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ABSTRACT Underwater robots that imitate aquatic life, such as fish-like robots, have attracted attention
for oceanographic studies from the viewpoint of morphological affinity for marine life. The existing
studies concerning fish-like robots have primarily focused on the swimming mechanism and locomotive
performance, and few studies have been conducted on techniques for self-position estimation and obstacle
avoidance despite their indispensability in the autonomous navigation of fish-like robots. Therefore, this
study aimed to explore a self-positioning estimation method for robotic fish in an environment where global
positioning system (GPS) and pre-defined landmarks are not available. To this end, we first developed a
fish-like robot that has a laterally flattened shape, which can mimic the swimming pattern of a fish moving
forward by waving a tail fin. Next, we realized the function of simple obstacle avoidance using optical
distance sensors for autonomous swimming from a practical perspective. Subsequently, we implemented a
real-time swimming-path estimation using the posture derived from the inertial measurement unit (IMU)
outputs and the swimming speed measured in advance. Furthermore, a swimming path correction method
using a particle filter based on a pre-constructed magnetic map was investigated as an alternative to the GPS
correctionmethod. Experiments confirmed the accuracy of the swimming path estimation using the proposed
method under various conditions, including obstacle avoidance.

INDEX TERMS Fish-like robot, magnetic map, particle filter, swimming-path estimation, underwater robot.

I. INTRODUCTION
The ocean contains unexplored offshore resources and
ecosystems [1]; however, deep-sea activities are hazardous
to humans because of the high-water pressure, low oxygen
levels, darkness, and cold temperatures. Therefore, underwa-
ter vehicles are used for marine operations, such as resource
exploration, inspection and maintenance of facilities, and
investigation of underwater life. One category of underwa-
ter vehicles is unmanned underwater vehicles (UUVs) that
are not connected by cables, and some of them are further
categorized as autonomous underwater vehicles (AUVs) that
perform all operations without human intervention [2], [3].
Although UUVs can potentially contribute to underwater
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exploration operations, they are insufficient for perform-
ing tasks in confined environments. In particular, screw-
mounted UUVs have an impact on the surrounding envi-
ronment such as engulfing seaweed and rolling up sand
from the seafloor [4], and marine organisms are cautious
around UUVs, making it difficult to study their natural
ecosystem.

Underwater robots that imitate aquatic life have been
developed to increase the morphological affinity for marine
life. Such robots are expected to be employed in oceano-
graphic studies, including data collection for the conservation
of underwater environments and endangered species [5].
In particular, the development of fish-like robots that swim
by wriggling their bodies and fins instead of using propeller
propulsion is noteworthy because of the highly efficient loco-
motion of fish-like robots in water [6], [7]. As an example of
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FIGURE 1. Hardware configuration of the fish-like robot.

a fish-like robot, Katzschmann et al. [8] developed a robot,
called ‘‘SoFi,’’ which has a tail fin made of soft mate-
rial to realize fish-like tail undulation, to infiltrate into the
marine environment for ecological surveys. Two antagonistic
hydraulic pumps exist on both sides of the tail, and adjusting
the relative pressure of the pumps can generate the turning
motion. Its swimming ability has been investigated in the
Pacific Ocean, and it has successfully navigated aquatic life
at depths ranging from 0–18 m. Yu et al. [9] developed a
dolphin-shaped robot that achieved a high propulsion speed
of 2.1 m/s with a rotating actuator and rigid link mechanism
on two joints in the tail, striving for highly efficient propul-
sion with a streamlined body that was calculated using a rigid
body model. Aubin et al. [10] developed a redox flow bat-
tery (RFB) inspired synthetic vascular system and integrated
it into a lionfish-like soft robot to increase its energy den-
sity. Tomie et al. [11] developed a fish-type micro swimming
robot for amusement and educational purposes. The robot
was driven by an external magnetic field oscillating with a
magnet inside its tail fin. In this way, previous studies on
fish-like robots have primarily focused on the development
of propulsion mechanisms and the investigation of the effects
of tail shape, softness, and movement patterns on swimming
speed [12], [13], [14]. However, few studies have been con-
ducted on techniques for self-position estimation and obstacle
avoidance, despite their indispensability in autonomous nav-
igation of fish-like robots in terms of practical use.

This study focuses on a self-positioning estimation method
in underwater for robotic fish. In general, a global positioning
system (GPS) is used to obtain an absolute position on the
ground or at sea; however, this technique is limited underwa-
ter where electromagnetic waves are attenuated, in addition to
indoor. Thus, a method for estimating the self-position using
only internal sensors is required for underwater vehicles. For
example, an inertial navigation system (INS) is commonly
used by an AUV to estimate its position, velocity, direction,
and posture. An INS is generally composed of an accelerom-
eter and a gyro sensor to compute the position and posture
of the robot without requiring external location information.
However, the position data output of the INS contains errors

that diverge over time. Therefore, for long-term navigation,
the INS output must be corrected using Doppler velocity
logging (DVL), which measures speed using sound waves,
and acoustic positioning system (APS), which provides posi-
tioning through acoustic communication with transponders
placed under the sea [15], outside the correction using GPS
at sea. However, this kind of equipment is basically too
expensive and large to be suitable for robotic fish, and there-
fore several methods to correct the position and calculate
the direction of motion using camera images have been
proposed. Zhang et al. [16] employed a Monte Carlo local-
ization (MCL) algorithm that updates the robot position using
its distance and direction from a landmark obtained via image
processing of camera images and the motion direction and
odometry obtained from the inertial measurement unit (IMU).
Takada et al. [17] developed a robotic fish equipped with two
CMOS cameras and an FPGA. The robot position was esti-
mated using the information obtained from the bottom-facing
camera by performing real-time digital image correlation
using the FPGA. However, these methods have limitations in
that they must be performed in shallow and clear water, and
landmarks must be placed beforehand.

As mentioned above, it is still challenging for robotic
fish to estimate their own position in environments where
transparency is low, or GPS or landmarks are not available.
Therefore, in this study, we aimed to explore a method to cor-
rect the output of inertial navigation using a pre-constructed
geomagnetic map without relying on a camera or marker.
To the end, we first developed a fish-like robot that has a
laterally flattened shape, which can mimic the swimming
pattern of a fish moving forward by waving its tail fin.
We then realized a practical function for obstacle avoidance
using optical distance sensors for autonomous swimming.
Subsequently, we implemented a real-time swimming-path
estimation using the posture derived from the IMU out-
puts and swimming speed that was measured in advance.
Next, we examined a method to correct the estimated
swimming path using a particle filter with a magnetic
map that was constructed in advance. In the experiment,
we confirmed the accuracy of the proposed swimming-path
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FIGURE 2. Waterproof structure.

FIGURE 3. Global and local coordinate systems.

estimation method under various conditions, including obsta-
cle avoidance.

II. FISH-LIKE ROBOT
A. HARDWARE CONFIGURATION
The appearance and main components of the developed
fish-like robot are shown in Fig. 1. The robot measures
0.400 m × 0.165 m × 0.110 m and weighs 2.1 kg. The
hardware can be divided into three units based on the func-
tionality: (a) sensor, (b) power supply and control, and
(c) propulsion and turning. The sensor unit on the head
is equipped with three laser distance sensors (VL53L0X,
ST Microelectronics NV), an RGB camera (IMX219PQ,
Sony Co.), and a 9-axis IMU (BNO055, Bosch Co.). Themid-
dle upper part’s power supply and control unit has an 18.5Wh
lithium polymer battery and a Raspberry Pi 4 Model B.
The propulsion and turning units have two servomotors for
changing the swimming speed and direction. The space below
the power supply and control unit is left for the placement
of balance weights to control buoyancy, and is also available
for implementing the flotation and sinking mechanism in the
future.

The housing was 3D-printed with ABS resin, and the tail
fin was made of silicone. The openings at the junctions
between the housings were designed to be as small as pos-
sible to prevent water leakage because large openings are
prone to warping due to thermal contraction in FDM-based
3D printing.

As shown in Fig. 2, the junctions were sealed with an
O-ring, and an oil seal was inserted into the intersection
between the housing and rotation shaft for waterproofing.

FIGURE 4. Correlation of laser distance sensor.

B. FISH-LIKE SWIMMING
The robot can move straight and turn, mimicking the
movement of an actual fish while utilizing the actuation
mechanisms of the propulsion and turning unit. This unit
enables the robot to propel itself by undulating the trunk and
tail joints, in which each joint, Axis 1 andAxis 2, is controlled
by different servomotors, as shown in Fig. 3. The rotation
angles were adjusted to the desired frequency, amplitude,
and phase difference according to Equation (1), as proposed
by Hirata [18], to examine the turning performance of the
robotic fish.

θ1 = K1Amax
1 sin2π ft,

θ2 = K2Amax
2 sin(2π ft − φ). (1)

Here, θ1 [rad] and θ2 [rad] are the angles of trunk and tail
joints, respectively. f [Hz] is the frequency of the cyclic
motion, t [s] is the time, and φ [rad] is the phase differ-
ence between the trunk and tail. Amax

1 [rad] and Amax
2 [rad]

are the maximum amplitudes of the trunk and tail [deg],
respectively. K1 and K2 are the coefficients representing the
degree of amplitude and range from 0–1. Each joint moves
symmetrically with respect to the reference plane. When
swimming forward, the reference plane is defined at the cen-
ter of the body and is biased to the left or right when turning.
In this way, actuating the two axes independently provides
more natural undulation and higher turning capability than
a passive movement of spring-coupled tail fin against water
resistance [4].

C. OBSTACLE AVOIDANCE USING DISTANCE SENSOR
Avoiding obstacles and tracking objects are also essential
functions for autonomous navigation. Therefore, the robot is
equippedwith a camera and a laser distance sensor to perceive
the environment. In this study, we particularly examined
simple obstacle avoidance using the distance sensor assuming
a situation in which the robot swims along a path where
obstacles exist. The sensor measures the distance based on the
time-of-flight (ToF) principle, which measures the distance
to an object depending on the time difference between the
transmission of a signal and its return to the sensor. Since
the speed of light attenuates about 75% in water (Fig. 4),
we preliminary experimented to determine the relationship
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FIGURE 5. Flowchart for obstacle avoidance.

FIGURE 6. Flowchart for swimming-path estimation using IMU.

between actual distance and the distance output by the sensor.
The result shows that the output values of the sensor contain
a constant error as shown in Fig. 4. Therefore, we decided to
correct the output value of the sensor d using Equation (2) to
calculate the actual distance dc in water.

dc = 0.75d . (2)

The obstacle avoidance process assumes the presence of an
obstacle and then executes the avoidance algorithm when the
distance dc obtained by at least one of the three sensors is less
than 150 mm. The obstacle avoidance process is illustrated
in Fig. 5. When an obstacle is detected by the left or right
sensor, the centers of vibration of axes 1 and 2 shift by 10◦

to the left or right, respectively, to avoid the obstacle. When
the front sensor detects an obstacle, the center of oscillation
of axes 1 and 2 become biased by 10◦ and 20◦ to the left and
right, respectively, resulting in a sharp turn.

III. SWIMMING-PATH ESTIMATION
A. METHOD OF SWIMMING-PATH ESTIMATION
USING IMU
Considering the autonomous navigation of underwater
robots, a method with low computational cost and high

FIGURE 7. Example of velocity change in straight swimming.

TABLE 1. Parameters for approximating velocity change.

accuracy is required to localize the self-position of the robot
in real-time. Therefore, we investigated inertial navigation
using a sensor fusion module based on a 9-axis IMU. The
use of this module reduces the computational cost because
it contains a microcomputer and directly outputs filter-fused
quaternions computed from an accelerometer, gyro sensor,
and magnetometer.

The local and global coordinates are shown in Fig. 3, and
Fig. 6 shows the computational flow of the self-position esti-
mation. First, the obtained quaternions q =

(
qw, qx , qy, qz

)
are converted to Euler angles, φ, θ , andψ , using Equation (3).

φ =


arctan

(
−
2qyqz − 2qxqw
2q2w + 2q2z − 1

)
(cosθ ̸= 0)

arctan

(
2qyqz + 2qzqw
2q2w + 2q2y − 1

)
(otherwise)

θ = arcsin
(
2qxqz + 2qyqw

)
ψ =

 arctan
(

−
2qxqy − 2qzqw
2q2w + 2q2z − 1

)
(cosθ ̸= 0)

0 (otherwise)
(3)

Further, the velocities, vx and vy, are calculated in the global
coordinates using the yaw angle ψ , the velocity v, and the
initial head angle θD from Equation (4).

vx = ∥v∥ cos(ψ − θD)

vy = ∥v∥ sin (ψ − θD) (4)

Here, the norm of velocity v is calculated as follows:

∥v∥ = va + wv, (5)

va =

{
at2 + bt + c (0 < t ≤ 5.0s)
vconst. (t > 5.0s)

[m/s], (6)

where va is the average swimming velocity that was experi-
mentally defined in advance and differs for each swimming
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mode, forward and turning. In the preliminary experiments,
the variation in swimming velocity during the acceleration
period was obtained, as shown in Fig. 7. Accordingly, the
velocity in the acceleration interval was approximated using
a polynomial equation of time. Next, the Gaussian noise wv
with a variance of 0.2 was added to represent the velocity
fluctuation. Finally, the position in the global coordinate
system was calculated using Equation (7).

xt = xt−1 + vxdt,

yt = yt−1 + vydt. (7)

Here, (xt , yt) and (xt−1, yt−1) are the positions at time t and
t − 1, respectively.

B. CORRECTION USING PARTICLE FILTER
BASED ON MAGNETIC MAP
The 3-axis magnetometer installed in an IMU measures the
magnetic flux density of geomagnetism as well as that of the
residual magnetism derived from the surrounding electronic
devices and steel frame of a building. Thus, in an indoor
environment, the magnetometer does not indicate the azimuth
without calibration. However, the residual magnetism does
not fluctuate over time, although it varies depending on the
location. Based on this property, researchers have proposed
indoor positioning methods for pedestrians and robots using
a magnetic map of the surrounding environment recorded
in advance [19], [20]. Similarly, if the magnetic map sur-
rounding the robotic fish is obtained in advance, it is used
to correct the self-position estimated using the inertial nav-
igation method. Therefore, we investigated a particle filter
method combined with a magnetic map to improve the accu-
racy of the position estimation. In this method, the likelihood
of each particle is calculated based on a magnetic map that
contains the magnetism of each location, and reliability of
the position of the robot is represented by the particle distri-
bution. This process is assumed to be performed between the
self-localization using IMU and the time-update described
in Fig. 6. The following describes the detailed method for
self-localization of the robotic fish using a particle filter in
addition to the construction of a magnetic map.

1) SYSTEM MODEL
In the system model, the position of the particle representing
the possible position of the robotic fish is calculated from its
previous position according to the following equation:

xit+1 = xit + v · dt + wp, (8)

where the position of the i-th particle at time t + 1 is
denoted as xit+1, and dt is the time step. The vector v is
represented as v = [vx vy]T , where vx and vy are calculated
using Equation (4), and the values wp are the Gaussian noise
with variance 1. By adding noise to the position and velocity,
the beliefs of all the particles were distributed as an ellipsoid
with the major axis toward the moving direction of the robot,
as shown in Fig. 8. Consequently, the beliefs are adjusted

FIGURE 8. Distribution of particle beliefs.

FIGURE 9. Coordinate transformation using posture angle.

to the robot velocity, even when the robot is accelerating or
decelerating at the transition of the swimming mode.

2) OBSERVATION MODEL
In the observation model, the likelihood L of each particle
is calculated from the magnetic information recorded by the
magnetic map and the magnetism measured by the geomag-
netic sensor. The probability density function of the Gaussian
distribution shown in Equation (9) is used.

f (n) =
1

√
2πσ 2

exp

(
−
(n− n̄)2

2σ 2

)
, (9)

where n corresponds to the magnetism mm
=
[
mmh mmv

]T
measured by the sensor at time t , n̄ is the recorded magnetism
mr

=
[
mrh m

r
v
]T of the magnetic map, and σ is the stan-

dard deviation of the measured values. Here, the measured
magnetism mm must consistently have the same value at the
same location. However, the posture of the IMU mounted on
the robot was inconsistent during swimming; hence, the mea-
sured magnetic vectors varied depending on the posture, even
at the same location. Therefore, the roll angle θr and pitch
angle θp derived from the gravitational acceleration vector
were used to transform the posture such that the z-axis of
the sensor points in the vertically upward direction as shown
in Fig. 9. Because the horizontal and vertical magnetic flux
densities do not change with the attitude after the coordinate
transformation, they are used as the measured magnetism
vector mm. The likelihood was calculated for the horizontal
and vertical directions, and their product was defined as the
likelihood L of the particle as follows:

L = Lh × Lv. (10)

In addition, the likelihoods of all particles were normalized
such that the sum becomes 1.
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FIGURE 10. Magnetic field-measurement method.

FIGURE 11. Magnetic flux density of experimental environment. Left and
right figures show the magnetic flux density in (a) horizontal and
(b) vertical directions, respectively.

3) RESAMPLING
To leverage the estimation by a large number of particles in
the particle filter, resampling is indispensable to prevent the
likelihood of being biased toward a specific particle. Hence,
resampling was performed based on the effective sample
size (ESS) defined by the following equation:

ESS =
1∑N

i=0
(
L it
)2 . (11)

The closer the ESS is to 1, the higher the likelihood of
a particular particle and the fewer the number of particles
affecting the estimation. Conversely, the closer to the total
num ber of particles N , the smaller the difference in likeli-
hood among the particles and the more the particles affect the
estimation. The latter is a desirable context for the particle
filter; hence, resampling is performed using a low-variance
sampling algorithm when the ESS falls below a predefined
value.

4) CONSTRUCTION OF MAGNETIC MAP
It is difficult to express the environmental magnetic field
surrounding the robotic fish as a function of position, owing
to the complicated interference of residual magnetism. There-
fore, we experimentally constructed the magnetic map that
associates the position to the corresponding magnetism in an
experimental field; a small pool measures 2.2 m × 1.5 m as
shown in Fig. 10. In the experiment, we first made the robotic

fish swim for as long as possible in the pool, and the robot was
captured using a camera mounted above the pool, as shown
in Fig. 10. The swimming trajectory was then measured
by tracking a marker on the robot using image processing
software (DIPP-Motion V). A black button switch on the
robot head was used as a marker. Subsequently, the trajectory
was linked to the magnetism recorded by the magnetometer
in the time series, and the horizontal and vertical magnetic
flux densities were calculated after coordinate transforma-
tion. Finally, the pool was divided into a 14×9 grid, resulting
in the side lengths of the grids being approximately 0.16 m,
each point on the trajectory was assigned to the one grid that
contains it. The mean value and standard deviation of the
horizontal and vertical magnetic flux densities of the points
contained in the grid were used as the values of magnetismmr

for that grid. Here, the smaller the grid size, the higher the
positional accuracy, but the computational cost increases and
the number of points in a grid decreases. Considering such
a tradeoff and the robot’s swimming velocity, the grid size
was empirically determined. The magnetic maps constructed
in this manner are shown in Fig. 11.

IV. EXPERIMENT ON SWIMMING-PATH ESTIMATION
A. OUTLINE OF EXPERIMENT
Experiments were conducted under three different condi-
tions: straight, circular, and random paths with obstacle
avoidance. The experimental environment and measurement
method for the swimming trajectory were the same as those
in the above experiment for constructing a magnetic map.
In addition, the swimming paths were estimated by inertial
navigation-based methods using IMU; one used only IMU
data, and the other applied a particle filter to correct the iner-
tial navigation. The former was calculated online in real-time
during swimming, and the latter was performed offline as
a post-processing using the measured data. The initial head
angle θD of the robot described in Equation (4) was measured
via a video analysis.

B. EXPERIMENTAL CONDITIONS
1) STRAIGHT-PATH ESTIMATION
After the robot entered the water at one end of the pool,
swimming-path estimation was executed. Both the joint
angles, θ1 and θ2, were set as 0◦, and thus the robot swam
forward until it reached the other end for approximately 10 s.

2) CIRCULAR-PATH ESTIMATION
The robot was placed in water at a point 0.1 m along the
y-axis and 1.0 m along the x-axis, with the left end of the
pool as the origin. The angles of the first and second joints
were set as θ1 = 40◦ and θ2 = 20◦, respectively. Additionally,
both K1 and K2 were set to 0.6. Hence, the robot swam in a
clockwise circular orbit.

3) RANDOM PATH ESTIMATION INCLUDING
OBSTACLE AVOIDANCE
Six quadrangular rods with 4-cm squared surface were placed
inside the pool as obstacles. After entering thewater, wemade
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FIGURE 12. Results of swimming-path estimation. (a), (b), and (c) show the results of straight-path estimation, circular-path estimation, and
random-path estimation with obstacle avoidance, respectively. In each result, the left picture shows snapshots of the swimming of robotic fish. The two
graphs in the middle show a comparison of the actual trajectory and the trajectory estimated by each estimation method. The right graph shows the
position erros in each estimation method.

the robot swim toward the nearest obstacle from an arbitrary
position and direction. The swimming speed was set as slow
as 0.10 m/s such that the robot could avoid obstacles with a
sufficient margin. As previously described, when the robot
detects an obstacle, it turns to avoid the obstacle smoothly
and then swims forward.

V. EXPERIMENTAL RESULT
Fig. 12 shows the results of swimming-path estimation
under each condition, where the dot and the red and blue
lines represent the true path, the estimated path by the
inertial navigation using only IMU data (hereafter referred
to as ‘‘w/IMU’’), and the estimated path corrected by
particle filter (referred to as ‘‘w/IMU+PF’’), respectively.

Incidentally, the number of particles in PF was set to 50 in all
conditions.

A. STRAIGHT-PATH ESTIMATION
Fig. 12(a) shows the estimation results of straight-path swim-
ming, which indicates that the robot swam approximately
1.8 m in 10 s. Fig. 12(a) shows that the error of w/IMU
increases as the swimming distance increases. Conversely,
w/IMU+PF suppressed the increase of error as the maximum
error was 0.05, resulting in the decrease of the average error
from 0.06 to 0.03m. In straight-path estimation, w/IMU alone
provided a high estimation accuracy; however, the accuracy
was further improved by correcting the position with the
particle filter in w/IMU+PF.
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B. CIRCULAR-PATH ESTIMATION
The result of the circular-path estimation is illustrated
in Fig. 12(b), which shows that the robot circled four times
resulting in the swimming distance of approximately 9 m
in 45 s. Similar to the straight-path estimation, w/IMU+PF
reduced the average error from 0.1 to 0.05 m. As shown
in the figure, the error not only increased in the acceler-
ation interval but also varied periodically with an upward
trend according to velocity fluctuations caused by exter-
nal factors. This is because the robot’s trajectory gradually
moved despite the constant swimming motion owing to
ripple waves and other disturbances accompanied by swim-
ming. The actual trajectory, represented by the red line
in Fig. 12(b), gradually shifts downward. As a result, the
path estimated by the w/IMU deviated from the actual
path because it did not compute the movement caused
by disturbances, whereas this influence was suppressed in
the w/IMU+PF.

C. RANDOM-PATH ESTIMATION INCLUDING
OBSTACLE AVOIDANCE
Fig. 12(c) shows the result of the random-path estimation.
The robot swam approximately 6.4 m in 50 s, and its
direction changed depending on the measurement patterns
of the distance sensors. The actual path (red line) shows
that the robot successfully performed obstacle avoidance
tasks, even though it sometimes collided with the obstacles
and walls. In addition, similar to the previous experiments,
the estimation accuracy of w/IMU+PF was improved com-
pared to that of w/IMU; the average error decreased from
0.3 to 0.22 m. Random swimming involves a large variation
in acceleration by switching the swimming modes com-
pared to going straight or turning only; hence, the errors
increased along with the swimming distance, and their val-
ues were higher than those obtained during the previous
experiments.

VI. DISCUSSION
In the experiments, the fish-like robot could swim at a max-
imum speed of 0.25 m/s in the straight-path swimming and
perform simple obstacle avoidance in the random swim-
ming. In the evaluation of swimming-path estimation, the
comparison of the two methods, w/IMU and w/IMU+PF,
revealed that the particle filter effectively reduces the estima-
tion error. One possible cause for the decreasing estimation
accuracy is the fluctuation of the acceleration because the
estimation method assumes a patterned velocity change.
In fact, in the case of w/IMU alone, the estimation error
was larger for random swimming, where the velocity was
likely to change owing to frequent switching of swim-
ming modes. Meanwhile, w/IMU+PF reduced the error
by improving the velocity-change tracking by extending
the distribution of particles in the moving direction to
improve the tracking of the changes in velocity. Indeed,
the experimental results of random swimming showed a
smooth transition of the estimated swimming velocity while

FIGURE 13. Comparison between aculatul velocity and estimated
velocitiy with w/IMU+PF in experiment for random-path estimation.

FIGURE 14. Relationship between error reduction rate and computation
time varied with the number of particles.

switching the swimming mode, as shown in Fig. 13. There-
fore, it would be effective to adjust the shape of particle
distribution depending on swimming mode and posture for
further improvement of estimation accuracy. In addition, the
number of particles is also considered to affect the accu-
racy as well as computational load. Fig. 14 shows the error
reduction rate and the computation time for each num-
ber of particles, which is calculated by MATLAB R2020b
on a desktop PC (64-bit Windows 11, 10th generation
Intel® Core™ i7-10700, 16GB memory). As the number of
particles increases, the error decreases and the computation
time increases; however, the error reduction rate becomes
saturated above 50, therefore the number of particles in the
PF was set to 50 in this study. Furthermore, w/IMU+PF
reduces the error caused by drift due to disturbances from
the use of a magnetic map; the map represents the abso-
lute position to correct the estimated position of the robot.
The proposed method is useful for indoor environments or
underwater where GPS data and pre-defined landmarks are
unavailable.

This study demonstrated the feasibility of the autonomous
swimming of a fish-like robot that could successfully estimate
its own position while avoiding obstacles: the first report
of the self-localization method using a magnetic map for
small underwater vehicles, particularly robotic fish. However,
this study has some limitations and challenges. First, the
proposed method requires the construction of a geomagnetic
map of the target environment beforehand; hence, it is not
applicable to unknown environments. Second, disturbances
such as water flow, waves and wind affect the estimation
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accuracy because our method assumes flat water. To solve
this problem, the velocity relative to the water flow must
be measured. Third, regarding to swimming performance,
although the robot successfully avoided obstacles in most
cases at low speeds (approximately 0.1 m/s), it occasionally
collided; hence, the probability of collision is considered to
be higher if the relative velocity to the obstacle is high or if
there are many obstacles around it. Therefore, it is important
to detect obstacles from greater distances and to maneuver
the robot orientation quickly because collisions also cause
a decrease in estimation accuracy. Finally, it is necessary
to incorporate the correction process using particle filter
into the real-time computation from a practical perspective.
To this end, as mentioned above, the number of particles
must be optimized in terms of accuracy and computational
load with the computational resources available to the robot.
Additionally, it is important to address the estimation of
three-dimensional swimming paths including floating and
sinking.

VII. CONCLUSION
We addressed a swimming-path estimation with obstacle
avoidance for a developed fish-like robot. Here, we proposed
a correction method for path estimation using magnetic maps
and particle filter in environments where GPS and landmarks
were not available. Future work will include the improve-
ment of the method for considering the influence of water
flow surrounding the robot and the algorithm for obstacle
avoidance to further improve the accuracy of path estimation.
In addition, we will realize the robot’s three-dimensional
swimming performance and implement new functions such
as environmental sensing, image-based underwater sensing,
etc., using RGB camera.
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