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ABSTRACT Deep Learning and computer vision have become potent agricultural technologies in recent
years. These technologies are essential for identifying hazardous plant leaf diseases, significantly impacting
crop quality and productivity. The precise distinction between healthy and damaged palm leaves is at the
core of this research. Our study marks a significant improvement in the area by introducing a novel method
for identifying palm leaf disease using a hybrid model. Our hybrid model’s central component combines
the Efficient Channel Attention Network (ECA-Net) with reliable transfer learning techniques utilizing
ResNet50 and DenseNet201. In addition to improving disease diagnosis accuracy, this fusion sets a new
performance bar compared to earlier models. Our hybrid model maintains a validation accuracy of 98.67%
while achieving an amazing 99.54% training accuracy in precisely identifying diseases. Compared to its
contemporaries, it also performs exceptionally well in F1 score values, highlighting its remarkable prowess in
agricultural technology. This research provides a breakthrough method for disease detection in palm leaves.
It will revolutionize the agriculture sector.

INDEX TERMS Palm leaf disease, deep learning, CNN, transfer learning, hybrid model, K-fold, disease
detection, automated diagnosis, agricultural sustainability.

I. INTRODUCTION

Palm leaves, or Phoenix dactylifera as it is formally named,
play a crucial role in many different cultures, economies,
and ecosystems. These robust and adaptable leaves have
been used for various tasks for ages, enhancing people’s
subsistence and way of life worldwide. The date palm
trees and their foliage are notably harmed by the “Dubas”
insect, also known as the Dubas bug (Ommatissus lybicus).
This bug is particularly significant in areas where date
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palm farming is a substantial agricultural activity. A critical
component of precision farming is the identification and
classification of plant diseases [1]. One of the difficulties
farmers face is identifying the illnesses that afflict date
palms and figuring out the extent of infestation, especially
when the symptoms are incredibly similar and picking the
right strategy and treatment is challenging and, frequently,
incorrect. Agriculture’s automated detection and diagnosis
of plant pests and diseases has undergone a revolutionary
change because of the development of machine vision and
deep learning [2]. The sap-sucking pests known as palm date
scale feed on the leaflets of palm trees and establish colonies
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FIGURE 1. Palm leaf with Dubas Bug insect.

there [3]. Palm leaf diseases seriously endanger the health and
productivity of palm trees. Different fungi, bacteria, viruses,
and pests can all cause illnesses in palm leaves, as shown in
Figure 1.

Dubas Bug (Obmatissus lybicus), shown in 1, often known
as the Dubas insect, is a severe pest of palm trees, especially
the date palm. By puncturing palm fronds and sucking out
sap, these tiny sap-eating insects can seriously harm plants by
drying out and deforming leaves. They can affect the overall
health of the palm tree and decrease fruit yield in cases of
severe infestation. In areas where Dubas bugs are common,
effective pest management and routine monitoring are crucial
for maintaining the health of date palm orchards.

There are several ways to control palm leaf diseases.
These include:

« Cultural controls: These policies cover things like good

hygiene, crop rotation, and resistant cultivars.

o Chemical remedies: Fungicides, bactericides, and insec-
ticides can be used to combat illnesses that affect palm
leaves.

« Biological controls: Pest insects that attack palm leaves
can be managed biologically with the help of parasites
and insect predators.

Palm trees’ unique fronds and critical ecological functions
make them stand out in various environments and landscapes.
These trees provide vital resources for food, shelter, and
economic value for many areas of the world. However,
several illnesses that can seriously restrict palm tree growth,
reduce agricultural yields, and even cause tree mortality
continually threaten their health and productivity [4]. Prompt
and precise detection of these diseases is essential for efficient
disease control and maintenance of palm tree populations.
Agronomists or plant pathologists with experience visually
evaluate palm trees as part of traditional disease diagnosis and
assessment methods. This strategy has drawbacks, including
the possibility of human error, inconsistent results, and the
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need for specialized knowledge, even though it has some
potential for success. Additionally, the spread of palm trees
across the globe has increased the demand for automated
and scalable solutions to quickly and reliably diagnose and
categorize palm leaf diseases [5]. Recent developments in
machine learning and intense learning have demonstrated
fantastic ability in several areas, including computer vision
and medical diagnosis. It has been shown that these methods
offer a great deal of potential for automating the identification
and classification of plant diseases, especially those that
impact palm palms.

For the prediction of palm plant diseases, there are
various benefits to combining an Efficient Channel Attention
(ECA-Net) with a hybrid model like DenseNet201 and
ResNet50. Convolutional neural networks (CNNs) are a
powerful tool for computer vision and deep learning, quickly
evolving fields. Researchers and practitioners are constantly
looking for new approaches to improve the performance of
CNNs [6]. The creation of hybrid models, which combine
the advantages of many architectural components to produce
superior outcomes, has been one of the most significant
movements in recent years. In this research [7], the Efficient
Channel Attention Network (ECA-Net), ResNet50, and
DenseNet201 are three well-known architectures that are
combined in a novel hybrid model is presented. This fusion
seeks to achieve unseen levels of efficacy and accuracy
in image recognition tasks by utilizing the complementing
qualities of two architectures. Using DenseNet201 and
ResNet50 with an ECA-Net attention mechanism to predict
palm plant diseases is successful because it takes advantage
of each architecture’s advantages. It is crucial to remember
that the success of any model depends on several different
things, including the data’s quality, how it was processed,
how its hyperparameters were tuned, and the methods used
to evaluate the model. The main contributions of our study
are as follows:

o Develop a significant contribution to the palm leaf
disease classification field by leveraging state-of-the-art
deep learning architecture.

o This study’s methodological approach is methodically
constructed around a hybrid model that employs
ResNet50, DenseNet201, and ECA-Net architectures,
those deliberately harnessed for their distinct and
specialized goals.

« Modifications in image pixel, pooling layers, and
optimizer choices significantly boost our approach,
enhancing efficiency and reducing time complexity,
aligning well with the discussed hardware and software
specifications in the results section.

o Through meticulous experimentation and data augmen-
tation techniques, we achieve the highest accuracy
and demonstrate the effectiveness of combining our
proposed models to address the complex challenge of
palm leaf disease classification.

The remainder of this paper is organized as follows:

section II outlines related work in automated plant disease
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detection. Section III methodology details the dataset and
pre-processing steps used for the experiments. It describes the
methodology, including the architecture of the hybrid model
and the transfer learning technique. Section IV presents the
experimental results and their analysis. Section V discusses
this research’s implications and future directions. Finally,
section VI conclusions and future work of the paper.

Il. RELATED WORKS

Over recent years, the agricultural industry has faced ongoing
challenges in identifying and assessing the severity of
diseases affecting date palm leaves. One prominent approach
in disease classification and plant leaf categorization was
introduced by Aakanksha Rastogi et al. utilizing an Artificial
Neural Network (ANN) for training [8]. This method,
involving rigorous testing and training steps, aimed to
reduce mean square error and enhance accuracy. Challenges,
however, arose due to the resource-intensive nature of ANN
training, demanding high-quality input images [9]. The
thesis had a fundamental level. To begin with, A novel
technique proposed by KYAMELIA ROY et al. integrated
Principal Component Analysis (PCA) DeepNet with Gen-
erative Adversarial Networks (GANs) and a customized
Deep Neural Network (DNN) [10]. Employing the Faster
Region-Based Convolutional Neural Network (F-RCNN) for
disease classification, this approach exhibited exceptional
outcomes [11]. To identify and classify indications of
illnesses affecting palm oil leaves, Masazhar and Kamal [12]
devised an automated method using digital image processing
and the extreme learning machine (ELM). This method
successfully identified two palm oil diseases using k-means
clustering and a multiclass Support Vector Machine (SVM)
classifier based on leaf symptoms. Thirteen distinct features
extracted through k-means clustering aided in disease catego-
rization. The proposed method by Belal A. M. Ashqar et al.
developed a Convolutional Neural Network (CNN) model for
image-based tomato leaf disease identification, demonstrat-
ing improved performance for full-color images compared
to grayscale ones [13]. Additionally, Mrs. Shruthi U et al.
highlighted the potential of Convolutional Neural Networks
in identifying various crop diseases through machine learning
algorithms [14]. A hybrid learning model In 2021, Anindita
Septiarini et al. proposed a technique focusing on diagnosing
diseases in oil palm leaves, utilizing pixel quantification and
color attribute extraction [15]. This method involved Otsu
thresholding in the Lab color space for Region of Interest
(ROI) detection, followed by preprocessing and classification
using k-nearest neighbors (KNN) [15]. A comprehensive
method for identifying leaf diseases in tomato plants was
implemented by Sunil S. Harakannanavar et al. [16]. This
method integrated several techniques, including Support
Vector Machine (SVM), K-Nearest Neighbors (KNN),
Convolutional Neural Network (CNN), Discrete Wavelet
Transform (DWT), Principal Component Analysis (PCA),
and Gray Level Co-occurrence Matrix (GLCM). Their
preprocessing workflow included K-means clustering and
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texture-based feature extraction using GLCM, providing
feature vectors for SVM, KNN, and CNN classifiers.
Deep learning made significant strides in image recog-
nition systems in 2022 [17]. Using pre-trained models
like DenseNet-121, ResNet-50, VGG-16, and Inception V4,
researchers effectively identified plant diseases, evaluated
through classification accuracy, sensitivity, specificity, and
F1 score [18]. Additionally, Al-Mahmood et al. introduced
a dataset employing image processing for feature extraction
and classification, enabling efficient identification of Palm
leaf diseases through Convolutional Neural Network (CNN)
utilization [19]. Despite recent technological advances, little
research has been conducted on the early identification and
classification of date palm disease. Al-Mahmood provided
an image dataset that used image processing for feature
extraction and classification [19]. The dataset offers valuable
data for calculating the number of insects present in a
particular region and assessing the severity and scope of
the infestation. In our model, we have developed a machine
learning system that leverages a new dataset and maintains
high standards for image quality. This approach efficiently
identifies Palm leaf diseases using a Convolutional Neural
Network (CNN). Notably, our model exhibits superior
accuracy to other models in this context. Our system employs
a hybrid model that seamlessly integrates profound learning
principles. We experimented with several models during the
training and validation phases, including VGG16, VGG19,
ResNet50, ResNet101, DenseNet121, DenseNetl69, and
DenseNet201. Among these models, the Hybrid model is
exceptional, boasting an astonishingly high accuracy rate in
precise leaf disease identification. This result underscores our
approach’s unique capabilities and effectiveness in tackling
this critical agricultural challenge.

lll. METHODOLOGY

The methodology section of a palm leaf disease study is an
integral part of the research process. It describes the method
and strategies used for data collection, data preprocessing,
data augmentation, the proposed model, and their architecture
study. This section serves as a comprehensive guide for
researchers, scientists, and practitioners seeking to advance
our knowledge of palm leaf diseases and develop effective
strategies for their control.

A. DATA COLLECTION

The image dataset [19] used in this study was meticulously
curated to represent the diverse flora found in various
regions within the Aoun district, located in the Karbala
Governorate of Iraq. The dataset exclusively focuses on date
palm leaves infected with various conditions, categorized into
four distinct classes. These categories are based on the health
status of the palm leaves and the observed insect growth stage.
The classifications are as follows: ‘“‘healthy,” “infected with
insects only,” “infected with honeydew only,” and “‘infected
by a combination of insects and honeydew.” It is worth noting
that the images of insect-infested leaves encompass a wide
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range of life cycle stages, from the third generation of nymphs
to fully formed adult insects, including those in the fifth
nymphal stage. The dataset was gathered using two different
types of drone cameras, showcasing the depth and diversity
of the image collection process. The acquired dataset consists
of around 3,000 images belonging to 4 different classes. The
dataset includes images of palm leaf diseases that can be
caused by the Dubas bug (Ommatissus lybicus).

B. DATA SET PREPROCESSING

The actual data collection was precisely scheduled to
correspond with the spring and autumn seasons, aligning
with the varying life cycles of the problematic insects [19].
Our primary goal was to identify diseased palm speci-
mens accurately using a sophisticated methodology. During
the time-consuming image processing, precision cropping
painstakingly delineated the virus-infected areas. This labo-
rious post-processing work resulted in the generation of the
final dataset images, which all have a pixel resolution of
896 by 896 and are organized in a 3-channel layout.

The stratification of the dataset was deliberately intended
to match the seasonal growth dynamics of the insects. This
separation produced four different groupings, each of which
was meticulously organized into its own designated folder.
In autumn, small insects and their eggs embellished the
damaged leaves in these photographs. As spring progresses
until early summer, the production of honeydew on the leaves
becomes more noticeable.

The meticulous curation of the dataset deserves special
mention. Images affected by noise, shadows, or dust were
rigorously eliminated, ensuring the repository met the
highest quality and relevancy criteria. This rigorous curation
approach ensured that the dataset is a valuable and reliable
resource for future palm leaf disease research and analysis.

C. DATA AUGMENTATION

A dataset must be enhanced before it can be used for
deep learning and machine learning applications. It entails
transforming the current data in various ways to produce new
training instances. By boosting the diversity and quantity of
the training sample, the model becomes more robust and is
better equipped to generalize to fresh, unexplored data. Here
are some data augmentation techniques with the dataset [19],
which contains images of both healthy and afflicted date palm
leaves in Table 1 impacted by the Dubas pest:

« Rotation: Rotate the images by angles (such as 90,
180, or 270 degrees) to represent various palm leaf
orientations. This can assist the model in learning to
identify Dubas pest damage from different perspectives.

« Flip: Flip the images horizontally. Regardless of whether
they emerge on the left or right side of the leaf, this can
help the model learn to recognize pests and illnesses.

e Zoom: Zoom in and out on the images at random. This
can replicate different vantage points from whence the
images were taken, such as up close and far away.
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TABLE 1. A comprehensive analysis of original data collection and
augmentation data.

Class Original data  Augmented data Total data

Bug 600 3900 4500
Dubas 800 3700 4500
Health 800 3700 4500
Honey 800 3700 4500

« Brightness and Contrast Adjustments: Randomly zoom
in and out on the images. This can replicate different
vantage points from whence the images were taken, such
as up close and far away. Change the images’ brightness
and contrast levels. This can aid the model’s ability to
adjust to various illumination situations in the field.

« Noise Injection: Add random noise to the images to
increase their resistance to noisy environments found in
real-world scenarios.

o Color Manipulation: Adjust the images’ hue, saturation,
and color balance with color manipulation software.
This can aid the model’s ability to generalize to
differences in leaf color more accurately.

« Crop and Resize: Resize and crop the images to create
the appearance of various framings and resolutions.
This can facilitate the model’s handling of images with
various degrees of detail.

o Data balancing: Data augmentation can be applied
selectively to the “Dubas bug” class in cases with fewer
samples than other classes to achieve dataset balance.
The overall dataset size expanded to 18,000 images
from the original 3,000 images following augmentation
with methods including rotation, flipping, zooming,
etc., shown in Table 1. Out of 18000 images, data
from 80% are used for training, and 20% are used for
validation during data preprocessing. Figure 2 enhances
and displays some images.

D. PROPOSED MODEL

A specific model has been painstakingly created in response
to the rising demand for effective and automated palm
leaf disease detection systems. Locating and detecting palm
leaf diseases is specifically suited for this approach. The
creation of the model marks a crucial turning point in
efforts to use cutting-edge technology to solve the urgent
need for more precise, efficient, and scalable plant disease
detection and management tactics. Figure 3 shows a graphic
representation that captures the substance and importance of
this ground-breaking development.

The given neural network architecture is designed for
image processing tasks using 224 x 224 pixel input images.
Efficient Channel Attention Network (ECA-Net) and two
transfer learning models, ResNet50 and DenseNet-201,
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FIGURE 2. Augmented visuals of this image were created using various data augmentation techniques.

handle feature extraction and hierarchical representation
learning before splitting into two parallel branches. ResNet50
can be modeled as the following function:

HResnerso(x) = F(x) + Xinput ()

Here in equation 1 X, is the input image and F(x)
represents the residual information computed by ResNet50.
DenseNet-201 is illustrative of:

XDenseNer201 (1) = H; )

Here, equation 2 H; encapsulates the features extracted
by DenseNet-201. After that, an ECA-Net module further
improves the features from ResNet50 by likely using
channel-wise attention techniques to boost pertinent infor-
mation. In the ECA-Net module, channel-wise attention
techniques are introduced.

FEca—Ner(x) = A(x) 3

Here, equation 3 represents the attention-augmented features.
Now ECA-Net module came from ResNet50. So the result
will be,

Ex =[F(x), H()] “

The results from DenseNet 201 and ECA-Net are then
combined by concatenating these enhanced features.

Xconcate = [E(x), A(x)] ©)

The spatial dimensions are then reduced via global average
pooling to produce a condensed representation of the
combined features.

Xpool = GlobalAvgPool(Xpoo1) (6)
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The neural network ends with an output layer designed for a
particular purpose, such as image classification, and uses the
features processed to generate the outcome. By combining
attention processes with the benefits of ResNet-50 and
DenseNet-201, this architecture may improve performance
on challenging visual recognition tasks.

Xoutput =Co nV(Xpoal ) @)

The neural network architecture is illustrated by this
equation-based representation, which effectively combines
the advantages of DenseNet-201 and ECA Net to produce the
final haze-free images.

E. RESNET50

Deep convolutional networks known as residual networks
(ResNets) are designed to primarily utilize shortcut con-
nections to skip entire blocks of convolutional layers [20].
It shines the brightest when traditional deep networks face
the enormous obstacle of training complexity. ResNet is a
robust solution in these situations, improving classification
accuracy and achieving parameter efficiency. We wisely used
ResNet50 as a critical part of our research, utilizing it as a
potent deep convolutional feature extractor as a testament to
its strengths.

Our methodology significantly uses the deployment of
ResNet50 for feature extraction, as illustrated in Figure 4. It is
important to note that we train the network’s initial weights on
the Image dataset in recognition that the information acquired
in later layers tends to be more specialized and catered
to particular classes, as demonstrated by ResNet50’s fully
connected layer. We investigated the discriminative potential
of output vectors from earlier convolutional layers due to
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FIGURE 3. Within the bounds of this scholarly exposition, the layers of research methodology are unveiled, meticulously
elucidating its fundamental principles and intricately interwoven procedures.

our curiosity. Our attention was particularly drawn to the
results from the final residual units in convolutional layers 3,
4, and 5. The feature dimensions of these layers vary, with
the third layer’s features having a more compact dimension
than those in the fifth layer. This reinforces the strategic
decision we made to use ResNet50 in the context of our
investigation. Assuming that the network input is x and the
expected mapping is H(x),

Fx)=H(x) —x 8)

where x represents the higher layer network’s characteristic
mapping. The observation value of this layer network is H(x),
and the residual of this layer network is F(x). The three have
a relationship that is

Hx)=F(x)+x 9

Although the effects of H(x) and F(x) 4+ x are identical,
F(x) is significantly easier to optimize than H(x). Considering
that layer L is where the relationships between layers can be
represented,

Xp+1 =xp + F(xr) (10)
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L1
X =x 4 D FX) (1
i=1
The network model has improved, and the network loss error
has decreased, assuming that the network reaches a particular
depth. Network degradation could result from an increase in
network depth. We can use the residual network to put the
network in the ideal condition, whereby the residual F(x)
value is 0.
The gradient of the loss function loss concerning x; in the
k-layer network can be represented as

dloss  dloss n dloss . 0 EF( ) (12)
g —_— X;
oXxy, axg, oxy,  Oxy P '

From equation 12, it is clear that it cannot remain constant
at -1 throughout the training process and that the network is
unaffected by the gradient disappearance issue. The residual
module can significantly reduce the network’s weight, and the
backpropagation is quicker and more versatile.

F. DENSENET201

A fascinating idea of direct connections between layers
is introduced by DenseNet, a cutting-edge neural network
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FIGURE 4. The ResNet50 architecture is shown in this figure, a deep learning model renowned for its deep residual blocks.

design, creating thorough connectivity where each layer
receives feature maps from all preceding layers up to the
current depth level. The network’s information flow is
considerably improved by this interconnectivity. However,
allowing this seamless connectedness becomes difficult when
the dimensions of feature maps are altered. The architecture
includes downsampling techniques targeted at downsizing
feature maps to get around this. The network architecture
incorporates an intentional design decision to handle the
high number of input channels. In particular, the “‘bottleneck
layer”a 1 x 1 convolutional layeris deftly introduced before
the next 3 x 3 convolutional layer. One of the most
important functions of this intermediate bottleneck layer is
to efficiently reduce the dimensionality of the feature maps
while simultaneously increasing computational effectiveness.
Here let,

o x0: Single image

o L: Number of layers

« HI: Non-linear transformation

1 =1,....,L which stands for the layer index

Now,
x; = Hj(x—1) (13)
x = Hi(x—1) +x1-1 (14)
x = Hi([xo, x1, ..., x1—1]) (15)

Here, 1 stands for the layer index and H means the non-linear
operator, and x; represents the features from the 1 layer.

A sophisticated engineering approach has been developed
in the field of neural network design, specifically within the
framework of DenseNet (Densely Connected Convolutional
Networks), to solve the difficult challenge of effectively
managing a profusion of input channels. This clever method
introduces a ‘“‘bottleneck layer,” which takes the form of a
1 x 1 convolutional layer placed before the 3 x 3 convolutional
layer within the network. This bottleneck layer’s clever
design is based on its ability to drastically reduce the number
of feature maps or channels, effectively saving computational
resources while maintaining vital information flow.

Furthermore, to augment the overall compactness of the
model, a concept known as a “transition layer” is ingeniously
incorporated. This transition layer reduces the number of
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feature maps produced within a certain DenseBlock. By using
the compression factor fe (0,1], it achieves this. If this
factor is set to 1, an equivalent situation emerges, keeping
the number of feature maps constant. However, a careful
reduction occurs when is smaller than 1, in which the
feature maps are reduced to twice their initial count. As a
result of these careful architectural decisions, DenseNet’s
convolutional neural network design is more simplified yet
incredibly powerful.

G. ECA-NET

To overcome this difficulty, a crucial element known as the
ECA-Net, which takes inspiration from the pyramid pooling
block, is implemented. The main goal of the ECA-Net is
to make sure that the final, haze-free images harmoniously
incorporate the decoded features derived from various scales.
To improve feature alignment after the decoding process in
picture restoration activities, details across various scales
must be recovered. As a result, the EB is carefully created
using the receptive field paradigm and is skilled in extracting
information at various scales. Figure 6 shows how the
decoded feature maps go downscaling using global average
pooling and scaling factors of 4x, 8x, 16x, and 32x to
create a flexible four-scale pyramid. The network may
reconstruct an image at different scales thanks to this
pyramidal structure’s range of varied receptive fields. Then,
using 1 x 1 convolutions, a dimension-reduction step is
carried out on each scale. Implementing a 3 x 3 convolutional
procedure, acting as the final transformation step, completes
this complex process and produces the long-desired haze-free
images.

H W
V= Zavg — pool(F.) = Z ﬁ Z sz(iaj)
z i—0 i=1 i=1
i i i 6)

In equation 16, avg_pool() stands for the global average
pooling. The value of the z-th channel at position (i, j) is
denoted by the symbol Xz(i, j). Each feature map’s length
and width are denoted by H and W, respectively, and the
compressed channel-wise vector is denoted by V.
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FIGURE 5. DenseNet-201 architecture, a powerful deep learning model recognized for its dense connection patterns that enable feature reuse and

efficient training.

H. TRANSFER LEARNING

In machine and deep learning, transfer learning is an effective
method that can drastically shorten training periods and boost
model performance in various applications. For the classi-
fication, we applied the idea of transfer learning. Transfer
learning [21] has succeeded with various visual identification
tasks, such as detection and image classification.

We experimented with a variety of transfer learning
techniques in the ECA-Net design, drawing inspiration
from transfer learning methodologies, including VGG16,
VGG19, ResNet50, ResNet101, DenseNet121, DenseNet169
and DenseNet201. Through these studies, we discovered
that using transfer learning with ResNet-50 and Desnet201
produced positive results. We greatly improved efficiency
and segmentation performance by including ECA-Net in our
architecture. As a result, we developed a completely new
architecture known as ECA-net.

IV. EXPERIMENT AND RESULT ANALYSIS
A thorough study was conducted to validate the Transfer
Learning DeepNet classifier model. The entire training pro-
cess was executed on a Windows 10 computing environment
with an Intel(R) Core(TM) i5CPU, 20GB RAM, and 16GB
GPU. Python 3.6.9 version with TensorFlow 2.2.1 was
used to implement all offensive image classification models.
Anaconda software provides a streamlined environment for
managing Python libraries such as TensorFlow, which are
commonly used for building image classification models.
This study used pre-processed augmented data containing
four distinct classes as the input dataset. During the
training phase, various model configurations were iteratively
generated to develop an effective classifier model using
transfer learning principles. The objective was to leverage
pre-existing knowledge and patterns learned from a different
domain or task to enhance the model’s ability to classify
data within the specific target domain, in this case, the four
predefined classes.

A. EXPERIMENT IMAGE PIXEL

These Tables 2, 3, 4 and 5 compare how well a hybrid
model performs when using different optimizers (Nadam,
RMSprop, SGD, Adamax, and Adam) on various image sizes
(128 x 128, 224 x 224, 256 x 256, and 512 x 512). Both
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training accuracy and validation accuracy are used to measure
performance.

In the context of a hybrid image classification model
with a fixed image size of 128 x 128 pixels Table 2,
various optimization algorithms were evaluated based on
their performance metrics. With the highest validation
accuracy of 85.67% among these optimizers, Adamax stood
out and showed its potency in generalizing well to new
data. Nadam achieved training accuracy scores of 98.54%,
however, Nadam’s validation accuracy score was just slightly
lower at 84.00%.

When analysis these results, it becomes evident that
the Adam optimizer consistently outperforms the other
optimizers across all image sizes, yielding the highest
validation accuracies (91.02% for 224 x 224) Table 3,
it is clear from the analysis of these findings. It routinely
delivers greater generalization and accuracy performance,
making it the best performer among optimizers. Nadam also
performs admirably, seconding Adam regarding validation
accuracy (87.00%). As picture size increases, RMSProp
shows a propensity to overfit, which lowers validation
accuracy (82.17%). SGD has the lowest validation accu-
racy performance (83.83%), which suggests poor learning.
Although Adamax operates admirably, its accuracy results
fall short of Adam’s. These accuracy-based results emphasize
the significance of optimizer selection in getting the optimal
model performance, with Adam demonstrating to be the most
trustworthy option in this situation, independent of image
size.

In 256 x 256 pixels, Table 4 is based on their training and
validation accuracy. The Nadam optimizer demonstrated a
very low validation accuracy of 85.50% despite achieving a
high training accuracy of 99.33%.

The accuracy of different optimization techniques during
training and validation was evaluated in 512 x 512 pixels
Table 5. Nadam attained a validation accuracy of 86.50%
while demonstrating a robust training accuracy of 99.56%.

The 224 x 224 image size strikes a good mix between
giving the model just enough image detail to pick up
useful features and patterns while not overburdening it with
computation, as is the case with bigger image sizes. This
image size is the best option among the tested image sizes
since it enables the model to generalize successfully and
attain the maximum validation accuracy.
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FIGURE 6. This figure presents ECA-Net, a leading-edge deep learning framework for advanced computer vision feature learning.

B. PERFORMANCE ANALYSIS PARAMETERS

We evaluated the effectiveness of our system using four
essential metrics: recall, which indicates the capacity to
recognize actual positives; accuracy, which counts overall
correctness; precision, which quantifies true positives among
positive predictions; and the Fl-score, which provides a
balanced assessment of precision and recall. This thorough
assessment offers a complete picture of our system’s
capabilities and guarantees that it is appropriate for use in
practical applications.

1) ACCURACY

This numerical measurement, which indicates precision,
ensures that our categorizations were correct and precisely
measured. It indicates the consistency of our system’s
actual outcomes across many samples. Precision encapsulates
our system’s capacity to produce exact and consistent
classifications, emphasizing its ability to reliably identify real
positive cases with a low percentage of false positives. This
measurement dependability is critical when data accuracy and
integrity are critical, such as medical diagnosis or quality
control in industrial processes.

TP + TN
TP+ TN + FP + FN

Accuracy = (17
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TABLE 2. When image size (128 x 128), comparison results of our hybrid
model with different optimizer based on Tran accuracy and valid accuracy.

Optimizer  Train_accuracy Valid_ accuracy
Nadam 98.54% 84.00%
RMSProp 97.93% 82.47%
SGD 81.92% 80.25%
Adamax 98.16% 85.67%
Adam 98.46% 82.17%

where, TP= Ture Positive; FFP= False Positive; TN = True
Negative; FFN = False Negative.

2) PRECISION

A precision measure quantifies the system’s capacity to pro-
duce accurate optimistic predictions concerning the complete
set of expected positive observations. It provides valuable
insights into the system’s effectiveness by calculating the
percentage of actual positive instances successfully detected
out of all expected positive instances. Practically speaking,
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TABLE 3. When image size (224 x 224), comparison results of our hybrid
model with different optimizer based on Tran accuracy and valid accuracy.

Optimizer  Train_aaccuracy Valid_ accuracy
Nadam 98.08% 87.00%
RMSProp 99.12% 82.17%
SGD 83.13% 83.83%
Adamax 99.29% 86.00%
Adam 99.54% 91.02%

TABLE 4. When image size (256 x 256), comparison results of our hybrid
model with different optimizer based on Tran accuracy and valid accuracy.

Optimizer  Train_accuracy Valid_aaccuracy
Nadam 99.33% 85.50%
RMSProp 98.37% 86.17%
SGD 87.71% 84.03%
Adamax 97.79% 84.83%
Adam 99.21% 85.17%

this statistic represents the system’s ability to avoid producing
false optimistic predictions, highlighting its accuracy in
providing findings that can be trusted. High precision is
essential in applications where the consequences of false
positives can be costly or where maintaining the integrity
of optimistic predictions is critical, such as in healthcare
diagnostics, fraud detection, or any other field where
accuracy and reliability are essential.

TP
Precision = —— (18)
TP + FP

3) RECALL
Recall, also known as ‘“‘sensitivity” or ‘“‘true positive rate,”
measures a system’s ability to properly detect positive
observations inside a class. It is all about minimizing missed
positive instances, which is critical in applications where
missing such instances might have major effects, such as
medical diagnosis or quality control.

TP TP
Recall = —— = — (19)

TP + FN P

4) F1-SCORE

The F1-score represents the weighted average of recall and
accuracy. So, both false positives and negatives are consid-
ered while calculating this score. Although accuracy may
not be as intuitively clear, Fl-score typically outperforms
accuracy, especially if the distribution of students in the class
is uneven. The cost of false positives and false negatives
should be equal for accuracy to perform optimally. It is
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TABLE 5. When image size (512 x 512), comparison results of our hybrid
model with different optimizer based on Tran accuracy and valid accuracy.

Optimizer  Train_accuracy Valid_ accuracy
Nadam 99.56% 86.50%
RMSProp 97.33% 88.17%
SGD 85.89% 84.43%
Adamax 98.75% 85.35%
Adam 98.78% 89.85%

desirable to pay attention to both accuracy and recall if the
costs of false negatives and false positives are significantly
different.

Precision x Recall

Fl — Score =2 x — (20)
Precision + Recall

C. BASELINE EVALUATION

Using the Python machine learning package, a baseline test
was conducted. Several well-known deep learning archi-
tectures, such as VGG16, VGG19, ResNet50, ResNetl101,
DenseNet121, DenseNet169, and DenseNet201, are eval-
uated in the first step. Despite having somewhat simpler
structures than the other designs, VGG16 and VGG19
showed lower training and validation accuracies shown in
Table 6, with VGG19 showing a modest improvement over
VGGI16. This implies that these models may have trouble
capturing the complexity of the underlying data or that they
may be prone to overfitting.

The ResNet50 architecture, on the other hand, showed a
notable improvement in training accuracy, scoring 95.33%,
demonstrating its competence in fitting the training data. The
fact that there was still a glaring discrepancy between training
and validation accuracy suggests possible overfitting.

Regarding training and validation accuracy, the ResNet101
and DenseNet121 architectures fared well, with ResNet101
above the 90% in both measures in Table 6 threshold. These
models appear to have achieved a better equilibrium between
training data fitting and generalization to validation data.

The usefulness of DenseNetl69 and DenseNet201 in
identifying intricate patterns in the data was shown by their
strong validation accuracies, which exceeded 83%, and good
training accuracies.

High training and validation accuracy was demonstrated
by the ensemble model, ResNet50+DenseNet201, demon-
strating that mixing different architectures can enhance model
performance.

However, the suggested hybrid model stood out in this
baseline examination, earning a fantastic 91.02% validation
accuracy and an excellent 99.54% training accuracy. This
shows that not only was the hybrid model able to fit the
training data incredibly well, but it could also generalize well
to fresh, untried data.
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TABLE 6. Comparison results of models with different architectures
based on Tran accuracy and valid accuracy.

Model Train_ accuracy  Valid_ accuracy
VGG16 72.73% 65.69%
VGG19 77.27% 68.25%
ResNet50 95.33% 75.67%
ResNet101 92.25% 79.50%
DenseNet121 92.87% 76.12%
DenseNet169 94.13% 76.00%
DenseNet201 92.67% 83.83%
ResNet50+DenseNet201 97.70% 86.83%
Proposed hybrid model 99.54% 91.02%

D. MODEL PERFORMANCE ANALYSIS

In Table 7, a model’s precision, recall, and F1 score for
several classes are displayed. The model’s accuracy is at its
maximum (99%) for the healthy class. This demonstrates how
adept the model is at spotting instances of healthy honey.

Additionally, the model has the greatest bug class recall
(96%). This demonstrates how adept the model is at
spotting cases of bug honey. The average accuracy, recall,
and F1 score may be used to assess the model’s overall
performance. The average accuracy, recall, and F1-score are
all 0.88 in this illustration. This indicates that the model is
operating effectively as a whole. To assess the efficiency and
dependability of a hybrid diagnosis system, it is critical to
look at the performance metrics for the classification of palm
leaves according to Dabus bug infestations. Such a method is
probably intended to automatically identify and classify palm
leaves according to whether or not they contain Dabus insects.

In Table 8 Among all K-folds, Fold-9 has the highest Tran
accuracy (99.48%) and valid accuracy (98.67%), as seen by
the image you gave. In other words, the model trained on data
from all folds except for Fold-9 performed the best on the data
from Fold-9. Hybrid models were manually used, but K-Fold
cross-validation improved accuracy, reducing overfitting.
Overfitting occurs when a model learns the training data too
well and cannot generalize to new data. By training the model
on numerous alternative data splits, K-Fold cross-validation
aids in mitigating this.

The red and blue lines in Figure 7 show training
and validation accuracy, respectively. Validation accuracy
assesses how well the model performed using validation data,
whereas training accuracy analyzes its performance using the
training dataset.

Indicating the model’s early lack of accuracy, the red line
begins at a low value, about 0.75. The red line increases
consistently throughout the epochs, showing how the model’s
accuracy increases as it gains knowledge from the training
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TABLE 7. The performance parameters for the hybrid model, including
precision, recall, and F1 score, are shown in the table below.

Class Precision Recall Fl-score

Bug 0.88 0.96 0.91
Dubas 0.83 0.80 0.81
Healthy 0.99 0.99 0.99
Honey 0.85 0.82 0.83

TABLE 8. Our model is based on Tran accuracy and valid accuracy
performance using K-Fold cross-validation.

Fold Train_ accuracy Valid__accuracy
Fold 1 98.92% 89.66%
Fold 2 99.29% 94.66%
Fold 3 99.44% 95.67%
Fold 4 99.29% 97.33%
Fold 5 99.40% 98.33%
Fold 6 97.59% 94.99%
Fold 7 99.14% 98.66%
Fold 8 98.62% 98.66%
Fold 9 99.48% 98.67%
Fold 10 98.89% 98.33%

set. The red line’s peak at epoch 20 suggests that this is
the ideal position at which the model isn’t overfitting the
training set at that time, which is about 0.95. However, the
red line’s fall after epoch 20 indicates overfitting. In the exact
Figure, the blue line shows the validation loss, and the red
line shows the training loss. The red line starts at a high
value of about 1.0, illustrating the model’s poor accuracy.
The red line, however, continuously drops as the number
of epochs rises, suggesting increased accuracy as the model
gains knowledge from the training set. The red line’s lowest
point, at around epoch 20, indicates the ideal number of
epochs for the model to achieve decent generalization without
overfitting. The red line begins to increase after epoch 20,
indicating the commencement of overfitting as the model
gets too closely matched to the training data. Following
a similar pattern, the blue line maintains a slightly higher
position than the red line, primarily due to disparities between
the validation and training data. Unseen by the model,
validation data are used to assess how well generalizable the
model is. The apparent space between these lines indicates
overfitting when the model overly latches onto patterns in
training data, hurting its capacity to generalize. Reducing the
number of training epochs or using regularization techniques
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FIGURE 7. To evaluate and optimize the performance of hybrid models, plots show how the model’s accuracy and loss changes due to

training, dataset variation, or other factors.

TABLE 9. Comparison results of models with different architectures.

Ref. Dataset Model Accuracy
(3] Date Palm White Scale Disease SVM, KNN, RF and Light GBM 98.29%
[22] Plant Disease Symptom AlexNet-based DCNN 80%

[23] nutrient disease of oil palm leaves SVM 95%

[24] Date Palm White Scale Disease K-Nearest Neighbors classifier 96.90%
[25] Palm Disease Image Datase AlexNet CNN and AlexNet-SVM  96%

[26] Palm Ganoderma Disease KNN, NaiveBayes 97%

[27] palm leaf image machine learning 87.75%
[28] Date Palm Leaves CNN,GoogleNet, and AlexNet 98%
Proposed model Infected date palm leaves by dubas insects  Proposed hybrid model 99.54%

to prevent overfitting during training are two tactics that
promote enhanced generalization.

In Figure 8, the image’s confusion matrix is a table used
to assess how well a classification model is performing.
Although the actual class differed, the matrix’s cell values
show how many occurrences were given a certain classifi-
cation. The confusion matrix used in this illustration is for
a model that divides insects into groups of bugs and dubas.
The actual classes are in the left column, while the anticipated
classes are in the top row. The matrix’s cell values correspond
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to the number of instances in each actual and anticipated
classes, respectively.

E. COMPARATIVE ANALYSIS

The Table 9 we provided shows the different models for
detecting infected date palm leaves by dubas insects. Our
suggested hybrid model gets a score of 99.54%, much higher
than the competing models. The advantages of our hybrid
model are numerous. We use a brand-new data collection
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FIGURE 8. Confusion matrix showing the effectiveness of the hybrid
model.

titled “Infected date palm leaves by dubas insects.” This
one is more focused than the previous data sets used to
identify different kinds of plant illnesses. This indicates that
the hybrid model is more adept at identifying the distinctive
traits of diseased date palm leaves. The hybrid model uses
the advantages of two machine learning techniques: CNN
and SVM. SVMs are superior at classification tasks, whereas
CNNs are better in feature extraction from pictures [29].
The hybrid model outperforms the separate applications of
these methods by combining them. The model also underwent
training via transfer learning, using prior information from
a similar activity [30]. In this case, the hybrid model was
trained on a dataset including images of healthy and sick
date palm leaves, giving it a strong comprehension of visual
attributes and improving its precision in identifying infected
leaves [31]. Consequently, the model developed to identify
sick date palm leaves is more precise and effective. Therefore,
our model is superior to previous models.

V. DISCUSSION

Detecting insect infestation on palm leaves is a significant
concern that requires a detailed framework for accurate
diagnosis at all stages of palm growth. This study established
a reliable process for early detection of parasitic infestations,
often resulting from bug, dubas, healthy, and honey palm
leaves, which can cause extensive damage to palm leaves and
other plant parts.

Our methodology collects high-resolution images of
bug, dubas, healthy, and honey palm leaves, annotated
and divided into training and validation sets. To ensure
consistent data, we use augmentation techniques to correct
data imbalances and implement preprocessing procedures
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to improve data quality and model practices, such as
downsampling, data normalization, and color transformation.
Our study evaluates various deep learning models, including
VGG16, VGG19, ResNet-50, ResNet-101, DenseNetl121,
DenseNet169, and DenseNet201, which accurately diagnose
diseases with unprecedented precision. We carefully evaluate
model dependability and efficiency using K-Fold cross-
validation and class-specific measures to ensure thorough
accuracy evaluation.

Our diagnostic procedure using ResNet50, ECA-Net, and
DenseNet201 on 224 x 224 palm leaf images has proven
highly effective, achieving an outstanding 99.54% training
accuracy and 91.02% validation accuracy. To address overfit-
ting issues, we introduce the K-fold cross-validation method,
which successfully generalizes the model to unknown data in
Fold 9, with a notable 99.48% training accuracy and 98.67%
validation accuracy.

However, we acknowledge that the hybrid model for
diagnosing leaf disease has significant challenges, such as
the impact of labeled datasets’ quantity and caliber on
model performance. Additionally, the mix of methodologies
could make it challenging to comprehend models, and
the complexity of hybrid models could constrain real-time
applications due to longer training durations and higher
computational demands.

Despite these constraints, hybrid models for leaf disease
detection hold great promise for real-world agricultural con-
texts. To this end, we recommend more resource-constrained
deployment, restricted generalization to new illnesses or plant
kinds, ongoing model maintenance, and consideration of
privacy-related ethical issues.

VI. CONCLUSION AND FUTURE WORK

In this study, the problem of classifying objectionable
language in the context of palm leaf disease, we presented two
independent machine learning assessment methodologies:
baseline and ensemble analysis. The identification and
categorization of palm leaf diseases have been addressed in
this research using a unique technique. We created a hybrid
model using a fresh dataset with an excellent accuracy rate
of 99.54%. Our findings highlight the superior performance
of our suggested model compared to state-of-the-art field
projects, highlighting how well it can handle the difficulties
associated with detecting palm leaf disease. We see various
ways to develop and broaden this study in the future.
To make our model even more reliable and capable of
recognizing a wider variety of palm leaf disease symptoms,
we first intend to improve it by adding new characteristics
and investigating more advanced algorithms. Additionally,
we aim to investigate the viability of using drone cameras
for symptom identification, providing a real-time, airborne
viewpoint for monitoring palm farms and spotting infections
early on. Additionally, to ensure the applicability and
scalability of our strategy, we will continue to develop
our research in conjunction with agriculture and machine
learning specialists. Our efforts can help reduce the adverse
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effects of palm leaf diseases on crop output and food security
while promoting sustainable agricultural development. This
study offers a cutting-edge method for detecting palm

leaf

disease and creates a pathway for innovative future

developments in disease control and precision agriculture.

We
new

look forward to further refining our model, exploring
technologies, and making a meaningful impact in the

agricultural sector.
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