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ABSTRACT Integrating Electric Vehicles (EVs) charging into power grids through EV aggregator, offers
promising benefits to society for reliable, sustainable, and cost-effective energy solutions. A key aspect of this
integration is the possibility of provision of Contingency-Frequency Control Ancillary Services (C-FCAS).
While EVs primarily serve owners’ transportation needs, they must return to their idle positions with a
satisfactory State of Charge (SoC) after providing frequency support following a contingency. However, real-
world implementations of grid-connected EV aggregator control for C-FCAS are complex and challenging
because several factors, including uncertainties, perturbation magnitude, renewable energy penetration, and
the SoC of EVs need to be considered. To implement the C-FCAS considering these factors, this paper
presents a robust PID control approach for an EV aggregator. The objective is to effectively manage EV units
willing to participate, ensuring frequency regulation support, system stability, and smooth return to their idle
position. The strategy exploits a sequential multi-objective optimization approach with two main objectives:
mitigating frequency perturbations caused by contingencies and restoring EV units power discharge to zero
after a critical time period. Sequential Multi-objective Optimization (SMO) algorithms optimize the control
parameters under diverse scenarios and uncertainties. The simulation results validate the effectiveness of the
proposed strategy. The control strategy by an EV aggregator successfully handled different market conditions
and uncertainties, ensuring reliable frequency regulation. This service opportunity will enhance income of
EV owners and their willingness to participate while helping to keep the integrity of system operation.

INDEX TERMS Electric vehicles (EV), EV aggregator, contingency-frequency control ancillary service
(C-FCAS), sequential multi-objective optimization (SMO), robust PID control.

I. INTRODUCTION
The grid incorporation of electric vehicles (EVs) in electric
power grids has attracted significant attention in recent years
because of their ability to offer sustainable and efficient
energy solutions [1], [2]. In the context of the electrical
system, a single electric vehicle (EV) might appear incon-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mou Chen .

sequential, but when multiple EVs are plugged in at specific
locations like commercial centers or universities, they trans-
form into substantial energy resources for the grid. An EV
aggregator plays a crucial role as an intermediary between
these EVs and the system operator [3].

EV aggregator could offer the opportunity to contribute to
the grid by providing ancillary services such as frequency
control [4]. This service is formalized under the term ‘‘Fre-
quency Control Ancillary Services’’ (FCAS), which can be
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further classified into two subcategories: regulation, denoted
as R-FCAS, and contingency, denoted as C-FCAS. While
R-FCAS services are continually employed to make minor,
C-FCAS services are specifically designed to address unfore-
seen contingency events only. C-FCAS involves utilizing the
flexibility of EV aggregator to support grid frequency during
contingencies while ensuring that the primary function to
meet energy requirements of EV.

Nevertheless, the successful integration of EV aggregator
into the power grid for C-FCAS applications presents various
challenges. Uncertainties such as the scale of perturbations,
renewable energy infiltration, and State of Charge (SoC)
of EVs introduce complexities that must be addressed for
effective control and operation [5]. To overcome these chal-
lenges, this study presents a robust PID control strategy for
EV aggregator employed in C-FCAS using Sequential Multi-
objective Optimization (SMO).

SMO is an approach that sequentially addresses the opti-
mization of multiple conflicting objectives. Often, multiple
objectives need to be simultaneously optimized, but these
objectives may struggle with each other. For example, min-
imizing the frequency deviations and restoring them to their
idle state in an EV aggregator as a C-FCAS scenario. SMO
aims to find a set of resolutions that represent the trade-off
between these conflicting objectives. Instead of trying to find
a single optimal solution that pleases all objectives simultane-
ously, SMO iteratively improves the solutions by focusing on
one objective at a time. The idea is to optimize one objective
while keeping the others fixed, and then switch to optimizing
the next objective while considering the previously optimized
objectives.

The fast response of EV aggregator to frequency contin-
gencies has the potential to provide sufficient transition time
between EV aggregator and the main generator. This, in turn,
can simplify the generator control and reduce maintenance
requirements [6], [7]. Furthermore, given the similarities in
operation, it is possible to extend the proposed control strat-
egy to other FCAS technologies, such as Battery Energy
Storage Systems (BESS) and Flywheel Energy Storage Sys-
tems (FESS) [8].
The remainder of this paper is organized as follows.

Section II presents a comprehensive review of the rel-
evant literature, highlighting the challenges and existing
methodologies for integrating EV aggregator and C-FCAS.
Section III provides an overview of the modelling approach
used in this study, laying the foundation for subsequent con-
trol strategy implementations. Section IV presents a detailed
presentation of several control strategies that are applied
and analyzed in this research. Section V elaborates the
methodology employed to optimize the control parameters.
In Section VI, the simulation setup is detailed and the results
obtained from the simulations are thoroughly analyzed and
discussed. The implications of the proposed strategy and
its potential applications were examined, providing valuable
insights into its real-world effectiveness. Finally, Section VII
concludes the paper by summarizing the contributions of

this study and offering suggestions for future research
directions.

II. LITERATURE REVIEW
Article [9] proposed a coordinated control of EVs and renew-
able energy sources for frequency regulation, which can
adaptively change the control parameters according to system
operations and achieve special stabilizing effects compared
to a conventional fixed PI controller. The proposed adaptive
coordinated controller has potential applications in grids with
wind farms (WF), photovoltaics (PV), and EVs, and can
be an alternative control resolution for supportive renewable
energy sources. Reference [10] suggested a control strategy
based on a VSG control technique for an EV used as a
transportable energy-storage device to contribute to the fre-
quency regulation of a grid in an independent operationmode.
Simulation examples verify the proposed control method and
demonstrate excellent dynamic performance. However, its
application range is limited to the frequency regulation of a
grid in a self-governing operation approach. A report [11]
presented an optimal control technique for the EV con-
tribution to frequency regulation in variable power system
operating states. The simulation showed that the proposed
model resulted in a cost reduction for frequency regulation
in a standard state of operation and significantly improved
the regaining time for frequency and frequency deviation
in an abnormal state of operation. The research presented
in [12] developed an optimal management strategy to sched-
ule EVs’ charging/discharging procedure of EVs to improve
the frequency stability of grids under autonomous operat-
ing conditions. Using this strategy, EVs can act as energy
storage arrangements to absorb or inject surplus/shortage
of energy and improve the frequency variation of grids in
the isolated mode, leading to increased profit and decreased
emissions for the grid operator. Analysis [13] exhibited
an MILP-based tiered control strategy for Secondary Fre-
quency Regulation (SFR) using EVs, aiming to minimize
grid frequency deviations, reduce battery degradation, and
increase incentives for EV participation in the regulationmar-
ket. The proposed scheme was experimentally validated and
found to have superior performance compared to the existing
scheme.

The investigation reported in [14] introduced an EV
charging/discharging strategy that minimizes DC micro-
grid network losses and EV battery degradation through a
two-stage optimization framework. The simulations showed
significant reductions in system losses and Distributed Gen-
erator (DG) capacity, and further investigation is planned
for large-scale networks and significant EV uptake. The
proposed coordinated controller based on the Multivariable
Generalized Predictive Controller (MGPC) concept for Load
Frequency Control (LFC) in an isolated microgrid using the
V2G technique has shown better robust performance [15].
The proposed method can be used in diverse microgrid con-
figurations, and the feasibility of implementing the proposed
method in actual power systems was demonstrated. However,
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future work needs to study bus voltage regulation by gov-
erning the reactive power with smart solutions. In addition,
communication delays may affect the performance of the
controller, which poses further challenges and research direc-
tions. A bi-level coordination scheme of several aggregators
to level the load shape of a distribution system applying the
V2G system was proposed in [16]. The scheme was verified
on an actual MV distribution system in Korea, using actual
traffic density information. The results showed improved
peak-shaving and valley-filling performance while fulfilling
EV SoC requirements and adapting to the penetration of
renewables. Three-layered harmonized control for integrating
three-phase AC and DC EV energy storage systems into a
hybrid AC/DC grid is recommended [17]. A multilayered
management algorithm was implanted into the grid central
regulator. Extensive case studies with real-life information
show that the proposed controller is effective, reliable, and
robust for various scenarios, including homogeneous and het-
erogeneous single-phase EV charging and synchronization
throughout the transition from the islanded to grid-tied mode.
A bidirectional charging strategy for EVs in an industrial
grid to regulate frequency using grid and charger controllers
has been proposed [18]. The results demonstrate that the
bidirectional charging strategy significantly improves the fre-
quency regulation and supports active and reactive power,
making it a suitable solution for industrial grids with EV
integration.

The proposed controller with V2G technology in [19]
integrates EVs into the grid to eradicate frequency oscilla-
tions and quickly control the system frequency. Simulation
results show that the proposed primary frequency controller
using Fractional Order PID (FOPID) and V2G technology
effectively regulates frequency within an acceptable margin.
Furthermore, increasing the number of EV in the grid further
improves frequency regulation. An innovative frequency sup-
port approach to regulate the operation of distributed energy
sources (DES) andmanageable loads, such as EVs, to address
grid frequency fluctuations has been proposed [20]. The pro-
posed modified droop controller (MDC) dispatches reference
signals to both the DES and EVs, and is improved with
communication links and feedback mechanisms. Extensive
simulations were performed using the planned arrangement
of the MG data from Santa Rita Jail.

A graded energy management structure for islanded grids
that models grid frequency control functions using droop
control and virtual inertia ideas has been proposed [21]. The
system also incorporates demand response programs for grid
loads and uses scenario-based stochastic programming to
handle the uncertainties. The results confirm that the pro-
posed system can successfully enhance grid security, reduce
operational costs and emissions, and manage DG resources
with higher degrees of freedom. An innovative strategy for
charging and discharging EVs in the presence of renewable
resources has been endorsed [22]. A cost signal is obtained
based on the day-ahead load and the generation of renewables

to manage the EVs’ charging and discharging processes. For
the EVs to respond to frequency deviations in the charg-
ing and discharging processes, four modes were defined.
The results showed that the projected approach successfully
decreased the frequency deviations and improved the power
reserve of the grid. A multi-agent control arrangement for
primary frequency control in AC grids with EVs’ partici-
pation was justified [23]. Simulation studies show that the
proposed droop-based method effectively maintains the fre-
quency nadir above the minimum allowed value and returns
the steady-state frequency back to a satisfactory level while
reducing the stress on other generating units.

An operational planning framework for a grid comprising
logistics distribution systems and renewable energy resources
has been considered [24]. Themodel improves the drive paths
of EVs, charging/discharging power, and time durations of
charging to minimize deviations in the bidding power and
actual power output of the grid, considering the stochas-
tic features of wind power and load variations. Simulation
results demonstrate that the proposed model can significantly
decrease the operational cost of the network by smoothing
wind power fluctuations through the coordinated dispatch
of EVs while also providing insights on how to control
EV charge/discharge and select travel directions. An evalu-
ation [25] determined a control strategy using EVs to provide
quick active power support to a grid, which can mitigate
the frequency deviation caused by the fluctuating load. The
method senses frequency variations and communicates with
an EV aggregator to stream the required quantity of active
power to the grid, encouraging results in critical parameters,
such as settling time and peak over/undershoot.

An ordered optimal dispatch strategy for EVs and Ther-
mostatically Controlled Loads (TCLs) is tested [26]. The
simulation results of the IEEE-30 bus system demonstrate
that the grouping of EVs and TCLs with the projected dis-
patch approach achieves the best performance, improving
the centralized dispatch of thermal and wind generation
and reducing carbon emissions by maximizing wind gener-
ation. The proposed model [27] considers EVs and evaluates
various scenarios, demonstrating that while vehicle-to-grid
(V2G) implementation had minimal benefits, the controlled
charging of EVs proved to be highly important in cost reduc-
tion. The current implementation is robust and ready for
integration into practical systems, offering fast and effective
control for both small and large grid operators. A comprehen-
sive demand response (DR) strategy for frequency regulation
in grids, considering the presence or absence of wind power
generation, has been introduced [28]. The proposed strategy
effectively reduces frequency deviations using an Adaptive
Hill Climbing (AHC) controller after sudden disturbances,
reduces the manipulation of responsive loads to maintain the
frequency within the desired range during steady state, and
demonstrates stability with a latency of up to 300 ms between
the utility control center and the responsive loads. Therefore,
there is a need to improve the quality of service for customers.
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Existing research has made notable progress in optimiz-
ing the mitigation of frequency deviations; however, it has
largely overlooked the critical aspect of EVs returning to idle
conditions after providing ancillary services [25]. Although
a single objective function is sufficient for managing sys-
tem frequency deviations, it is essential to recognize that
EVs are primarily designed for transportationpurposes, and
their temporary involvement in ancillary services necessi-
tates careful consideration. Moreover, previous studies have
not adequately addressed the uncertainties that may arise in
real-world scenarios. Factors such as varying magnitudes of
disturbances, renewable energy penetration, and EV SoCs
have not been thoroughly accounted for. These uncertainties
pose significant challenges that must be addressed to ensure
robust and effective integration of EV aggregatorinto ancil-
lary services.

To address the gaps and challenges in integrating EV
aggregatorinto the power grid, this paper proposes a compre-
hensive approach that prioritizes the return of EV aggrega-
torto idle conditions after providing ancillary services. Unlike
previous methods that rely on a single objective function,the
proposed approach adopts multi-objective optimization tech-
niques to simultaneously address system frequency devia-
tions and EV aggregator power discharge. Second, by recog-
nizing the uncertainties prevalent in real-world scenarios, this
study introduced a robust PID control solution. This means
that the results obtained through multi-objective optimization
can effectively handle various potential scenarios, encom-
passing fluctuations in disturbance magnitudes, renewable
energy penetration levels, and EV SoC. By embracing uncer-
tainties and prioritizing robustness in the control strategy,
the proposed approach enhances the reliability and adapt-
ability of EV aggregatorfor providing ancillary services.
Third, in pursuit of optimal outcomes, several optimization
algorithmswere tested, including Sequential Quadratic Pro-
gramming (SQP), Simplex, Interior Point (IP), and Pattern
Search (PS), in conjunction with the SMO technique. Finally,
to gain deeper insight into EV battery behavior, a quadratic
regression model of the Partnership for a New Generation of
Vehicles (PNGV) was employed [29]. The utilization of this
advanced model enhances the understanding of EV battery
dynamics and aids in refining control strategies.

III. MODELLING AND BACKGROUND
A. MODERN POWER SYSTEM
Modern power grids experience high infiltration of Vari-
able Renewable Energy Sources (VRES) PV panels and
wind turbines [30], [31]. The high penetration of renewable
energy sources presents several benefits and challenges [32].
One key advantage is the potential for carbon emissions
reduction and environmental sustainability. Additionally,
renewable energy sources generate clean electricity, con-
tributing to a greener and more sustainable energy mix.
Moreover, the decentralized nature of VRES allows for
improved grid resilience, reliability, and potential energy

independence. However, highly penetrating VRES poses
unique challenges. The intermittent and unpredictable nature
of renewable energy sources such as solar and wind
power can lead to significant fluctuations in power genera-
tion [33]. This variability can impact stability, particularly
in frequency regulation. Maintaining the grid frequency
within acceptable limits ensures reliable and resilient power
supply.

With the advancements in energy storage system (ESS)
technology, including battery Energy Storage Systems
(BESS), ultra-capacitor energy storage (UCES), and the
potential utilization of EVs as Energy Storage (EVES), these
systems have the opportunity to play a significant role in
grid operations [34], [35]. Although individual EVsmay have
limited storage capacity when managed by an aggregator,
a fleet of EVs can collectively serve as a substantial energy
storage resource for the grid [36], [37]. A typical modern
power grid is depicted in Figure 1, and its high-level control
block diagram is shown in Figure 2.

FIGURE 1. Typical of the modern power grid.

FIGURE 2. Dynamic model of the modern power grid.
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B. ANCILLARY SERVICES MARKET
Ancillary services encompass electricity-related products
that go beyond those typically traded in traditional whole-
sale electricity markets [38]. These services are additional
components of the electricity system that support its reliable
operation and include various functions, such as frequency
regulation, voltage control, and system reserves. Ancillary
services play a crucial role in maintaining grid stability, man-
aging imbalances between electricity supply and demand, and
ensuring the overall reliability of power systems.

In the Australian market, the Australian Energy Market
Operator (AEMO) classifies ancillary services into three
main categories: Network Support and Control Ancillary
Services (NSCAS), Frequency Control Ancillary Services
(FCAS), and system restoration Ancillary Services (SRAS)
[39]. NSCAS encompasses various services for maintaining
the stability and control of the network. This includes voltage
control, power flow control, and measures to improve the
transient and oscillatory stability. As mentioned earlier, the
FCAS is further divided into two subcategories: regulation
(R-FCAS) and contingency (C-FCAS). R-FCAS services
are continuously utilized to make minor adjustments and
ensure system stability in response to changes in the supply
and demand. By contrast, C-FCAS services are designed
to address contingency events and provide support during
unexpected system disruptions. Six distinct markets within
the C-FCAS category, each with different response times.
These markets are fast raise (6-sec raise), fast lower (6-sec
lower), slow raise (60-sec raise), slow lower (60-sec lower),
delayed raise (5-min raise), and delayed lower (5-min lower),
as depicted in Figure 3. Given the dynamic nature of power
system requirements, there is a potential for the development
of the current ancillary services market.

FIGURE 3. AEMO ancillary service classification [39].

C. EV AGGREGATOR CONTROL FRAMEWORK
An aggregator plays a crucial role as an intermediary between
EV and the grid, simplifying the management process for
network operators who would otherwise have to handle a
multitude of individual EVs. When an EV is charging, the
aggregator sells energy from the grid to the EV, and during
discharging, this process is reversed. To fulfill its intermedi-
ary function effectively, the aggregatormust establish a robust
control framework. This framework encompasses tasks such
as capacity forecasting, price bidding, and contingency sce-
nario planning. By efficiently managing these aspects, the
aggregator ensures the seamless flow of energy between
the grid and EVs, optimizing the overall functioning of the
electric vehicle ecosystem. The flowchart of this control
framework is depicted by Figure 4.

FIGURE 4. Aggregator control framework.

The accurate prediction of the number of EV connected to
the aggregator is paramount, as it dictates the energy capacity
that the aggregator commits to the network operator. This
forecasted data also plays a pivotal role in determining the
price of services to be bid to the network operator, ensur-
ing a fair and competitive market environment. Moreover,
the aggregator must anticipate various contingency scenar-
ios. Through meticulous simulations that factor in both the
number of connected EVs and the aggregator’s capacity,
optimal control parameters are established. These parameters
are essential, as they govern the aggregator’s responses dur-
ing unforeseen events, guaranteeing a resilient and adaptive
energy distribution system. By considering these elements,
the aggregator can make informed decisions, ensuring effi-
cient energy management and enhancing the reliability of the
electric vehicle network. Process before aggregator deliver
C-FCAS is illustrated by Figure 5.

D. CONVENTIONAL FOSSIL-BASED GENERATOR
Conventional fossil-based plants or generators are power gen-
eration facilities that rely on the combustion of fossil fuels,
such as coal, natural gas, or oil, to harvest electricity [40].
These plants typically consist of turbines, generators, and
auxiliary systems designed to convert thermal energy released
by burning fossil fuels into electrical energy.

Generators play a specific role in penetrating highly renew-
able power grids. They are utilized as backbone sources
of electricity to ensure a reliable power supply and grid
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FIGURE 5. Aggregator C-FCAS initial process flowchart.

stability. The two first-order subsystems represent a gener-
ator, as shown in Figure 6.

FIGURE 6. Dynamic model of the generator.

Generators provide a consistent and controllable power
output, allowing them to compensate for the intermittent
nature of renewable energy sources, such as wind or solar
energy. When there is a shortfall in renewable energy gener-
ation owing to weather conditions or variability, a generator
can quickly ramp up its power output to meet the electricity
demand and maintain grid stability.

E. WIND TURBINE GENERATOR
A wind turbine generator (WTG) is a device that translates
the kinetic energy from the wind into electrical energy. It typ-
ically consists of a rotor with multiple blades that capture
wind energy and rotate a generator to produce electricity [41].
WTGs are designed to harness wind power and convert it into
electricity without relying on fossil fuel. The wind energy
captured by the rotor blades is transformed into mechanical
energy, which is then converted into electrical energy. This
renewable energy source offers several advantages, including
reduced carbon emissions, renewable resource utilization,
and energy independence. Owing to the inherent uncertainty
in wind energy, WTGs can be modelled by incorporating
a white noise signal filtered through a low-pass filter. This

modelling technique allows the consideration of stochastic
variations in wind speed and direction, which affect the power
output of the WTGs. By incorporating this uncertainty factor,
a more realistic representation of WTG performance can be
obtained, enabling improved analysis and optimization of
wind power systems, as shown in Figure 7 [42].

FIGURE 7. Dynamic model of the wind turbine generator.

WTGs provide a significant portion of the electricity
supply in highly penetrating renewable energy systems. How-
ever, owing to the intermittent and variable nature of the
wind, the power output fromWTGs is subject to fluctuations.
This variability can impact the grid stability, particularly
in terms of frequency regulation. Therefore, ensuring that
WTGs operate within acceptable frequency limits is crucial
for maintaining a reliable and stable power supply.

F. SOLAR PHOTOVOLTAIC
Solar PV systems convert sunlight into electricity using pho-
tovoltaic cells [43]. These cells are typically composed of
semiconducting materials that generate DC when exposed to
sunlight. Solar PV systems are crucial components of renew-
able energy generation, harnessing clean and abundant solar
energy to produce electricity [44]. They play a crucial role as
primary renewable energy sources within highly penetrating
systems. They consist of arrays of photovoltaic (PV) panels
that capture solar energy and convert it into usable electri-
cal energy. Generated electricity can be consumed locally
within the system or supplied to the primary grid. Similar to
WTGs, PV systems can also exhibit randomness in the sun-
light intensity. To capture this stochastic behavior accurately,
PV systems can be modelled by incorporating low-pass fil-
tered white noise signals, as shown Figure 8 [45].

FIGURE 8. Dynamic model of solar photovoltaic.

This modelling approach allows for the consideration of
variations in sunlight intensity, which directly impacts the
power output of the PV system. By incorporating a low-pass
filter, high-frequency fluctuations in sunlight intensity were
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attenuated, mimicking the smoothing effect of real-world
conditions. As a result, this modelling technique enables a
more realistic representation of the PV system performance,
facilitating the accurate analysis and optimization of solar
power generation. Incorporating uncertainty modelling tech-
niques in PV systems is crucial for various applications such
as grid integration studies, energy yield assessment, and sys-
tem design optimization. In addition, it helps in assessing the
system reliability, evaluating the impact of variable weather
conditions, and developing strategies to improve the overall
efficiency and stability of the PV system.

By incorporating uncertainty modelling into PV system
analysis, researchers and engineers can make informed deci-
sions and devise strategies to maximize the utilization of solar
energy resources, leading to a more sustainable and resilient
energy future.

G. AGGREGATED ELECTRIC VEHICLE
An electric vehicle, commonly known as an EV, is an auto-
mobile driven by one or more electric motors that employs
energy deposited in rechargeable batteries. EVs are part of
the growing trend towards sustainable transportation and have
gained popularity owing to their reduced carbon emissions
and reliance on renewable energy sources. EVs are consid-
ered a means of transportation and a valuable asset that can
actively support stability and regulation. Furthermore, EVs
accommodate bidirectional power flow, allowing them to
consume electricity from the grid and supply excess energy
back to the grid when required [46].

The SoC-dependent battery model developed for a New
Generation of Vehicles (PNGV), as shown in Figure 9, pro-
vides a comprehensive representation of the characteristics
and behavior of EV batteries. It is designed to accurately
simulate EV battery performance, energy storage, and power
capabilities, enabling precise control coordination strategies.

For energy storage, the current discharged by the EV can
be modelled as a function of the frequency deviation I0 =

f (1f ), whereas its no-load voltage (V0), series resistance
(R0), parallel resistance (Rp), and parallel capacitance (Cp)
are functions of the SoC [47]. Using quadratic regression, the

FIGURE 9. PNGV battery model.

SoC-dependent parameters are shown in (1)–(4). By utilizing
quadratic regression instead of a look-up table, the complex-
ity and computational burden were reduced significantly.

V0 (S) = 0.4389S2 − 0.01304S + 3.696 (1)

R0 (S) = 5.106S2 − 8.747S + 9.688 (2)

Cp (S) = −1.876S2 + 0.2097S + 1.783 (3)

Rp (S) = 5.26S2 − 5.986S + 7.735 (4)

where S is the SoC of EV in percentage.
The PNGV battery model captures important parameters

and nonlinear relationships and accurately represents battery
behavior. The model enables the accurate prediction and con-
trol of battery performance, maximizing battery efficiency
and lifespan. By integrating the model into the optimization
process, decisions on charging, discharging, and energy man-
agement strategies can be made. The model also facilitates
the integration of EV batteries as flexible assets, enhancing
power balance, frequency stability, and overall reliability. Its
significance lies in enabling effective control coordination,
optimizing battery utilization, contributing to stability, and
extending EV battery lifespan.

The concept of an aggregated EV fleet essentially involves
viewing it as a collective entity composed of individual EVs.
This collective behavior can be mathematically represented
by considering the multiplication of individual dynamic mod-
els, providing a comprehensive understanding of the entire
EV population. In essence, when translating frequency devi-
ations into power adjustments, this aggregated behavior is
encapsulated by a specific factor denoted as Kev as depicted
in Figure 10.

FIGURE 10. Dynamic model of the aggregated EV.

IV. CONTROL STRATEGIES
A. OPTIMAL ROBUST-PID CONTROL
PID control is a widely used control strategy that adjusts
the output of a system based on the proportional, integral,
and derivative components of the error between the desired
and actual system states [48]. Optimizing the PID controller
parameters enables control coordination to minimize the
frequency deviations and maintain the desired frequency set-
point. Optimal control refers to the process of determining
control inputs that optimize the performance of a system
according to a specified objective function [49]. Optimal PID
control combines the principles of PID control and optimal
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control. It aims to determine the optimal PID controller
parameters that regulate the system frequency effectively
and meet specific optimization criteria [50]. Adjusting the
proportional, integral, and derivative gains of the PID con-
troller allows the system to respond optimally to disturbances,
minimize frequency deviations, and achieve the desired per-
formance objectives.

The Integral of Time-weighted Squared Error (ITSE) given
in (5) is a widely used performance measure in control
systems for assessing the effectiveness of the PID control
strategy [51]. It offers several advantages over other per-
formance indicators such as the Integral of Time-weighted
Absolute Error (ITAE), Integral of Absolute Error (IAE), and
Integral of Squared Error (ISE).

ITSE =

tf∫
0

t · e(t)2dt (5)

where:
e (t) represents the error at time t.
t is time.
tf is the final time.
One of the main advantages of the ITSE performance index

is its ability to provide more weight to sustained deviations
from the desired frequency setpoint [52]. ITSE captures the
magnitude and duration of frequency deviations by squaring
the error term and integrating it over time. This is particularly
valuable in applications where sustained deviations can have
significant consequences, such as in power systems, where
frequency stability is crucial.

The weighting of the squared error over time in the ITSE
index allows it to effectively penalize long-lasting frequency
deviations. This contrasts with performance indices such
as ITAE and IAE, which focus primarily on the absolute
magnitude of the error without considering its duration.
Furthermore, by emphasizing sustained deviations, ITSE
provides a more comprehensive evaluation of the control per-
formance and highlights the need for an efficient and prompt
correction of frequency deviations.

In real-world scenarios, uncertainties are associated with
the system parameters and states, which can affect the perfor-
mance of optimal control strategies that rely on fixed system
parameters and specific inputs. Robust control techniques
have been used to address these uncertainties. Robust control
allows for optimization within various uncertainties, consid-
ering variations in system parameters and states [53]. This
approach ensures that the resulting control strategy is optimal
and resilient to changes in parameters and states within the
defined range of uncertainty. By incorporating robust tech-
niques into PID control, system performance is enhanced,
providing stability and reliability even in the presence of
uncertain factors.

B. SEQUENTIAL MULTI-OBJECTIVE OPTIMISATION
Sequential Multi-objective Optimization (SMO), as for-
mulated in (6)–(9), enhances optimization by considering

multiple control objectives sequentially. Each sub-objective
can be assigned different weights wn as a part of the primary
objective function f n. This approach involves iterative explo-
ration of the control parameter space using anoptimization
algorithm to find solutions that achieve optimal trade-offs
among multiple objectives [54].

min
x

f (x) =
(
f 1 (x)w1 [u (t − t0) − u (t − t1)] ,

. . . f n (x)wn[u
(
t − tn−1

)
− u (t − tn) (6)

gi (x) ≤ 0, i = 1, 2, . . . , p (7)

hj (x) = 0, i = 1, 2, . . . , q (8)

lbi ≤ xi & ≤ ubi, i = 1, 2, . . . , n (9)

where:
x is the vector of decision variables.
f (x) represents the vector of objective functions to be

minimized, consisting of m individual sequential objec-
tive functions f 1 (x) , f 2 (x) , . . . , f n (x) .wn is the weighting
coefficient for the objective function f n (x) gi (x) and hj (x)
are the inequality and equality constraints, respectively.
lbi and ubi are the lower and upper bounds for each deci-

sion variable xi.
p and q represent the number of inequality and equality

constraints, respectively.

u
(
t−tn−1

)
− (t−tn) is a time window for f n (x) .

The objective is to determine the optimal vector of deci-
sion variables x that minimizes the objective functions f (x)
while satisfying the constraints.

C. SEQUENTIAL QUADRATIC PROGRAMMING
Sequential Quadratic Programming (SQP), as in (10),
is known for its fast convergence rate, making it suitable for
solving optimization problems efficiently [55]. Furthermore,
SQP effectively handles equality and inequality constraints,
ensuring that the control coordination satisfies the system
requirements and constraints. Furthermore, SQP provides
locally optimal solutions by iteratively approximating the
problem using quadratic models, resulting in improved con-
trol coordination [56].

min
1x

1
2

1xTPk1x+ qTk 1x (10)

where:
min
1x

represents the minimization operator with respect to

1x, which is the optimisation variable.
Pk is the Hessian matrix at iteration k, which represents

the second-order derivative of the objective function.
qk is the gradient vector at iteration k, which represents the

first-order derivative of the objective function
The quadratic programming subproblem aims to find the

optimal value of 1x that minimises the quadratic function
1
21xTPk1x + qTk 1x. This subproblem is solved at each
iteration of the SQP algorithm to update the search direc-
tion and move towards the optimal solution of the original
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FIGURE 11. Flowchart of SQP algorithm.

optimization problem. The flowchart of the SQP algorithm is
given in Figure 11.

D. SIMPLEX ALGORITHM
The Simplex algorithm (11) is known for its robustness in
handling many optimization problems, including linear pro-
gramming problems. Furthermore, the simplex performs well
even for high-dimensional optimization problems, making it
suitable for complex control coordination tasks. In addition,
the simplex algorithm provides insights into the intermediate
steps of the optimization process, allowing for a better under-
standing and interpretation of the results.

min
x

cTx (11)

where:
min
x

cTx represents the minimisation operator with respect
to the variable vector x and c is the objective function coeffi-
cient vector.

The simplex algorithm aims to determine the optimal value
of x that minimizes the objective function cTx.
The algorithm iteratively explores feasible solutions by

moving along the edges of the feasible region defined by
constraints [57]. It continues to iterate until it reaches the
optimal solution or until it determines that the problem is
unbounded. A flowchart of the simplex algorithm is shown
in Figure 12 [58].

FIGURE 12. Flowchart of the simplex algorithm.

E. INTERIOR POINT ALGORITHM
Interior Point (IP) algorithms offer efficient solutions for
large-scale optimization problems, making them suitable for
complex control coordination tasks. Furthermore, IP algo-
rithms effectively handle inequality constraints, allowing
the incorporation of constraints related to renewable energy
operational limits. In addition, IP algorithms often provide
high-quality solutions by exploring the interior of the feasible
region, leading to improved control-coordination outcomes.
The IP algorithm has the same formulation as the sim-
plex. The difference is that the IP operates within the interior
of the feasible region [59]. It searches for the optimal solution
by iteratively moving towards the optimal point while satis-
fying the constraints.

F. PATTERN SEARCH ALGORITHM
Pattern Search (PS) is a derivative-free optimization method
that does not rely on gradient information [60], [61]. This
is advantageous when dealing with optimization problems
where the objective function is not differentiable or the gra-
dients are difficult to compute. Instead of using derivatives,
pattern-search optimization explores the search space by iter-
atively evaluating the objective function at different points
based on a predefined pattern or set of rules. A flowchart of
the pattern search algorithm is shown in Figure 13 [62].

V. METHODOLOGY
The control coordination of the EV aggregator as C-FCAS
aims to guarantee the stability and reliability of the system
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FIGURE 13. Flowchart of pattern search algorithm.

frequency by regulating the power output of EVs. In this
research, a Step Load Perturbation (SLP) of 0.1 pu is
introduced to the system, causing a frequency contingency
event [63], [64], [65]. This perturbation disrupts the stability
of the system and necessitates corrective response. The EV
aggregator is employed to address this event by utilizing a
sequential approach with two primary objectives.

The first objective of the control strategy is to mitigate the
frequency perturbation induced by the SLP. The objective is
to restore the frequency of the system to its desired operating
range by adjusting the power output of the EV aggregator.
This objective plays a significant role in maintaining sta-
bility and reliability during and after a contingency event.
The second objective is to restore the power discharged by
the EV aggregator to zero. This objective ensures that the
power generated by the EV aggregator is utilized effectively.
By restoring the power to zero, the control strategy enables
smooth transition and prevents abrupt changes in the power
output of the EV aggregator, which can adversely affect the
stability of the system.

A sequential approach, consisting of two phases, was
adopted to achieve these objectives. The duration of the first
objective sequence was set to 6 s and 60 s, aligned with
the specific market conditions in Australia. These durations
were chosen based on the time required to effectively address
the frequency perturbation in the respective markets and the
seldomness of 5 min of C-FCAS occurrence [66]. After com-
pleting the first objective sequence, the second objective is
introduced, with a consistent duration of 60 seconds for both
markets. This duration assumes that, within this timewindow,
the system and its components have reached a new steady
state, where the frequency has been stabilized, and the power
discharged by the EV aggregator has been restored to zero.

FIGURE 14. Design of simulation.

Figure 14 provides a visual representation of the sequen-
tial approach and duration of each objective. It illustrates
the timeline of the event, including the occurrence of the
SLP, initiation of the control strategy, and completion of
each objective. This timeline serves as a reference for under-
standing the temporal aspects of the control strategy and its
response to the frequency of contingency events.

The optimization process commences by initializing the
PID controller gains and simulating the system response.
Subsequently, the performance of the system was evaluated
using combination of multiple ITSE; ITSE of frequency devi-
ation during first window and ITSE of zero power output
during the second. MATLAB Response Optimizer app is
employed for conducting this procedure. The controller gains
are then iteratively adjusted to enhance the control perfor-
mance. This iterative process continues as the optimization
algorithm searches for better solutions by refining the PID
gains based on the ITSE performance index. The objective
is to obtain a set of controller gains that yields satisfactory
control performance.

Multiple optimization algorithms were applied to deter-
mine the most effective algorithm. While the ITSE index is
used as the objective function for optimization, the parame-
ters used to compare the algorithms are the frequency nadir
(the lowest point the frequency reaches) and Rate of Change
of Frequency (RoCoF). These parameters are commonly used
by power utilities to assess the effectiveness of C-FCAS [67].
However, for computational purposes, it is more convenient
to utilize the ITSE index instead of directly considering
the frequency nadir and RoCoF. This approach allows for
a comprehensive evaluation of the control strategies while
facilitating the analysis and comparison of the optimization
results.

Finally, the identified best algorithm optimizes the PID
parameters, thereby ensuring the optimal performance of the
control strategy. However, to enhance the robustness of the
control approach, the optimization process considers several
uncertainties that can affect the behavior of the system. These
uncertainties include variations in the SoC of the energy
storage system and magnitude of the SLP.

SoC uncertainty accounts for different levels of energy
stored in the system, ranging from low to high SoC values.
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This variability reflects real-world scenarios in which the
energy-storage capacity of EVs or other storage systems may
vary. By incorporating this uncertainty, the control strategy
can adapt to different energy-storage conditions and ensure
reliable performance across various operating states. The
uncertainty in the magnitude of the SLP acknowledges the
variability in power consumption patterns within the grid.
By considering different SLPmagnitudes, the control strategy
can effectively respond to varying load demands, thereby
ensuring stable and efficient frequency regulation. By incor-
porating these uncertainties into the optimization process,
the control strategy is designed to be robust and adaptable,
ensuring its effectiveness under various operating conditions.
The inclusion of uncertainties allows for a comprehensive
evaluation of the performance of the control strategy and
ensures its ability to handle real-world uncertainties in a
power grid.

VI. RESULTS AND DISCUSSIONS
A. ALGORITHMS COMPARISON
In this subsection, several optimization algorithms are
tested. Among the optimization techniques provided by the
MATLAB Response Optimizer app, the SQP, PS, Simplex,
and IP algorithms have demonstrated successful conver-
gence. However, other algorithms such as Trust Region
Reflective (TRF), Active Set (AS), and Nelder-Mead (NM)
did not achieve convergence in this implementation. The
results are presented in Table 1, Table 2, Table 3 and Table 4,
corresponding to the 6-sec market optimization, 6-sec market
simulation, 60-sec market optimization, and 60-sec mar-
ket simulation, respectively. The purpose of these tests was
to evaluate the performance of the different algorithms in
achieving the optimal frequency nadir and restoring the EV
aggregator to its stable idle state.

TABLE 1. Optimization result for 6-sec market.

TABLE 2. Simulation result for 6-sec market.

Among the algorithms tested in both markets, the Pattern
Search (PS) algorithm demonstrated superior performance in

TABLE 3. Optimization and simulation result for 60-sec market.

TABLE 4. Simulation result for 60-sec market.

achieving an optimal frequency nadir. It consistently outper-
formed the other algorithms in terms ofminimizing frequency
deviations during the optimization process. In addition, the
PS algorithm effectively brought the EV aggregator back
to its stable idle state, ensuring its proper functioning and
contributing to the smooth operation of the system.

However, it is essential to note that the Sequential
Quadratic Programming (SQP) algorithm failed to meet
the desired results for the 6-sec market, as depicted in
Figure 15 (top). This indicates that the SQP algorithm is
not as effective in minimizing the frequency deviations and
restoring the system stability within a given time window.
Similarly, the Interior Point (IP) and simplex algorithms also
fell short of meeting the requirements of the 60-second mar-
ket, as shown in Figure 16 (top). These algorithms cannot
effectively optimize the response of the system or stabilize
the frequency within the desired timeframe.

FIGURE 15. Simulation result for 6-sec market. Frequency deviation (top),
EV aggregator output (middle), generator (bottom).
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FIGURE 16. Simulation result for the 60-sec market. Frequency deviation
(top), EV aggregator output (middle), generator (bottom).

The success of returning an EV aggregator to its stable
idle state is an essential factor that influences the overall
performance. The ability to bring the EV aggregator back to
its idle state efficiently ensures a smooth loading transition
for the generator, as depicted in Figure 15 (bottom) and
Figure 16 (bottom).

The PS algorithm consistently achieved this outcome,
highlighting its superiority in optimizing system performance
and maintaining stability. These findings underscore the sig-
nificance of selecting an appropriate optimization algorithm
for C-FCAS control. The PS algorithm proved to be a robust
and reliable choice, showing its effectiveness in achieving the
desired objectives of frequency deviation minimization and
restoring the EV aggregator to its stable idle state.

B. VARIATION OF OBJECTIVE FUNCTION WEIGHTING
Considering the superior performance of the PS algorithm,
two scenarios were simulated by adjusting the weighting of
the objective functions in both the 6-second and 60-second
markets. In the first simulation, the first objective function
was assigned a weight five times greater than that of the sec-
ond objective (5:1), focusing on effective system frequency
deviation suppression.

In the second simulation, the weight of the second objec-
tive function was increased by a factor of five compared to
the first objective (1:5), emphasizing the suppression of the
EV aggregator output. This strategic weighting allows for
a comprehensive exploration of the optimization problem,
addressing both frequency stability and efficient EV aggre-
gator utilization.

As expected, under the 5:1 weighting condition, the fre-
quency nadir reached its lowest value compared to the
other conditions, indicating the successful minimization of
frequency deviations. However, the suppression of the EV
aggregator output is less effective under this weighting con-
dition because of its lower priority. Conversely, under the 1:5
weighting condition, the frequency nadir was higher, indicat-
ing a less successful reduction in the frequency deviations.
However, the suppression of the EV aggregator output ismore

TABLE 5. Optimization and result for objective weighting variations for
6-sec market.

TABLE 6. Optimization and result for objective weighting variations for
60-sec market.

FIGURE 17. Objective weighting variations simulation results for the
6-sec market. Frequency deviation (top), EV aggregator output (middle),
generator (bottom).

effective, as it is prioritized. These findings are summarized
in Table 5 and Table 6.

These observations hold true for both the 6-sec and 60-sec
markets, as illustrated in Figure 17 and Figure 18. The results
emphasize the significance of objective function weighting
in achieving the desired trade-off between minimizing fre-
quency deviations and suppressing the EV aggregator output.
The optimization process can effectively balance these objec-
tives and yield optimal solutions by appropriately adjusting
the weights.

C. ROBUST PID CONTROL
This subsection aims to further enhance the analysis by
incorporating additional uncertainties that may influence
the performance of the proposed control strategy. These
uncertainties include variations in the SoC of the EV aggre-
gatorsystem ranging from 25% to 75%. SoC represents the
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FIGURE 18. Different objective weighting simulation results for the
60-sec market. Frequency deviation (top), EV aggregator output (middle),
generator (bottom).

TABLE 7. Optimization result of robust PID control for 6-sec market and
60-sec market.

FIGURE 19. Robust PID control for different SLP of the 6-sec market.
Frequency deviation (top), EV aggregator output (middle), generator
(bottom).

energy stored in the EV aggregatorand directly affects its
capability to provide ancillary services.

By considering different SoC levels, this study evaluates
the robustness and effectiveness of the control strategy under
varying energy storage conditions. Furthermore, this research
introduces uncertainties related to SLP values, which repre-
sent the expected power consumption patterns in the grid. The
SLP values varied from 0.05 to 0.2 pu, representing different
load demand scenarios. The study can assess the performance
of the control strategy under diverse grid conditions and
demand patterns by considering a range of SLP values.

Considering the range of uncertainties discussed earlier,
the proposed control strategy is implemented using the SMO
technique. PS optimization was chosen considering its supe-
riority over the other tested optimization algorithms. The

FIGURE 20. Robust PID control for different SLP of the 60-sec market.
Frequency deviation (top), EV aggregator output (middle), generator
(bottom).

control parameters obtained through SMO for the 6-sec and
60-sec markets are presented in Table 7.

The simulation results for the 6-second and 60-second
market scenarios with different System Load Profile (SLP)
magnitudes are presented in Figure 19 and Figure 20, respec-
tively. These figures demonstrate the performance of the EV
aggregator system as C-FCAS provider in handling varying
SLP magnitudes.

VII. CONCLUSION
In this study, the SMO technique for EV aggregator as
C-FCAS was successfully implemented. Through exten-
sive investigation, it was discovered that the combination
of SMO with Pattern Search (PS) yielded superior perfor-
mance compared to other combinations, namely, SMO-SQP,
SMO-Simplex, and SMO-IP. The primary objective of this
technique is to minimize system frequency deviation during
a contingency event. However, it has been demonstrated that
the SMO technique also ensures that an EV aggregator returns
to its idle state after providing the required service to the
grid. The EV aggregator acts as a stabilizing technology
by effectively mitigating frequency deviations. This allows
the generator to experience a smooth transition in loading,
benefiting from the substantial time window provided by the
EV aggregator. This smooth loading transition is crucial for
maintaining the grid stability and reliability.

Furthermore, the SMO technique offers great flexibility
by allowing adjustment of its objective function weighting.
This enables the technique to be fine-tuned to accommodate
specific grid and EV aggregator objectives, thereby provid-
ing a customized and optimized solution. By appropriately
balancing the objectives, the SMO technique can effectively
meet the operational requirements of both grid and EV aggre-
gator systems. Moreover, a robust PID control technique
can be combined with the SMO technique to address the
uncertainties inherent in systems. This integration allows for
themanagement of a wide range of uncertainties that can arise
in the grid, ensuring the stability and reliability of the system
under various conditions.
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Regarding future research directions, the proposed tech-
nique holds promise for implementation with other similar
energy storage systems, such as super-magnetic energy stor-
age (SMES) and ultra-capacitor energy storage (UCES).
Expanding the application of this approach to energy storage
technologies could potentially enhance their capabilities and
contributions to the power grid. Although simulation using a
simplified lumped subsystem has yielded successful results,
further verification using real electrical network models is
essential before practical implementation in the real system.
By utilizing real network models, the fulfillment of standards
agreed upon by stakeholders, such as frequency nadir and
RoCoF, can be further assessed. Validating the control strat-
egy using more complex and realistic grid models will ensure
its effectiveness and reliability in real-world scenarios. More-
over, considering the intricacies of actual electrical networks
will allow for better insights and adjustments to optimize the
performance of the strategy.

APPENDIX

TABLE 8. Parameter value.
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