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ABSTRACT The notion of partition dimension was initially introduced in the field of graph theory, primarily
to examine distances between vertices. The local partition dimension extends this idea by incorporating
specific conditions into how vertices are represented. In graph theory, it is customary to represent the
partition dimension of a graph as pd(G). Network localization, on the other hand, is the process of precisely
determining the position of nodes within a network concerning a selected subset of nodes, called the locating
set. The smallest size of its locating set is used to represent the locating number of a network. The generalized
hexagonal cellular network provides an innovative framework for network planning and analysis. In our
study, we investigate the partition dimension of a generalized hexagonal cellular network and provide a
rigorous proof of its exact partition dimension. Hence, our approach ensures the distinct recognition of each
node within a generalized hexagonal cellular network. Additionally, we explore the utilization of the metric
dimension in flood relief camping by the National DisasterManagement Authority (NDMA) Pakistan during
floods in 2022. NDMA established relief camps and relief centers with unique codes to rescue humans and
animals.

INDEX TERMS Vertex-based metric resolvability, resolving set, metric dimension, vertex-based partition
resolvability, partition resolving set, partition dimension.

I. INTRODUCTION
The localization of a network refers to the method used
to determine the exact position of a vertex or node within
the network. An illustrative example of this concept is
when a computer in an office environment sends a printing
command. Localization is of utmost importance in various
tasks, including but not limited to determining the closest
printer, identifying malfunctioning nodes, spotting network
intrusions, finding damaged equipment, recognizing illicit or
misapplied connections, and even tracing the whereabouts
of a mobile robot [1]. However, it’s important to note
that network localization is a challenging, expensive, time-
consuming, and labor-intensive process.

To achieve network localization, the strategy involves the
careful selection of different vertices or nodes. These nodes
are selected in such amanner as to facilitate the determination
of the position of the target vertex. This determination relies
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on the target vertex’s distinct characteristics, which may
include its label, orientation, or location in relation to the
chosen nodes. The main goal is to reduce the count of
chosen vertices, ultimately enhancing the efficiency of this
approach. Central to this procedure is the locating set, which,
in a strictly theoretical context, is referred to as the metric
basis and consists of the chosen vertices. The key metric
in this context is the locating number, which represents the
minimum feasible set of selected vertices. Calculating the
locating number for a graph is a complex computational task,
falling into the category of non-deterministic polynomial-
time hard (NP) problems, and the search for an algorithmic
solution continues to be elusive [3], [5].

The notion of the locating set was initially introduced
in scientific research by reference [6], marking the com-
mencement of investigations aimed at determining a graph’s
locating number. This locating number signifies the smallest
possible size of a resolving set. As time has progressed,
various names have been used for this concept; for example,
in reference [7], it is termed metric dimension. Moreover,
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in reference [8], the terms metric basis and resolving set
have been employed to describe the same concept. In recent
years, an advanced definition of the locating set, known as the
fault-tolerant locating set, has emerged, providing a broader
interpretation of the original concept [10]. This extended
perspective of the locating set has found practical applications
in a range of diverse fields [11], [13], [14].
From a more extensive viewpoint, the idea of a locating

set has found applications across diverse domains, such
as pharmaceutical chemistry [5], image processing [6],
intricate gaming and robotic navigation [15], combinatorial
programming [16], and network theory [11]. Additionally,
it has been employed to explore polyphenyl structures,
particularly within the polymer industry [13], and recent
advancements have expanded its utility into the realm of
electronics [14].

The extensive body of literature on the metric dimension,
which is the concept of the locating set, covers a wide
range of applications across various fields. However, in this
study, we will focus on recent and more broadly applicable
findings. In [17], the authors delve into a diverse range
of graphs, including a generic graph of a kayak paddle
and several related to cycles. In [18], researchers examined
a cellulose network and established upper bounds for its
structural properties. In [19], they presented a graph metric
reminiscent of a coronoid shape. Exploring the concept of
locating numbers, a class of hydrocarbon-based structures
was investigated in [20], leading to the discovery of various
related versions. By employing the definition of the locating
set outlined in [21], researchers explored the generalized
class of the Harary family. Furthermore, [22] provides
insights into multi-graphs and generalized Peterson graphs,
along with the concept of a metric basis. In the context
of Cayley graphs, [23] identifies and acknowledges the
academics who calculated the locating number for this
generalized class and more detailed studies can be found in
the references [24] and [25].

There is an extensive body of literature available regarding
this subject, which includes recent research studies conducted
by [27] and [29]. The authors of [30] described the fault-
tolerant metric dimension of circulant graphs and literature
about locating number of biswapped networks in [31] They
delve into the examination of the internet graph and its
robust topology in [32]. Furthermore, [33] employs the
concept of a fault-tolerant locating number to explore a quartz
structure and the network connections related to computers.
References [34] and [35] explore the investigation of convex
polytopes with a focus on fault-tolerant locating sets, aiming
to determine the precise fault-tolerant locating numbers
associated with them.

A hexagonal grid pertains to the orderly placement of
shapes, particularly polygons, in a manner that eliminates any
vacant spaces. It entails the generation of unending geometric
designs through the utilization of hexagonal configurations,
as originally suggested in [36]. These patterns have found
applications in various fields, including network design,

as discussed in the recent advancement, and in the context
of cellular networks [37]. Hexagonal cellular networks are
extensively used in network planning and analysis and are
explored in academic settings, as detailed in the book [38].
For industrial applications, relevant studies can be found
in [39], [40], and [41], with a focus on the topology of
hexagonal cellular networks discussed in [42].
The partition dimension is a specific branch of research

within graph theory, as discussed by [43]. It is closely related
to the development of the metric dimension. To clarify, a set
referred to as a locating set is often termed a resolving
set, as explained by [44]. Additionally, the concept of a
discriminating partition bears a resemblance to the resolving
set in a graph. This involves grouping the vertices in a graphG
into various partition classes and computing the distances of
each vertex in G to all partition classes in order to represent
each vertex in the graph, as described in [45], [46], and [47].

To lay the groundwork for our forthcoming conversation,
we will commence by presenting fundamental ideas that will
prove crucial in shaping our eventual outcomes.
Definition 1: Suppose G(V (G),E(G)) is an undirected

graph of chemical structure with V (G) is called a vertex set of
G and E(G) is called the edge set of G.Distance between two
vertices λ1,λ2 ∈ V (G), denoted as d(λ1,λ2) is the minimum
count of edges between λ1 to λ2 path.
Definition 2: Assume R ⊂ V (G) is a subset of the

vertex set and is specified as R = {λ1,λ2, . . . ,λs}, and
consider a vertexλ ∈ V (G). The identification r(λ|R) of
a vertex with regard to R is actually an s-ordered distance
(d(λ,λ1), d(λ,λ2), . . . , d(λ,λs)). If each vertex in V (G) has
a unique location according to the ordered subset R, then this
subset is termed the metric basis of structure G.
The metric dimension of the graph G can be denoted as

dim(G) and it represents the smallest number of elements
needed in the subset R to achieve this property.
Definition 3: Let Rp denote the set of l-ordered partitions,

and r(F |Rp) = (d(F,Rp1 ), d(F,Rp2 ), . . . , d(F,Rpl )) repre-
sents the l-tuple distance values for a vertex F in relation
to Rp. If the different ways of expressing F in relation to Rp
are not the same, then B as the resolving partition set for the
set of vertices in graph G. The minimum number of subsets in
the resolving set of V (G) is denoted as the partition dimension
(pd(G)) of graph G.

II. CONSTRUCTION AND MAIN RESULTS
The arrangement of the network depicted in Figure 1 is
versatile and takes the form of a hexagonal cellular network.
This network is characterized by three variables or parameters
that collectively establish its six-dimensional structure.
We denote this as HCN (ψ, φ, ϱ), with the constraint that
each parameter ψ, φ, ϱ must be greater than or equal to 2.
Notably, these three parameters can take on distinct values or
be identical. Furthermore, labels have been allocated to both
the nodes and edges of this network in order to streamline
the validation of our main discoveries, as demonstrated below
V (HCN (ψ, φ, ϱ)), as shown at the bottom of the next page.

12200 VOLUME 12, 2024



R. Bhatti et al.: Partition Dimension of Generalized Hexagonal Cellular Networks

The count of nodes and lines of this network are succinctly
described as::

|V (HCN (ψ, φ, ϱ))|

=



(
18ψ2

+ 30ψ + 12
)
, if ψ = φ = ϱ;(

18φ2 + 42φ + 22
)
, if ψ = φ ̸= ϱ;(

18ϱ2 + 54ϱ + 38
)
, if ψ ̸= φ = ϱ.

|E(HCN (ψ, φ, ϱ))|

=


(3(ψ + 1)(3ψ + 2)) , if ψ = φ = ϱ;

(3φ(3φ + 7) + 11) , if ψ = φ ̸= ϱ;

(9ϱ(ϱ + 3) + 19) , if ψ ̸= φ = ϱ.

Figure 1 displays specific parameter values, where ψ =

3 = φ, ϱ = 4. The labels in question are referenced
within the proofs of the theorems. Furthermore, these labels,
in conjunction with the illustrated edge and vertex sets, can
be expanded to include all possible values of the parameters
that are natural (ψ, φ, ϱ).
Note 4: Througout this article, the parameteric value of z

is 1 if the particular vertex is belongs to the subset Rpk−1 ,

and 0 otherwise.
Theorem 5: Consider the graph HCN (2, 2, 3), which

represents the hexagonal cellular network. In this context, the
partition dimension of HCN (2, 2, 3) is three.

Proof: Let partition resolving set of HCN (2, 2, 3) =

{Rp1 ,Rp2 ,Rp3} where Rp1 = {a1,1},Rp2 = {a1,7},Rp3 =

V (HCN (2, 2, 3)) \ {a1,1, a1,7}, One can identify a suitable
candidate for a partition-resolving set in a generalized
hexagonal cellular network with parameters HCN (2, 2, 3).
To support our claim that this selected subset effectively
functions as a partition-resolving set for HCN (2, 2, 3), we
will adhere to the procedure outlined in Definition 1 to
compute the shortest paths from every node to the set of nodes
represented by {a1,1, a1,7}. Subsequently, we will employ
these calculated paths in the practical context of determining

a location, as defined in Definition 3, which is presented as
follows.

r(a⋄,♦|Rp) =



(0, 6, z) , if ⋄ = 1,♦ = 1;
(2, 4, z) , if ⋄ = 1,♦ = 3;
(4, 2, z) , if ⋄ = 1,♦ = 5;
(6, 0, z) , if ⋄ = 1,♦ = 7;
(2, 7, z) , if ⋄ = 2,♦ = 2;
(3, 5, z) , if ⋄ = 2,♦ = 4;
(5, 4, z) , if ⋄ = 2,♦ = 6;
(7, 1, z) , if ⋄ = 2,♦ = 8;
(1, 5, z) , if ⋄ = 1,♦ = 2;
(3, 3, z) , if ⋄ = 1,♦ = 4;
(5, 1, z) , if ⋄ = 1,♦ = 6;
(2, 8, z) , if ⋄ = 2,♦ = 1;
(2, 6, z) , if ⋄ = 2,♦ = 3;
(4, 4, z) , if ⋄ = 2,♦ = 5;
(6, 2, z) , if ⋄ = 2,♦ = 7;
(8, 2, z) , if ⋄ = 2,♦ = 9;

r(b⋄,♦|Rp) =



(3, 9, z) , if ⋄ = 1,♦ = 1;
(3, 7, z) , if ⋄ = 1,♦ = 3;
(5, 5, z) , if ⋄ = 1,♦ = 5;
(7, 3, z) , if ⋄ = 1,♦ = 7;
(9, 3, z) , if ⋄ = 1,♦ = 9;
(6, 8, z) , if ⋄ = 2,♦ = 2;
(6, 6, z) , if ⋄ = 2,♦ = 4;
(8, 6, z) , if ⋄ = 2,♦ = 6;
(4, 8, z) , if ⋄ = 1,♦ = 2;
(4, 6, z) , if ⋄ = 1,♦ = 4;
(6, 4, z) , if ⋄ = 1,♦ = 6;
(8, 4, z) , if ⋄ = 1,♦ = 8;
(5, 9, z) , if ⋄ = 2,♦ = 1;
(5, 7, z) , if ⋄ = 2,♦ = 3;
(7, 5, z) , if ⋄ = 2,♦ = 5;
(9, 5, z) , if ⋄ = 2,♦ = 7;

V (HCN (ψ, φ, ϱ)) = {a⋄,♦ : ♦ = 1, 2, . . . , 2(ϱ + ⋄) − 1,⋄ = 1, 2, . . . , ψ}

∪ {b1,♦ : ♦ = 1, 2, . . . , 2(ϱ + ψ), if φ = ψ + 1, ψ = ϱ and φ = ψ + 1, φ = ϱ} ∪ {b⋄,♦ :

♦ = 1, 2, . . . , 2(ϱ + ψ − ⋄) + 3,⋄ = 2, 3, . . . , φ, if φ = ψ + 1, ψ = ϱ and φ = ψ + 1,
φ + ϱ} ∪ {b⋄,♦ : ♦ = 1, 2, . . . 2(ϱ + ψ − ⋄) + 1,⋄ = 1, 2, . . . , φ}.

E(HCN (ψ, φ, ϱ)) = {a⋄,♦a⋄,j+1 : ♦ = 1, 2, . . . , 2(ϱ + ⋄ − 1),⋄ = 1, 2, . . . , ψ}

∪{b1,♦b1,♦+1 : ♦ = 1, 2, . . . , 2(ϱ + ψ) − 1, if φ = ψ + 1, ψ = ϱ and k = ψ + 1, φ = ϱ}

∪{b⋄,♦b⋄,♦+1 : ♦ = 1, 2, . . . , 2(ϱ + ψ − ♦ + 1),⋄ = 2, 3, . . . , φ, if φ = ψ + 1, ψ = ϱ and φ = ψ + 1, φ = ϱ}

∪{b⋄,♦b⋄,♦ + 1 : ♦ = 1, 2, . . . , 2(ϱ + ψ − ⋄),⋄ = 1, 2, . . . , k}
∪{aψ,♦b1,♦+1 : ♦ = 1, 3, . . . , 2(ϱ + ψ) − 1}
∪{aψ,♦b1,♦+1 : ♦ = 1, 3, . . . , 2(ϱ + ψ) − 1, if φ = ψ + 1, ψ = ϱ and φ = ψ + 1, φ = ϱ}

∪{a⋄,♦a⋄+1,♦+1 : ♦ = 1, 3, . . . , 2(ϱ + ⋄) − 1,⋄ = 1, 2, . . . , ψ − 1}
∪{b⋄,♦b⋄+1,♦−1 : ♦ = 2, 4, . . . , 2(ϱ + ψ − ⋄) + 1,⋄ = 1, 2, . . . , φ − 1}
∪{b1,♦b2,♦ : ♦ = 1, 3, . . . , 2(ϱ + ψ) − 1, if φ = ψ + 1, ψ = ϱ and φ = ψ + 1, φ = ϱ}

∪{b⋄,♦b⋄+1,♦−1 : ♦ = 2, 4, . . . , 2(ϱ + ψ − ⋄),⋄ = 1, 2, . . . φ − 1, if φ = ψ + 1, ψ = ϱ and φ = ψ + 1, φ = ϱ}.
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Examining the above tables provided in the positions of
HCN (2, 2, 3) nodes, it becomes evident that all of these posi-
tions are both unique and distinct. Consequently, it follows
that pd(HCN (2, 2, 3)) equals 3, thus establishing the validity
of the proof. □
Theorem 6: Let’s consider the graph of the generalized

hexagonal cellular network denoted as GHCN (2, 3, 2).
In this case, the partition dimension of GHCN (2, 3, 2)
is three.

Proof: Let a partition resolving set of HCN (2, 3, 2) =

{Rp1 ,Rp2 ,Rp3} where Rp1 = {a1,2},Rp2 = {b2,1},Rp3 =

V (HCN (2, 3, 2)) \ {a1,2, b2,1}, we must identify a suitable
candidate for a partition resolving set within the context of
the generalized hexagonal cellular network with parameter
values HCN (2, 3, 2). To validate our claim that this chosen
subset functions as a partition resolving set forHCN (2, 3, 2),
We will adhere to Definition 1 in order to determine the
shortest routes from every node to the set consisting of
{a1,2, b2,1}. Afterward, we will utilize these routes as per the
formal location definition specified in Definition 3, which is
presented below.

r(a⋄,♦|Rp) =



(1, 5, z) , if ⋄ = 1,♦ = 1;
(1, 7, z) , if ⋄ = 1,♦ = 3;
(3, 9, z) , if ⋄ = 1,♦ = 5;
(2, 4, z) , if ⋄ = 2,♦ = 2;
(2, 6, z) , if ⋄ = 2,♦ = 4;
(4, 8, z) , if ⋄ = 2,♦ = 6;
(0, 6, z) , if ⋄ = 1,♦ = 2;
(2, 8, z) , if ⋄ = 1,♦ = 4;
(3, 3, z) , if ⋄ = 2,♦ = 1;
(3, 5, z) , if ⋄ = 2,♦ = 3;
(3, 7, z) , if ⋄ = 2,♦ = 5;
(5, 9, z) , if ⋄ = 2,♦ = 7;

r(b⋄,♦|Rp) =



(5, 1, z) , if ⋄ = 1,♦ = 1;
(5, 3, z) , if ⋄ = 1,♦ = 3;
(5, 5, z) , if ⋄ = 1,♦ = 5;
(5, 7, z) , if ⋄ = 1,♦ = 7;
(6, 0, z) , if ⋄ = 2,♦ = 1;
(6, 2, z) , if ⋄ = 2,♦ = 3;
(6, 4, z) , if ⋄ = 2,♦ = 5;
(6, 6, z) , if ⋄ = 2,♦ = 7;
(9, 3, z) , if ⋄ = 3,♦ = 2;
(9, 5, z) , if ⋄ = 3,♦ = 4;
(4, 2, z) , if ⋄ = 1,♦ = 2;
(4, 4, z) , if ⋄ = 1,♦ = 4;
(4, 6, z) , if ⋄ = 1,♦ = 6;
(6, 8, z) , if ⋄ = 1,♦ = 8;
(7, 1, z) , if ⋄ = 2,♦ = 2;
(7, 3, z) , if ⋄ = 2,♦ = 4;
(7, 5, z) , if ⋄ = 2,♦ = 6;
(8, 2, z) , if ⋄ = 3,♦ = 1;
(8, 4, z) , if ⋄ = 3,♦ = 3;
(8, 6, z) , if ⋄ = 3,♦ = 5;

Examining the above tables provided in the positions of
HCN (2, 3, 2) nodes, it becomes evident that all of these posi-
tions are both unique and distinct. Consequently, it follows
that pd(HCN (2, 3, 2)) = pd(HCN (2, 2, 3)) equals 3, thus
establishing the validity of the proof. □
Theorem 7: Consider the graph denoted as HCN (3, 3, 3),

which represents the generalized hexagonal cellular network.
In this context, it’s worth noting that the partition dimension
of HCN (3, 3, 3) equals three.

Proof: Let a partition resolving set: HCN (3, 3, 3) =

{Rp1 ,Rp2 ,Rp3} where Rp1 = {a1,1},Rp2 = {b3,7},Rp3 =

V (HCN (3, 3, 3)) \ {a1,1, b3,7}, it is crucial to find a suitable
candidate that can function as a partition-resolving set in
the context of HCN (2, 3, 2) or for specific parameter in
a hexagonal cellular network. To validate our claim that
this chosen subset effectively acts as a partition-resolving
set for HCN (3, 3, 3), we will use Definition 1 to compute
the shortest paths from every node to the designated
destinations, namely {a1,1, b3,7}. Afterwards, we will apply
these computed paths in accordance with the formal descrip-
tion of a location provided in Definition 3, as outlined
below.

r(a⋄,♦|Rp) =



(0, 11, z) , if ⋄ = 1,♦ = 1;

(2, 9, z) , if ⋄ = 1,♦ = 3;

(4, 9, z) , if ⋄ = 1,♦ = 5;

(6, 9, z) , if ⋄ = 1,♦ = 7;

(1, 9, z) , if ⋄ = 2,♦ = 2;

(3, 8, z) , if ⋄ = 2,♦ = 4;

(5, 8, z) , if ⋄ = 2,♦ = 6;

(7, 8, z) , if ⋄ = 2,♦ = 8;

(4, 10, z) , if ⋄ = 3,♦ = 1;

(4, 8, z) , if ⋄ = 3,♦ = 3;

(4, 8, z) , if ⋄ = 3,♦ = 5;

(6, 5, z) , if ⋄ = 3,♦ = 7;

(8, 5, z) , if ⋄ = 3,♦ = 9;

(10, 5, z) , if ⋄ = 3,♦ = 11;

(1, 10, z) , if ⋄ = 1,♦ = 2;

(3, 10, z) , if ⋄ = 1,♦ = 4;

(5, 10, z) , if ⋄ = 1,♦ = 6;

(2, 10, z) , if ⋄ = 2,♦ = 1;

(2, 8, z) , if ⋄ = 2,♦ = 3;

(4, 7, z) , if ⋄ = 2,♦ = 5;

(6, 7, z) , if ⋄ = 2,♦ = 7;

(8, 7, z) , if ⋄ = 2,♦ = 9;

(3, 9, z) , if ⋄ = 3,♦ = 2;

(3, 7, z) , if ⋄ = 3,♦ = 4;

(5, 6, z) , if ⋄ = 3,♦ = 6;

(7, 6, z) , if ⋄ = 3,♦ = 8;

(9, 6, z) , if ⋄ = 3,♦ = 10;
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r(b⋄,♦|Rp) =



(5, 9, z) , if ⋄ = 1,♦ = 1;

(5, 7, z) , if ⋄ = 1,♦ = 3;

(5, 5, z) , if ⋄ = 1,♦ = 5;

(7, 4, z) , if ⋄ = 1,♦ = 7;

(9, 4, z) , if ⋄ = 1,♦ = 9;

(11, 4, z) , if ⋄ = 1,♦ = 11;

(8, 6, z) , if ⋄ = 2,♦ = 2;

(8, 4, z) , if ⋄ = 2,♦ = 4;

(8, 2, z) , if ⋄ = 2,♦ = 6;

(10, 1, z) , if ⋄ = 2,♦ = 8;

(9, 5, z) , if ⋄ = 3,♦ = 1;

(9, 3, z) , if ⋄ = 3,♦ = 3;

(9, 1, z) , if ⋄ = 3,♦ = 5;

(10, 0, z) , if ⋄ = 3,♦ = 7;

(6, 8, z) , if ⋄ = 1,♦ = 2;

(6, 6, z) , if ⋄ = 1,♦ = 4;

(6, 4, z) , if ⋄ = 1,♦ = 6;

(8, 3, z) , if ⋄ = 1,♦ = 8;

(10, 3, z) , if ⋄ = 1,♦ = 10;

(7, 7, z) , if ⋄ = 2,♦ = 1;

(7, 5, z) , if ⋄ = 2,♦ = 3;

(7, 3, z) , if ⋄ = 2,♦ = 5;

(9, 2, z) , if ⋄ = 2,♦ = 7;

(11, 2, z) , if ⋄ = 2,♦ = 9;

(10, 4, z) , if ⋄ = 3,♦ = 2;

(10, 2, z) , if ⋄ = 3,♦ = 4;

(11, 1, z) , if ⋄ = 3,♦ = 6;

Examining the above tables provided in the positions of
HCN (3, 3, 3) nodes, it becomes evident that all of these posi-
tions are both unique and distinct. Consequently, it follows
that pd(HCN (3, 3, 3)) = pd(HCN (2, 2, 3)) equals 3, thus
establishing the validity of the proof. □
Theorem 8: If we consider HCN (ψ, φ, ϱ) as the graph of

the generalized hexagonal cellular network with ψ < φ, it
can be stated that the partition dimension of HCN (ψ, φ, ϱ)
is four.

Proof: To confirm the correctness of this theorem
under equality, we will investigate both conditions involving
inequality. To ensure that the value of pd(HCN (ψ, φ, ϱ))
does not exceed 4, we will analyze the partition resolv-
ing set of HCN (ψ, φ, ϱ) = {Rp1 ,Rp2 ,Rp3 ,Rp4} where
Rp1 = {b1,1},Rp2 = {b2,1},Rp3 = {b1,2(ϱ+ψ)},Rp4 =

V (HCN (ψ, φ, ϱ)) \ {b1,1, b2,1, b1,2(ϱ+ψ)}, A relevant candi-
date for a partition-resolving set of HCN (ψ, φ, ϱ) is sought,
especially when considering the specific parameter values for
a generalized hexagonal cellular network, with the condition
that ψ is less than φ. To substantiate our assertion that the
selected subset indeed serves as a partition-resolving set for
HCN (ψ, φ, ϱ), we will follow Definition 1 for the purpose
of calculating the shortest routes from all nodes to the set

FIGURE 1. Generalized hexagonal cellular network with ψ = 3 = φ, ϱ = 4.

of destinations, which includes {b1,1, b2,1, and b1,2(ϱ+ψ)}.
These calculated paths will then be utilized in the practical
formulation of a location, as described in Definition 3
presented below.

The following explanation provides details about the
locations, denoted as r(a⋄,♦|Rp), for the vertex subset a⋄,♦

where ♦ ∈ {1, 2, . . . , 2(ϱ + ⋄) − 1} and ⋄ ∈ {1, 2, . . . , ψ}.

r(a⋄,♦|Rp) = (2(ψ − ⋄) + ♦ + 1, 2(ψ − ⋄) + ♦,

× 2(ψ + ϱ) − ♦, z). (1)

For ♦ ∈ {1, 2, . . . , 2(ϱ + ψ)} with condition, if φ = ψ + 1,
ψ = ϱ and φ = ψ + 1, φ = ϱ, the representations
for the vertex subset denoted as r(b1,♦|Rp) are explained as
follows:

r(b1,♦|Rp) = (♦ − 1,♦, 2(ψ − ϱ) − ♦, z). (2)

For ♦ ∈ {1, 2, . . . , 2(ϱ+ψ − ⋄ + 3)} and ⋄ ∈ {2, 3, . . . , φ},

with restriction that if φ = ψ + 1, ψ = ϱ and φ = ψ + 1,
φ = ϱ, the locations denoted as r(b⋄,♦|Rp) for the vertex
subset b⋄,♦ are detailed in the following way:

r(b⋄,♦|Rp) = (♦ + 2(⋄ − 2),♦ + 2⋄ − 5, 2(ψ + ϱ)

− ♦ + 1, z). (3)

For♦ ∈ {1, 2, . . . , 2(ϱ+ψ−⋄+1)} and ⋄ ∈ {1, 2, 3, . . . , φ},

the locations denoted as r(b⋄,♦|Rp) for vertex subset b⋄,♦ is
characterized as follows:

r(b⋄,♦|Rp)=


(♦−1,♦,
2(ψ+ϱ)−1−♦, z), if ⋄=1;

(2⋄+♦−3, 2⋄+♦−5,
2(ψ+ϱ−1−♦), z), if ⋄=2, 3, . . . , φ.

(4)

By examining the specific positions of the nodes in
HCN (ψ, φ, ϱ) as defined in Equations 1-4, each of which is
both unique and separate, so

pd(HCN (ψ, φ, ϱ)) ≤ 4.
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we will investigate the converse inequality, which can be
stated as pd(HCN (ψ, φ, ϱ)) ≥ 4. To rephrase it in a different
form, we can represent it as either |pd(HCN (ψ, φ, ϱ))| < 4
or pd(HCN (ψ, φ, ϱ)) = 3.
As demonstrated earlier, all the selected samples for

pd(HCN (ψ, φ, ϱ)) = 3 lead to inconsistencies, leading to
the conclusion that pd(HCN (ψ, φ, ϱ)) ̸= 3. This further
supports the assertion that pd(HCN (ψ, φ, ϱ)) = 4, thereby
completing the proof. □
Theorem 9: If we consider the graph of the hexagonal

cellular network as HCN (ψ, φ, ϱ), where ψ is greater than
or equal to φ, then the partition dimension of HCN (ψ, φ, ϱ)
is four.

Proof: To validate the credibility of this theorem
based on equality, we will thoroughly examine both of
the inequalities. To verify that pd(HCN (ψ, φ, ϱ)) is less
than or equal to 4, we consider partition resolving set
of HCN (ψ, φ, ϱ) = {Rp1 ,Rp2 ,Rp3 ,Rp4} where Rp1 =

{aψ,1},Rp2 = {b1,1},Rp3 = {aψ,2(ϱ+ψ)−1},Rp4 =

V (HCN (ψ, φ, ϱ)) \ {aψ,1, b1,1, aψ,2(ϱ+ψ)−1}, a suitable can-
didate for a partition resolving set of a generalized hexagonal
cellular network HCN (ψ, φ, ϱ), where ψ is greater than
or equal to φ, can be selected. In order to confirm the
legitimacy of our assertion that the selected subset serves as
a partition resolving set for HCN (ψ, φ, ϱ), we will adhere
to Definition 1 when determining the shortest routes from
every node to the set {aψ,1, b1,1, aψ,2(ϱ+ψ)−1}. These paths
will then be utilized in the practical formulation of a location,
as detailed in Definition 3, which is presented later in this
document.

The locations of the vertex subset a⋄,♦ are explained as
follows, where ♦ belongs to the set of values from 1 to
2(ϱ + ⋄) − 1, and ⋄ ranges from 1 to ψ.

r(a⋄,♦|Rp) = (2(ψ − ⋄) + ♦ − 1, 2(ψ − ⋄) + ♦

+ 1, 2(ψ + ϱ) − ♦ − 1, z). (5)

For ♦ ∈ {1, 2, . . . , 2(ϱ + ψ)} with restriction if φ = ψ + 1,
ψ = ϱ and φ = ψ + 1, φ = ϱ, the locations of the vertex
subset b1,♦ is described as follows:

r(b1,♦|Rp)= (2(ψ − ⋄) + ♦,♦ − 1, 2(ψ + ϱ) − ♦, z). (6)

For ♦ ∈ {1, 2, . . . , 2(ϱ+ψ − ⋄ + 3)} and ⋄ ∈ {2, 3, . . . , φ},

with restriction if φ = ψ + 1, ψ = ϱ and φ = ψ + 1,
φ = ϱ, the locations associated with the vertex subset
b⋄,♦ are described as follows in the context of the function
r(b⋄,♦|Rp):

r(b⋄,♦|Rp)= (♦ + 2(⋄ − 2),♦+2(⋄ − 2), 2(ψ+ϱ) − ♦, z).

(7)

For ♦ ∈ {1, 2, . . . , 2(ϱ + ψ − ⋄ + 1)} and ⋄ ∈ {1, 2,
3, . . . , φ}, the locations of the vertex subset b⋄,♦, denoted
as r(b⋄,♦|Rp), are detailed as follows:

r(b⋄,♦|Rp) = (2⋄ + ♦ − 2, 2⋄ + ♦ − 2, 2(ψ + ϱ) − ♦, z).

(8)

Observing the distinct and unique positions of the nodes in
the provided equations (2.5)-(2.8) for HCN (ψ, φ, ϱ), so

pd(HCN (ψ, φ, ϱ)) ≤ 4.

Subsequently, we will confirm the inverse inequality,
expressed as pd(HCN (ψ, φ, ϱ)) ≥ 4. By considering the
negation, we can state that |pd(HCN (ψ, φ, ϱ))| < 4 or
specifically, pd(HCN (ψ, φ, ϱ)) = 3. As demonstrated ear-
lier, all the selected samples for which pd(HCN (ψ, φ, ϱ)) =

3 result in contradictions. Consequently, it can be deduced
that pd(HCN (ψ, φ, ϱ)) ̸= 3. This further supports the
assertion that pd(HCN (ψ, φ, ϱ)) = 4, completing the
proof. □
Theorem 10: Consider the graph denoted as HCN (ψ ,

φ, ϱ), where ψ < φ, representing a generalized hexagonal
cellular network. In this context, the partition dimension of
HCN (ψ, φ, ϱ) is established as five.

Proof: To confirm the theorem’s equality, we will scru-
tinize both of the inequalities. To verify that pd(HCN (ψ, φ,
ϱ)) ≤ 5, we consider partition resolving set of HCN (ψ,
φ, ϱ) = {Rp1 ,Rp2 ,Rp3 ,Rp4 ,Rp5} where Rp1 = {b1,1},Rp2 =

{b2,1},Rp3 = {b1,2(ϱ+ψ),Rp4 = {b2,2(ϱ+ψ)−1},Rp5 = V
(HCN (ψ, φ, ϱ)) \ {b1,1, b2,1, b1,2(ϱ+ψ), b2,2(ϱ+ψ)−1}, to est-
ablish the suitability of a particular candidate as a partition
resolving set for the generalized hexagonal cellular network
with parametersGHCN (ψ, φ, ϱ), especially when the condi-
tion ψ < φ holds, we aim to substantiate this claim. We will
follow the guidelines set out in Definition 1 to determine
the shortest routes from every node to a group comprising
{b1,1, b2,1, b1,2(ϱ+ψ), b2,2(ϱ+ψ)−1}. These calculated paths
will then be used in the precise explanation of a location,
as described in Definition 3, which is presented in more detail
below.

The locations of the vertex subset a⋄,♦, denoted as
r(a⋄,♦|Rp), are explained as follows, where ♦ ranges from
1 to 2(ϱ + ⋄) − 1 and ⋄ ranges from 1 to ψ.

r(a⋄,♦|Rp) = (2(ψ − ⋄) + ♦ + 1, 2(ψ − ⋄) + ♦, 2(ψ + ϱ)

− ♦, 2(ϱ + ψ + 1) − ♦, z). (9)

The locations of the vertex subset r(b1,♦|Rp) where ♦ ∈

{1, 2, . . . , 2(ϱ + ψ)}, are explained as follows, under the
condition that either φ = ψ + 1 with ψ = ϱ or φ = ψ + 1
with φ = ϱ.

r(b1,♦|Rp)= (♦−1,♦, 2(ψ−ϱ)−♦, 2(ψ+ϱ+1)−♦, z).

(10)

For ♦ ∈ {1, 2, . . . , 2(ϱ+ψ − ⋄ + 3)} and ⋄ ∈ {2, 3, . . . , φ},

with restriction if φ = ψ + 1, ψ = ϱ and φ = ψ + 1,
φ = ϱ, The representation of the vertex subset b⋄,♦, denoted
as r(b⋄,♦|Rp), are explained in the following way:

r(b⋄,♦|Rp) = (♦ + 2(⋄ − 2),♦ + 2⋄ − 5, 2(ψ + ϱ)

− ♦ + 1, 1(ψ + ϱ) − 1 − ♦, z). (11)

For♦ ∈ {1, 2, . . . , 2(ϱ+ψ−⋄+1)} and ⋄ ∈ {1, 2, 3, . . . , φ},

the locations of the vertex subset b⋄,♦ with respect to Rp are
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described as follows:

r(b⋄,♦|Rp)

=



(♦ − 1,♦, 2(ψ + ϱ) − 1 − ♦, 2(ϱ + ψ + 1) − ♦, z) ,
if ⋄ = 1;

(2⋄ + ♦ − 3, 2⋄ + ♦ − 5, 2(ψ + ϱ − 1 − ♦),
2(ϱ + ψ) − ♦ − 1, z) ,
if ⋄ = 2;

(2⋄ + ♦ − 3, 2⋄ + ♦ − 5, 2(ψ + ϱ − 1 − ♦),
2(ϱ + ψ) − ♦ − 1, z) ,
if ⋄ = 3, 4, . . . , φ.

(12)

Examining the specific positions of the nodes in HCN (ψ,
φ, ϱ) as outlined in Equations 9-12, each being both unique
and separate, it follows that pd(HCN (ψ, φ, ϱ)) ≤ 5.
Next, we will verify the converse inequality, represented as

pd(HCN (ψ, φ, ϱ)) ≥ 5. When we take the negation of this
statement, it can be expressed as |pd(HCN (ψ, φ, ϱ))| < 5
or pd(HCN (ψ, φ, ϱ)) = 4. As demonstrated earlier, all
the selected samples where pd(HCN (ψ, φ, ϱ)) = 3 lead
to contradictions, thereby ruling out the possibility of
pd(HCN (ψ, φ, ϱ)) ̸= 4. This conclusion further supports
the assertion that pd(HCN (ψ, φ, ϱ)) = 5, thus finalizing the
proof. □
Theorem 11: Consider the graph denoted asHCN (ψ, φ, ϱ),

where ψ ≥ φ, representing the generalized hexagonal
cellular network. It can be stated that the partition dimension
of HCN (ψ, φ, ϱ) is five.

Proof: To confirm the theorem’s validity when equality
is considered, we will investigate both the inequalities.
To verify that pd(HCN (ψ, φ, ϱ)) ≤ 6, we consider partition
resolving set of HCN (ψ, φ, ϱ) = {Rp1 ,Rp2 ,Rp3 ,Rp4 ,Rp5}
where Rp1 = {aψ,1},Rp2 = {b1,1},Rp3 = {aψ,2(ϱ+ψ)−1},

Rp4 = {b1,2(ϱ+ψ)−1},Rp5 = V (GHCN (ψ, φ, ϱ)) \ {aψ,1,
b1,1, aψ,2(ϱ+ψ)−1,b1,2(n+m)−1}, a suitable contestant for parti-
tion resolving set in the context HCN (ψ, φ, ϱ), particularly
when ψ is greater than or equal to φ, will be identified.
To support our claim that this selected subset effectively acts
as a partition resolving set for HCN (ψ, φ, ϱ), we will adhere
to Definition 1. By doing this, we will compute the most
efficient routes from every node to a group encompassing
{aψ,1, b1,1, am,2(ϱ+ψ)−1, b1,2(ϱ+ψ)−1}. Following this, the
calculated routes will be employed in the official establish-
ment of a geographical point, as outlined in Definition 3,
which is presented subsequently.

For♦ ∈ {1, 2, . . . , 2(ϱ+⋄)−1} and ⋄ ∈ {1, 2, . . . , ψ}, the
locations of the vertex subset denoted as a⋄,♦ are explained
as follows with respect to Rp.

r(a⋄,♦|Rp)= (2(ψ−⋄)+♦−1, 2(ψ−⋄)+♦+1, 2(ψ+ϱ)

− ♦ − 1, 2(ϱ + ψ) − ♦, z). (13)

The locations of the vertex subset denoted as b1,♦ are
explained as follows for values of ♦ ∈ {1, 2, . . . , 2(ϱ + ψ)},

under the specified conditions on the parameters. These
conditions are either φ = ψ + 1 when ψ = ϱ or φ =

ψ + 1 when φ = ϱ:

r(b1,♦|Rp) = (2(ψ − ⋄ + ♦,♦ − 1, 2(ψ + ϱ) − ♦, 2(ψ

+ ϱ) − ♦ − 1, z). (14)

The locations of the vertex subset b⋄,♦ are explained as
follows for values of ♦ ∈ {1, 2, . . . , 2(ϱ+ψ − ⋄ + 3)}, with
specific conditions on the parameters: φ = ψ + 1, ψ = ϱ

and φ = ψ + 1, φ = ϱ.

r(b⋄,♦|Rp) = (♦ + 2(⋄ − 2),♦ + 2(⋄ − 2), 2(ψ + ϱ)

− ♦, 2(ψ + ϱ) − 1 − ♦, z). (15)

For♦ ∈ {1, 2, . . . , 2(ϱ+ψ−⋄+1)} and ⋄ ∈ {1, 2, 3, . . . , φ},

the locations denoted as r(b⋄,♦|Rp) for the subset of vertices
b⋄,♦ are detailed in the following way:

r(b⋄,♦|Rp) = (♦ + 2(⋄ − 3),♦ + 2(⋄ − 3), 2(ψ + ϱ)

− ♦, 2(ψ + ϱ) − 1 − ♦, z). (16)

By examining the specified positions of the nodes within
HCN (ψ, φ, ϱ) as outlined in Equations 13-16, each of which
is both unique and clearly differentiated, so

pd(HCN (ψ, φ, ϱ)) ≤ 5.

Next, we will examine the reverse inequality, namely
pd(HCN (ψ, φ, ϱ)) ≥ 5. By expressing it in negation, we can
assert that |pd(HCN (ψ, φ, ϱ))| < 5. Another possibility is
that pd(HCN (ψ, φ, ϱ)) = 4. As previously demonstrated,
all the selected samples where pd(HCN (ψ, φ, ϱ)) = 4 lead
to contradictory outcomes, establishing that pd(HCN (ψ, φ,
ϱ)) ̸= 4. This further confirms that the case where pd
(HCN (ψ, φ, ϱ)) = 5 is valid, thus concluding the proof. □

III. APPLICATION OF METRIC DIMENSION
TheNDMA in Pakistan is the government agency responsible
for disaster management and coordination of disaster-related
activities in the country. It was established in 2007 under the
national disaster management ordinance, with the primary
purpose of formulating policies, plans, and strategies for
disaster management at the national level. The NDMAworks
to mitigate the impact of disasters, respond to emergencies,
and coordinate relief and recovery efforts in the event
of natural or man-made disasters. The NDMA works in
partnership with multiple government agencies, provincial
disaster management authorities, and pertinent organizations
to facilitate a unified and efficient reaction to calamities such
as earthquakes, floods, cyclones, and other emergencies. Its
objective is to enhance disaster preparedness in Pakistan and
decrease the susceptibility of communities to diverse risks.

During the period from June to August 2022, Pakistan
experienced extensive flooding that significantly affected
various parts of the nation, including Sindh, Balochistan,
Punjab, and other regions. The provinces of Balochistan and
Sindh were hit the hardest, and the floods extended as far
north as Kashmir. The flooding resulted in a tragic loss of
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FIGURE 2. List of relief camps established by NDMA.

at least 1,500 lives and affected approximately 16 million
children. Beyond the human toll and suffering caused by these
floods, they also inflicted significant harm to agricultural
activities, especially in Sindh. It was reported that the
flood-related damage to crops in Sindh alone reached an
estimated value of around Rs297 billion. This exacerbated
the economic consequences of the floods and added to the
challenges faced by the affected communities as they tried to
rebuild their lives and livelihoods.

National Disaster Management Authority made 20 relief
camps all over Pakistan to rescue people during floods
in 2022, Karachi(KCH), Islamabad(ISD), Lahore(LHR),
Multan(MTN), Peshawar(PSW),AzadKashmir(AK), Hyder-
abad(HYD), Dera Ismaeel Khan(DIK), Quetta(QTA),
Gwader(GWD), Ziarat(ZRT), Larkana(LKA), Sukhar(SKR),
Rajanpur(RJR), Abbotabad(ABD), Mansehra(MSA), Turbat
(TBT), Khairpur(KAR), Bahawalpur(BWL) and Qasur
(QSR). In the context of network C representing multiple
relief camps in Pakistan, we have identified and designated a
select few relief centers with distinct codes based on their
proximity to the relief camps shown in Figure 2. These
unique codes have been assigned to ensure efficient access
during transportation, and the objective is to keep the number
of relief centers to a minimum, a measure referred to as
the metric dimension. These specially chosen relief centers,
forming the resolving set (denoted as R), play a crucial role in
this context. These representations (r) are codes assigned to
individual relief camps, taking into account their distances
from the elements in set R. By implementing the concept
of metric dimension, we achieve cost savings and time
efficiency, as it enables swift and unambiguous access to
the required relief camp, ultimately benefiting flood victims.

To optimize cost-effectiveness, our goal is to maintain only
two relief centers.

IV. CONCLUSION
The definition of the representation of vertex v in the context
described above can be expressed as an l-vector, denoted
as r(v|Rp) = (d(v,Rp1 ), d(v,Rp2 ), . . . , d(v,Rpl )), which
consists of the distances between v and each vertex in the
ordered l-partition Rp = {Rp1 ,Rp2 , . . . ,Rpl } of the vertices
in the graph G. This is applicable to any vertex v in G. When
every distinct vertex in G has a unique representation with
respect to the partition Rp, this division is referred to as a
resolving partition for the graph G. The partition dimension
of a graph G, denoted as pd(G), is defined as the smallest
value of l for which there exists a resolving l-partition of
the vertex set V(G). To clarify further, a minimal resolving
partition is a partition of the vertex set V(G) that both acts
as a resolving partition and has exactly pd(G) elements [48].
In this research, we have find the partition dimension of
Generalized Hexagonal Cellular Networks

pd(HCN (2, 2, 3)) = 3

pd(HCN (2, 3, 2)) = 3

pd(HCN (3, 3, 3)) = 3

pd(HCN (ψ, φ, ϱ)) ≤ 4.

In this research, we have also given the application of metric
dimension in flood relief camps by the NDMA Pakistan to
rescue humans and animals during devastating floods in 2022.
NDMA allowed unique codes to relief camps and relief
centers to save money and time.

A. FUTURE DIRECTION
There are many other resolvability parameters like edge
metric dimension, fault-tolerant version of metric and
edge metric dimension. Local metric dimension is also a
resolvability parameter. One can consider these parameters
to study this novel structure of hexagonal cellular networks.
Mixed metric dimension is also one of the recent parameters
on resolvability. One can see the article for all the proper
definitions of these parameters.

B. LIMITATION OF THE PROPOSED STUDY
Most of the theorems of this study concluded in terms of
bounds. As the partition dimension is quite a complicated
topic and to compute exact partitions is very complex. It is
proven that the partition dimension is an NP-hard problem.
So, we computed the bounds only. One can consider the exact
results of these theorems.
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