2 values since their
variation is not modeled as well by their flatter regression
lines. However, the comparison between slower and faster
tap speeds for all parameters shows a consistent message: tap
speeds above 2.5 m/s generate reflex responses that are less
varied and more consistent with respect to the total regression
line.

C. DTR TIMING PARAMETERS AFFECTED BY LEG LENGTH
Finally, we consider the effect of leg length on the various
measured parameters for patellar reflexes. By taking the
average value of the DTR parameters across hammer tap
speeds in the 2.5–3 m/s region and plotting versus the leg
length of each subject, we can better understand the effect
leg length has on these parameters. The decision to only
average the data from tap speeds of 2.5–3 m/s is to remove
the variability due to slower tap speeds, and to conform the
tap speeds to a similar range for all subjects.

FIGURE 9. Time parameters vs leg length across four test subjects.

This analysis was applied to all six reflex parameters, but
only the three timing parameters (TF, TB, T) produced a
positive correlation result. Fig. 9 shows the leg length study
for radar data and mocap data. There is a slight positive
slope present for each series, indicating there is indeed some
correlation between longer legs and longer duration of timing
parameters of DTRs. This should be expected, assuming
a leg swings with the oscillation mechanics of a swinging
pendulum.
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V. PARAMETER IDENTIFICATION USING DYNAMIC
SYSTEM MODELING
In addition to employing mm-wave radar and motion capture
measurement techniques, it is possible to generate and ana-
lyze the DTR response from a systems modeling and systems
identification perspective [30]. These theoretical predictions
not only serve to corroborate the measurement findings but
also offer deeper insights into the physical relationships
governing how various physiological parameters (such as leg
length, leg mass, mass moment of inertia, etc.) influence the
DTR responses.

Previous work has attempted to model the knee as a
damped pendulum [31] and [33]. In those works, the
authors modeled the leg’s swinging motion using differential
equations. We also model the motion using differential
equations; however, we express the dynamic motion as an
impulse response. Specifically, a linear differential equation
can be used to model the dynamic motion of a swinging leg,
and then the leg’s dynamic motion can be analytically studied
using an impulse response [30].

TABLE 5. Impulse response model parameter estimates for subject 4.

We have derived a model estimate of the leg’s angular
velocity impulse response, h̃ leg angular

velocity

(t), as depicted in

equation (3). A comprehensive account of the derivation,
though extensive, will be presented in an upcoming publi-
cation. Furthermore, in Table 4, we provide a list of model
parameters along with their representative values estimated
for Subject 4. Parameters such as mass (m), length (L),
and moment of inertia (J) can be estimated based on the
leg’s physical characteristics. Notably, the friction parameter
(B) [32] plays a significant role in influencing the damping
of oscillations and is empirically determined through curve
fitting to experimental data.

h̃ leg angular
velocity

(t) =

[
1
xJ
e−

B
2J t

]
︸ ︷︷ ︸
damping term

[
x cos (xt) −

B
2J

sin (xt)
]

︸ ︷︷ ︸
oscillating term

(3)

where:

x =

(
mg

L
J2

−
B2

4J2

) 1
2

(4)

To facilitate a comparison with our mocap and spectrogram
data, we must convert the angular velocity derived from Eq.

(3) into a linear velocity estimate. To illustrate, we estimate
the linear velocity of the extended toes, as described in
equation (5), by multiplying the angular velocity from Eq. (3)
by the distance from the knee to the outstretched toes, denoted
as ‘‘dtoe.’’

ṽtoe (t) = dtoeh̃ leg angular
velocity

(t) (5)

FIGURE 10. Validating the derived impulse response equation and model
parameters (Table 5 ) by comparing it to Mocap and spectrogram data
from subject 4. a) The response from the analytically derived impulse
response prediction of a DTR (where model constants B=0.15, m = 4.2, L
=0.385, g = 9.8, dtoe = 0.584); b) Linear velocity estimate of the toe
based on Mocap data; c) spectrogram data.

Figure 10 presents a comparison of the predicted toe velocity
(a) for a single DTR trial with the estimated toe velocity
derived from motion capture measurements (b) and mm-
wave radar (c). The plotted data represent the envelope of
the spectrogram, specifically the outermost contour tracing
the damped oscillations resulting from the motion of the
fastest moving part, namely the tips of the toes. The
striking similarity in terms of both velocity and timing
parameters observed in these graphs instills confidence in
the accuracy of our impulse response model, as described
in equation (3), especially when coupled with the model
parameters fitted and outlined in Table 5. This alignment
between the model predictions and the actual measurements
affirms the reliability of our approach in estimating the
impulse response of a DTR response.
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VI. CONCLUSION AND FUTURE WORK
This study focused on the use of radar to measure patellar
muscle stretch reflexes, the comparison of radar results to
motion capture results, and analysis of the collected data
and its trends. Using radar and mocap, we measured the
patellar DTR response of four subjects for 60 trials, extracting
six custom DTR parameters. The average relative error
between radar and mocap is less than 15%. We discussed
three characteristics observed from the DTR responses: (i)
the velocity parameters are substantially more sensitive to
hammer tap speed than the timing parameters; (ii) the slower
tap speeds (< 2.5 m/s) produce less predictable responses
than faster tap speeds; and (iii) longer leg lengths cause a
measurable increase in the duration and period of the DTR
leg motion.

The primary limitations of this work are the small number
of available test subjects, the radar’s required position in
front of the test subject, and the lack of a controlled reflex
hammer delivery system. However, these limitations can
be addressed in future work by expanding the pool of
test subjects and implementing a dedicated hammer control
system. Future studies could also consider including test
subjects with hyperreflexia or hyporeflexia and an imbalance
in reflex laterality to further explore the potential clinical
capabilities of mm-wave radar to diagnose or monitor
patients. The dataset from this study is publicly available at
IEEE DataPort [29].

From these studies, radar has proven to be a reliable
measurement technology that has great potential to quantify
patellar reflexes in clinical settings. Patellar reflexes are
not the only DTRs that radar can measure. Future studies
should analyze the triceps reflex and extend radar’s reach
as a medical assessment tool. Future studies should also
consider test subjects with hyperreflexia or hyporeflexia with
an imbalance in reflex laterality to further explore radar’s
utility in clinical settings for patients with different ailments.
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