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ABSTRACT Alzheimer’s Disease (AD) is a significant cause of dementia worldwide, and its progression
from mild to severe affects an individual’s ability to perform daily activities independently. The accurate and
early diagnosis of AD is crucial for effective clinical intervention. However, interpreting AD from medical
images can be challenging, even for experienced radiologists. Therefore, there is a need for an automatic
diagnosis of AD, and researchers have investigated the potential of utilizing Artificial Intelligence (AI)
techniques, particularly deep learning models, to address this challenge. This study proposes a framework
that combines a Vision Transformer (ViT) and a Gated Recurrent Unit (GRU) to detect AD characteristics
fromMagnetic Resonance Imaging (MRI) images accurately and reliably. The ViT identifies crucial features
from the input image, and the GRU establishes clear correlations between these features. The proposed
model overcomes the class imbalance issue in the MRI image dataset and achieves superior accuracy and
performance compared to existing methods. The model was trained on the Alzheimer’s MRI Preprocessed
Dataset obtained from Kaggle, achieving notable accuracies of 99.53% for 4-class and 99.69% for binary
classification. It also demonstrated a high accuracy of 99.26% for 3-class on the ADNeuroimaging Initiative
(ADNI) Baseline Database. These results were validated through a thorough 10-fold cross-validation
process. Furthermore, Explainable AI (XAI) techniques were incorporated to make the model interpretable
and explainable. This allows clinicians to understand the model’s decision-making process and gain insights
into the underlying factors driving the AD diagnosis.

INDEX TERMS Alzheimer’s disease, deep learning, ViT-GRU, XAI, attention map.

I. INTRODUCTION
Alzheimer’s Disease (AD) is by far the most prevalent trigger
for dementia worldwide [1]. AD is a syndrome of progressive
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as well as irreversible dementia and is characterized by loss
of cognitive abilities across multiple domains, changes in
behavior, an inability to self-care, and ultimately neurological
abnormalities [2]. A timely and effective diagnosis of AD
is crucial for effective patient care and clinical progress [3].
It has been reported that AD affects around 5.8 million

8390

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-7205-9390
https://orcid.org/0000-0003-2564-8746
https://orcid.org/0000-0002-9032-7175
https://orcid.org/0000-0002-9433-0136
https://orcid.org/0000-0002-5426-8382
https://orcid.org/0000-0003-0900-7930
https://orcid.org/0000-0002-6973-1536
https://orcid.org/0000-0002-6986-1517
https://orcid.org/0000-0002-7514-3239
https://orcid.org/0000-0001-7612-0840


S. M. Mahim et al.: Unlocking the Potential of XAI for Improved AD Detection and Classification

individuals in the United States, representing 60-80% of
all cases of dementia. It is anticipated that 13.8 million
Americans will be afflicted with AD by the halfway point of
this century. While AD commonly affects those aged 65 and
above, the prevalence of early-onset cases indicates that it
cannot be solely classified as a disease of old age [4].Memory
loss is the most common sign of AD [5]. There are typically
three stages of AD: early, medium, and late. In the early
stages of AD, individuals may experience mild cognitive and
memory changes. They may have difficulty remembering
recent events or conversations, struggle with problem-solving
and decision-making, and undergo emotional and character
shifts. They may also have difficulty completing familiar
tasks. In the middle stage of AD, its symptoms become
more prominent and significantly impact the person’s daily
life. They may become disoriented in familiar places or
have difficulty following instructions. Communication may
also become more difficult, with individuals struggling to
find the right words or losing their train of thought mid-
sentence. In the late stages of AD, individuals may experience
a complete loss of ability to communicate effectively
and become increasingly reliant on others for all aspects
of their daily life. People with advanced AD are more
likely to encounter infections, seizures, and other medical
issues.

Researchers are looking at early detection of this con-
dition to save medical expenditures and improve treatment
outcomes, as well as to delay the atypical degeneration of
the brain [6]. Positron Emission Tomography (PET) and
Magnetic Resonance Imaging (MRI) are only two examples
of cutting-edge brain imaging technologies that can be
used to spot AD in its earliest stages. These techniques
enable visualization of the brain’s structure and function [7].
Metabolic shifts and protein aggregates like beta-amyloid and
tau can be detected by PET imaging of the brain, which
are hallmarks of AD. This imaging technique can identify
changes in the brain even before disease symptoms appear.
MRI imaging can produce anatomically accurate pictures of
the brain and can be used to detect changes in brain volume,
which may be indicative of AD. Diffusion Tensor Imaging
(DTI) is an advanced MRI technique for assessing white
matter tract integrity, which AD may impact. Cerebrospinal
fluid and blood biomarker testing is another state-of-the-art
technique that aids in the diagnosis of AD at its earliest stages.
Researchers have identified several biomarkers in the blood
and cerebrospinal fluid that are associated with AD, including
beta-amyloid and tau proteins, as well as neuroinflammation
markers. These biomarkers can be used to track disease
progression and may help identify individuals at high risk
for developing AD. Integrating available neuroimaging and
biomarker testing for cerebrospinal fluid and blood can
provide additional information, leading to a more precise and
timely diagnosis of AD [8]. However, the current advanced
diagnostic methods for AD are costly, invasive, and require a
lot of time [9].

The utilization of Machine Learning (ML) in neuroimag-
ing enhances the precision of diagnosing different types
of dementia. To enable the implementation of ML algo-
rithms, it is imperative to undertake specific pre-processing
measures. These measures encompass the extraction and
selection of features, reduction of feature dimensionality, and
utilization of a classifier algorithm. Each of these phases
plays a pivotal role in the classification process within
ML [10].

To minimize human prejudice, later studies concentrated
on employing Deep Learning (DL), an ML division that has
demonstrated efficient usage in numerous healthcare fields.

This research adds to the growing evidence that MRI
is the gold standard for analyzing brain structure because
of its high spatial resolution, high tissue contrast, and
restricted ionizing radiation [11]. It is critical to generate a
reliable computer-aided diagnostic system that can examine
MRI scans and identify AD. However, DL models can be
time-consuming to address this issue. Our study proposes
a hybrid DL model that combines a Vision Transformer
(ViT)with aGatedRecurrent Unit (GRU), which outperforms
existing Convolutional Neural Network (CNN) and ViT
architectures in terms of both accuracy and time. The
proposed model is designed to improve the accuracy of AD
stage classification while minimizing computational costs by
reducing the number of parameters.

This research comprises three distinct studies. The first
and third studies entailed the execution of a multi-class
classification, while the second study involved a binary
classification task. Our research work has made several
significant contributions, which are as follows:

1) We present a hybrid ViT-GRU approach that combines
ViT and GRU to detect anomalies in brainMRI images.
Themodel is capable of classifyingAD frombrainMRI
images based on their structure and size.

2) A generalized model was developed and employed
across three datasets, resulting in reduced parameters
and computation costs. Despite these optimizations,
the model exhibited exceptional performance in the
diagnosis of AD.

3) We suggest the hybrid model that demonstrates the best
performances in a shorter time frame compared to other
CNN and ViT models.

4) We utilize three XAI techniques, namely Local Inter-
pretableModel Agnostic Explanation (LIME), Shapley
Additive Explanations (SHAP), and Attention map
to provide clear and interpretable explanations for
the predictions generated by our ViT-GRU model.
It enables us to validate the significance of specific
features, compare and contrast the results obtained
from various methods, and emphasize the clinical
relevance of our model.

5) Our findings reveal that, despite the class imbalance in
the dataset, our model’s performance was remarkably
high due to effective feature engineering and modeling
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strategies, which could have significant implications
for improving ML applications and facilitating its
adoption in the clinical domain.

This remaining paper is organized as follows: Section II
presents a comprehensive analysis of the current literature on
the classification of AD. Section III discusses the challenges
associated with the application of AI for detecting neurode-
generative diseases. The materials and methods utilized in
this study are described in detail in Section IV. Section V
presents the analysis of the results, while SectionVI discusses
the findings. Finally, Section VII concludes the paper.

II. LITERATURE REVIEW
Identifying AD at its incipient stage and with better
accuracy is significant for improving the quality of life for
patients and potentially slowing or halting the progression
of the disease [12]. The potential of DL in human disease
identification has garnered a lot of interest. Over the past
few years, there has been a surge in the development of
DL techniques for diagnosing AD, which have become
popular diagnostic tools for medical professionals. These DL
approaches are favored above more conventional types of
ML [13].
Basheer et al. [14] introduced a CNNmodel called CapNet,

which achieved an accuracy of 92.39% on the Open Access
Series of Imaging Studies (OASIS) dataset. Meanwhile,
Liu et al. [15] introduced a DL model comprising stacked
auto-encoders and a softmax output layer to improve the
diagnosis of Mild Cognitive Impairment (MCI) and AD.
The goal was to address the bottleneck issue and aid in the
early detection of these conditions. Their model produced
an overall accuracy of 87.76% in the two-class classification
of AD. Ortiz et al. [16] introduced a technique utilizing an
ensemble CNN model and Softmax classifier to diagnose
AD. The AD neuroimaging initiative provided the data used
to validate the model. The model architecture performed
exceptionally well, with an accuracy of 90% or higher for
Normal Control (NC)/AD classification and an Area Under
Curve (AUC) of 95%. It also performed well for stable
MCI/AD classification with an accuracy of 84% and an AUC
of 91% and for NC/MCI converter classification with an
accuracy of 83% and an AUC of 95% [17]. On the other hand,
Nawaz et al. [18] devised a way to classify AD stages by
utilizing a pre-trained Alexnet model as a feature extractor to
address class imbalance issues. The classification was done
using Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), and Random Forest (RF) algorithms, resulting in a
maximum accuracy of 99.21%. Basaia et al. [19] introduced
a deep neural network method for diagnosing AD using the
ADNI dataset. The study divided 1638 subjects into four
categories, and the experiment used a 90% training and 10%
testing ratio. The method achieved a 99.20% classification
rate for distinguishing between healthy individuals and those
with AD. In contrast, Sun et al. [20] employed a DL model
named ResNet that could detect early-stage AD, including

Spatial Transformer Networks (STN) and non-local attention
mechanisms.

With a 97.10% classification rate, 95.50%macro precision,
95.30% macro recall, and 95.4% macro F1-score, the
algorithm performed quite well. For feature extraction,
Jain et al. [21] employed a pre-trained VGG16model, and for
MRI pre-processing, they turned to the FreeSurfer technique.
They selected slices using entropy and applied transfer
learning with a mathematical model called PF SECTL for the
AD classification. TheADNI dataset was used to classify NC,
early MCI (EMCI), and late MCI (LMCI), with an accuracy
of 95.73% achieved. Independent component analysis was
introduced by Schouten et al. [22] to examine diffusion MRI
data from 77 AD patients and 173 controls. With an area
under the curve of 89.60%, their research showed excellent
promise for diagnosing AD. For the purpose of learning
AD-related features, Ge et al. [23] developed a Three-
dimensional (3D) multiscale DL model employing a dataset
of brain scans from several participants randomly split into
subsets. The model was found to be accurate on average to
the tune of 87.24% and in testing to the tune of 93.53%.
In order to make an accurate diagnosis of AD, Feng et al. [24]
introduced a new DL architecture that combines 3D-CNN
with Fully Stacked Bidirectional Long Short Term Memory
(FSBi-LSTM). The study determined that the proposed
method achieved mean accuracies of 94.82%, 86.36%, and
65.35% on the ADNI dataset, respectively, when tasked
with differentiating between AD and NC, prodromal MCI
(pMCI), and stable MCI (sMCI). While the study’s findings
show promise for the suggested paradigm, a thorough
and efficient diagnosis of AD will require substantial
computational resources. Allioui et al. [25] introduced a deep
U-Net network for MRI segmentation. They demonstrated
competitive results in detecting damaged brain Regions
of Interest (ROIs) and diagnosing AD. They achieved an
accuracy of 92.71%, a sensitivity of 94.43%, and a specificity
of 91.59% on the OASIS dataset. Balasundaram et al. [26]
introduced a DL-based approach in which they trained a
Kaggle dataset for severity classification. Additionally, they
conducted segmentation of the hippocampus region using a
reduced version of the OASIS dataset and trained it using
supervised and ensemble learning algorithms to detect AD.
They achieved an accuracy of 94.45% for the Kaggle dataset
and 94% for the OASIS dataset.

Previous studies on AD diagnosis using DL models
faced challenges like limited accuracy, class imbalance, high
computational demands, limited interpretability, and con-
strained generalizability. However, our proposed ViT-GRU
model effectively addresses these limitations and presents
improvements inmultiple aspects.While previousDLmodels
achieved notable accuracy in AD classification, our ViT-GRU
model surpasses their performance, exhibiting exceptional
accuracy and showcasing superior capability [27], [28].
Class imbalance within datasets has been a challenge for
AD classification. Previous approaches used pre-trained
models and feature extraction methods to handle this
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issue [29]. Similarly, our model, employing ViT and GRU
layers, effectively tackles class imbalance and enhances
classification accuracy [30]. Efficient AD diagnosis requires
significant computational resources, which can be limited
in clinical settings. Our ViT-GRU model aims to provide
comprehensive and efficient AD diagnosis while considering
the practicality of clinical environments and optimizing
computational resources if necessary. Interpretability of
DL models has been a limitation, hindering understanding
of the decision-making process behind predictions. Our
model incorporates XAI techniques such as LIME, SHAP,
and Attention map, providing valuable insights into the
features and regions influencing its predictions, enhancing
interpretability, and establishing trust. Previous studies often
focused on specific datasets or cohorts, limiting model
generalizability. Utilizing a ViT-GRU architecture enables
the capture of spatial and temporal information from diverse
datasets, enhancing the model’s ability to generalize across
different populations and imaging protocols and expanding
its applicability to a wider range of scenarios.

III. CHALLENGES OF NEURO DISEASE DETECTION
WITH AI
The healthcare sector has numerous challenges that prevent
companies from increasing the efficiency and quality of
patient treatment despite rising prices and demand. Several
cutting-edge approaches to neurological care have shown
positive results and present exciting new areas for investigat-
ing assessment, therapy planning, and prognosis prediction.
There are not enough medical personnel or equipment to
fulfill the rising demand. AI and other digital and technology
solutions are now a real alternative for dealing with some
of the problems in healthcare [31], [32], [33]. AI-supported
technologies are crucial for enhancing the decision-making
process used when treating and diagnosing patients since
they make it easier for doctors to learn from and assess
a vast amount of medical research and patient treatment
records [34], [35]. Although this technology will eventually
have a significant effect on the clinic practice patterns,
translating it into clinical practice is difficult and requires
the same levels of transparency and efficacy as any novel
drug or medical device due to the possibility of bias and
ethical, medical, and legal issues. Challenges associated with
the detection of neurodiseases using AI are listed below:

1) Limited data availability: To learn, AI algorithms
require vast quantities of high-quality data. Neverthe-
less, acquiring large datasets of neurological disease
patients can be challenging due to privacy concerns,
limited access to patient data, and the low incidence of
certain neurodiseases [36].

2) Heterogeneity of data: Neurological pathologies can
manifest in various ways and affect various brain
regions, resulting in a vast array of symptoms and
imaging characteristics. This diversity makes it diffi-
cult to develop AI models that accurately identify and
categorize various neurodegenerative diseases [37].

3) Lack of standardization in imaging protocols: Dif-
ferent methods of imaging (such as Computed Tomog-
raphy (CT), MRI, and PET) can generate distinct types
of images, and institution-specific imaging protocols
are frequently variable [38].

4) Interpretability of AI models: Models based on DL
can be extremely complex and challenging to interpret,
rendering it difficult to comprehend how the model
makes predictions [39].

5) Ethical considerations: Implementing AI for detect-
ing neurological diseases addresses major ethical con-
siderations such as patient privacy, informed consent,
and the potential for data and algorithmic biases [40].

Despite the considerable magnitude of these challenges, both
researchers and clinicians are actively engaged in endeavors
to overcome them. Their concerted efforts aim to enhance the
precision and dependability of AI models utilized in neuro-
disease detection. These efforts primarily revolve around
leveragingAI techniques that contribute to achieving accurate
diagnostic outcomes.

IV. MATERIALS AND METHOD
The methodologies we followed for this study are shown in
Figure 1.

A. DATASET COLLECTION
1) DATASET 1
This research paper introduces a meticulously preprocessed
dataset of MRI scans designed for the purpose of detecting
AD. The dataset is conveniently accessible on the renowned
open-source platform Kaggle [41], serving as a valuable
resource for researchers in the field. The dataset comprises
a total of 6400 images. These images have been sourced
from diverse outlets, including hospitals, websites, and public
repositories, ensuring a comprehensive representation of the
disease. A few samples of each class (Mild Demented, Mod-
erate Demented, Non Demented, and Very Mild Demented)
from the dataset are shown in Figure 2.

To facilitate comprehensive analysis and investigation, the
dataset has been thoughtfully partitioned into four distinct
groups, with each group representing a specific stage of
AD, ranging from mild to advanced dementia. The dataset
employs a uniformT1-weighted imaging protocol for allMRI
scans, guaranteeing a consistent and standardized approach
to data acquisition, which enhances the comparability and
reliability of the MRI data utilized in our study. The dataset
details are presented in Table 1.

2) DATASET 2
In Dataset 2, we used a subset of Dataset 1, where the
Dementia class was made up of the categories of Mild
Demented, Moderate Demented, and Very Mild Demented.
In contrast, the Non Demented class was renamed as Healthy.
The rationale behind this selection was to create a simplified
binary classification task for our model, which distinguishes
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FIGURE 1. Workflow of the proposed methodology showcasing the sequential steps involved in the research process.

FIGURE 2. Sample images of the dataset 1.

between individuals with some level of dementia and those
without. This binary classification simplification allowed
us to assess the model’s ability to identify dementia cases
effectively. This approach allowed for a simplified analysis
and straightforward interpretation of the results. The details
of datasets are shown in Table 1 as well. It is important to
note that both datasets were examined and determined to be
beneficial in attaining the objectives of the study.

3) DATASET 3
The research utilized data from the AD Neuroimaging
Initiative (ADNI) database, specifically from the ADNI
1 baseline phase. Imaging procedures were conducted on
a 3T system, employing an MRI T1 Weighted imaging
protocol [42]. The dataset comprises information from
198 individual participants stored in Nifti format. Within this
cohort, 41 participants are affected by AD, with 14 being
male and 27 female. Mild Cognitive Impairment (MCI)
is observed in 97 participants, including 57 males and
38 females. Additionally, 60 participants exhibit Common
Normal (CN) conditions, with 22 males and 38 females. The

FIGURE 3. Sample images of the dataset 3.

mean age of participants diagnosed with AD is 74.07 years,
with ages ranging from a minimum of 57 to a maximum
of 89 years. For individuals with MCI, the mean age is
74.47 years, and their ages range from a minimum of 55 to
a maximum of 88 years. On the other hand, CN participants
have a mean age of 75.23 years, ranging from a minimum
of 70 to a maximum of 86 years. Each patient’s Nifti
format was transformed into a set of 2D axial images to
facilitate further analysis. Ameticulous selection process was
applied to streamline image processing algorithms, focusing
on the central portion of the images–specifically, from the
ventricular area to the hippocampus area, as it contains
the most informative data [43], [44]. Non-relevant images,
such as those including the skull or upper and lower brain
regions, were manually excluded. From each participant,
14 to 16 slices of 2D axial images were extracted, resulting in
a dataset comprising 2970 images, as illustrated in Figure 3.
The resulting dataset is categorized into three groups: AD,
MCI, and CN, containing 615, 1455, and 900 images,
respectively. This information is summarized in Table 1,
providing a comprehensive overview of the distribution of
images across different diagnostic categories.
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TABLE 1. Alzheimer’s disease datasets used in this study.

B. DATA PREPOSSESSING
Data preprocessing is a fundamental and critical step in image
classification tasks, as it ensures that the data is correctly
prepared before feeding it into the model [31], [45]. Our
dataset consists of grayscale (L) images, which we trans-
formed into RGB format by replicating the grayscale channel
three times. This conversion was necessary because most
pre-trained CNNs are designed to work with RGB images.
By converting the images to RGB format, we can leverage the
knowledge learned by these pre-trainedmodels. Furthermore,
we performed rescaling on the RGB images to normalize
the pixel values between 0 and 1. This normalization step is
crucial as neural networks are sensitive to the scale of input
data. Rescaling ensures that the model can effectively learn
meaningful patterns from the data [6], [33]. In addition to the
aforementioned preprocessing steps, we resized all images to
a standardized dimension of 128 × 128. This resizing step
ensures that all images have a consistent size, enabling the
model to process them efficiently.

C. PROPOSED ViT-GRU MODEL
The proposed model for AD classification is a ViT-GRU
architecture shown in Figure 4 is a novel DL model for
AD detection, which combines the power of ViT [46] and
GRU [47]. The model is designed to efficiently classify brain
MRI images as healthy or affected by AD.

1) ViT FOR FEATURE EXTRACTION
Our model’s primary component is the ViT, a cutting-edge
architecture known for its exceptional ability to capture
visual features from images using self-attention mechanisms.
By adopting the ViT backbone, our model gains the
capability to learn hierarchical representations of brain MRI
images, effectively extracting crucial patterns and features
indicative of AD. We removed the Multi-Layer Perceptron
(MLP) layer to optimize the ViT encoder and incorporated
layer normalization to stabilize training and facilitate faster
convergence. We added a dropout layer to prevent overfitting

TABLE 2. Hyperparameters of our proposed ViT-GRU model with its
values.

and improve generalization. Lastly, we introduced a ‘‘flatten’’
layer to expand the model’s capacity, enabling it to capture
more diverse and intricate visual patterns from the MRI
images, potentially improving AD detection performance.

2) GRU FOR TEMPORAL ANALYSIS
After the feature extraction stage, we introduce a GRU unit
to perform temporal analysis on the extracted visual features.
The GRU is a specific type of Recurrent Neural Network
(RNN) known for its proficiency in capturing sequential
patterns and dependencies within the data. By integrating the
GRU with 1024 units, our model can effectively leverage the
temporal dynamics in brain MRI images, thereby enhancing
its ability to discern and classify AD with increased
discriminative power.

3) CLASSIFICATION HEAD
A classification head is introduced at the end of the GRU
layer to make the final prediction. The GRU’s hidden state
at the last time step is passed through fully connected layers,
followed by a softmax activation function to obtain the
probability distribution over classes.

D. HYPERPARAMETERS SETTINGS
The models we employed for our research boasted many
parameters, opening up a vast landscape of potential archi-
tectural adjustments. As we optimized these models, our
primary focus turned to hyperparameter tuning, a process
essential for achieving peak performance. This entailed
identifying hyperparameter values that closely approached
the ones yielding the best possible results. To accomplish this,
we delved into a repertoire of commonly used hyperparame-
ter values, all while exploring innovative avenues to refine our
model evaluation and prediction processes. Table 2 concisely
records the hyperparameter values meticulously utilized
throughout our proposed ViT-GRU model. Following our
model architecture recommendations, 54,049,476 trainable
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FIGURE 4. Architecture of the hybrid ViT-GRU model illustrating the interconnected components and their functional relationship in the proposed model.

parameters await estimation, with no single non-trainable
parameter in sight.

The training was conducted on Google Colab using a GPU
with 12 GB of RAM.

E. EVALUATION MATRIX
The proposedmodel’s performance is evaluated using various
metrics, including accuracy, precision, recall, F1-score,
specificity, sensitivity, and Cohen’s kappa. These metrics
are derived from the information provided in the confusion
matrix like True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN), which represent the
model’s performance. The formula we calculated for the
performances of our proposed ViT-GRU model is as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 − score = 2 ×
Precision× Recall
Precision+ Recall

(4)

Specificity =
TN

TN + FP
(5)

κ =
Po − Pe
1 − Pe

(6)

where κ , Po, and Pe represent Cohen’s kappa value,
the observed agreement between raters, and the expected
agreement by chance, respectively.

F. EXPLAINABLE ARTIFICIAL INTELLIGENCE
XAI is an increasingly vital aspect of AI that aims to create
AI systems that are transparent and easily understandable
to humans. As AI models become more sophisticated and
complex, understanding the reasoning behind their decisions
becomes increasingly difficult. This creates potential issues
in health care, where AI systems can make life-altering
decisions. In the context of medical image classification,
XAI is particularly crucial. By helping medical professionals
understand and interpret AI system decisions, XAI can
lead to more informed decisions about patient care and
treatment plans. It is also essential for regulatory and ethical
reasons, as regulators andmedical organizations often require
transparency in the decision-making process of AI systems
in medical applications to ensure consistency with medical
standards and regulations. Several explainable AI techniques,
such as LIME, SHAP, and Attention map, have been applied
to improve the interpretability and transparency of DL
models used for AD detection. LIME generates heatmaps
highlighting the essential regions of the medical images,
and SHAP uses a game-theoretic approach to attribute the
contribution of each input feature to the prediction. Attention
Maps, on the other hand, provide insight into how the
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model focuses on different regions of the image to make its
decision. These techniques help to determine the essential
features and areas in the medical images that contributed
to the model’s decision. This information can improve the
diagnosis’s accuracy and communication between medical
professionals and patients.

1) LIME AS XAI
LIME is a powerful tool that can provide insight into
the predictions made by ML models [48]. Unlike other
interpretability methods, Model-agnostic means that LIME
can be used with any MLmodel, regardless of its architecture
or training algorithm. By generating a ‘‘heatmap,’’ LIME
helps identify the regions of an input image most important in
a model’s decision-making process. This heatmap is created
by assigning a relative importance score to each pixel or area
of a vision based on its contribution to the model’s prediction.
In our study, By examining the heatmap generated by LIME,
we gained valuable insights into the crucial regions of the
brain that contributed to the type of each image.

Using the top three features, we created a LIME heatmap
that enabled us to validate the performance of our model and
gain insights into the underlying patterns associated with the
different classes of AD.

2) SHAP AS XAI
SHAP is a framework that enables the interpretation of
ML model outputs, specifically by using Shapley values to
explain the contribution of each feature to the model’s output
for a given input [49]. In the domain of medical image
classification, SHAP can be utilized to identify the most
significant regions of an image that are crucial for the model’s
classification decision. By using SHAP, important feature
values are highlighted by red pixels, which indicate a higher
probability of a particular class being predicted. In contrast,
blue pixels denote features that reduce the likelihood of the
expected type.

In the context of AD classification, we utilized SHAP to
generate visual representations of the model’s predictions,
which validated the model’s performance and provided
additional insights into the critical regions of the brain for the
classification task. We observed that the visual explanations
produced by SHAP complemented those generated by
LIME, providing a more comprehensive understanding of the
underlying patterns in the data.

3) ATTENTION MAP AS XAI
An attention map is a technique used in XAI to visualize
the regions of an input image that a DL model focuses on
during classification or segmentation tasks. By highlighting
the relevant regions, the attention map provides insights
into the model’s decision-making process, making it more
interpretable and transparent.

In medical image classification, attentionmaps can be used
to identify the specific regions of the brain affected byAD. Jet

color attention maps often represent the different activation
levels in the highlighted regions. The color scheme ranges
from blue (low activation) to red (high activation), with green
and yellow representing intermediate activation levels. The
last multi-head attention layer in a ViT-GRUmodel is used to
plot the attention map because it captures the most relevant
features for the final classification decision. The attention
weights obtained from this layer highlight the most relevant
regions of the input image, making it easier to interpret the
model’s decision-making process. Therefore, visualizing the
attention map from the last multi-head attention layer can
improve our understanding of how the model works.

V. RESULTS
In the initial experiment, a 10-fold cross-validation strategy
was employed. This method divides the dataset into ten equal
parts, commonly called ‘‘folds.’’ During each iteration or
fold, nine of these folds are used for training, constituting
90% of the data, while the remaining one fold, comprising
10% of the data, is reserved for testing. This process is
repeated ten times, with each fold taking on the role of the
test set once.

Before each fold’s training phase begins, an additional step
is introduced. 10% of the training data is further set aside for
validation. This subset, known as the validation set, is used
to fine-tune the model’s hyperparameters and monitor its
performance during training. This rigorous validation ensures
the model is fine-tuned to its optimal configuration before
being tested on the test fold.

In a distinct experiment referred to as Experiment 2,
the dataset was split into three sets, constituting 80% for
training, 10% for testing, and 10% for validation. This
division was achieved by shuffling the data with different
seeds. It is important to note that we opted to train the
model from scratch. This decision was made to ensure that
previous training iterations did not influence the model’s
performance and to evaluate its capability to generalize to
different experimental conditions.

Several pre-trained CNN models were incorporated into
the study to evaluate the performance of machine learning
models. These models have been pre-trained on large-scale
datasets and are known for extracting intricate features from
images, making them ideal candidates for various computer
vision tasks.

A. RESULTS OF DATASET 1
In our rigorous analysis of Dataset 1, we employed a
10-fold cross-validation strategy to evaluate the performance
of our model thoroughly. The results, elegantly summarized
in Table 3, paint a vivid picture of our model’s exceptional
capabilities. First and foremost, our model showcased its
precision with a remarkable mean precision score of 99.54%.
This indicates its proficiency in accurately identifying
positive cases within the dataset. Additionally, our model
demonstrated an impressive recall rate of 99.53%, signifying
its ability to capture actual positive instances effectively
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FIGURE 5. Accuracy and loss curves for 10 fold cross-validation on dataset 1.

FIGURE 6. Confusion matrices for 10 fold cross-validation on dataset 1 where 0, 1, 2, and 3 represent mild demented, moderate demented, non
demented, and very mild demented, respectively.

FIGURE 7. AUC-ROC curves for 10-fold cross-validation on dataset 1 where 0, 1, 2, and 3 represent mild demented, moderate demented, non demented,
and very mild demented, respectively.

while minimizing false negatives. The F1-score, a metric that
balances precision and recall, stood at an impressive 99.53%,
underscoring the robustness of our model’s performance.

Moreover, the model excelled in specificity, achieving a
score of 99.76%, which means it was adept at distinguishing
negative cases with minimal false positives. Cohen’s Kappa
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TABLE 3. Results of 10 fold cross-validation on the dataset 1.

FIGURE 8. Accuracy and loss curve for dataset 1 in experiment 2.

FIGURE 9. Confusion matrix for dataset 1 in experiment 2 where 0, 1, 2,
and 3 represent mild demented, moderate demented, non demented, and
very mild demented, respectively.

value, a measure of agreement beyond chance, was equally
impressive at 99.23%, highlighting the reliability of our
model’s predictions. Lastly, themean test accuracy of 99.53%
further corroborates the model’s ability to classify data points

FIGURE 10. AUC-ROC curves for dataset 1 in experiment 2 where 0, 1, 2,
and 3 represent mild demented, moderate demented, non demented, and
very mild demented, respectively.

accurately. To provide a more holistic perspective of our
experiments, we complemented these numerical results with
visual aids. Figure 5, for instance, illustrates the training
accuracy and loss curve across the various folds, providing
insights into our model’s learning process. In Figure 6,
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FIGURE 11. Accuracy and loss curves for 10 fold cross-validation on dataset 2.

FIGURE 12. Confusion matrices for 10-fold cross-validation on dataset 2 where 0 and 1 represent dementia and healthy, respectively.

FIGURE 13. AUC-ROC curves for 10 fold cross-validation on dataset 2.

we present the confusion matrix for each fold, offering
a detailed breakdown of its classification performance.

Furthermore, Figure 7 showcases the Area Under the
Receiver Operating Characteristic Curves (AUC-ROC)
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FIGURE 14. Accuracy and loss curve for dataset 2 in experiment 2.

FIGURE 15. Confusion matrix for Dataset 2 in experiment 2 where 0 and
1 represent dementia and healthy, respectively.

for each fold, demonstrating the model’s discrimination
capabilities.

In Experiment 2, our model consistently achieved high
precision, recall, and F1-score, all at 99.53%. The Cohen’s
Kappa value also stood at 99.23, with a specificity of 99.76%.
The training duration was 450.98 seconds. The test accuracy
is also at 99.53%. Figure 9 provided an in-depth analysis
of the confusion matrix, while Figure 10 illustrated the
AUC-ROC curves, collectively reaffirming the model’s
excellence across various experimental setups.

B. RESULTS OF DATASET 2
In the context of Dataset 2, we conducted a comprehensive
analysis using 10-fold cross-validation. Our model consis-
tently demonstrated remarkable performance metrics, with
an average precision, recall, and F1-score of 99.53% and
an impressive specificity of 99.47%. The Cohen’s Kappa
coefficient, a measure of agreement, was also relatively

FIGURE 16. AUC-ROC curve for dataset 2 in experiment 2.

high at 99.06%. Additionally, the mean test accuracy
stood at a remarkable 99.53%, as detailed in Table 4.
Figure 11 illustrates the accuracy loss curves for each
fold to visualize the performance further, offering insights
into the model’s training process. Figure 12 presents the
confusion matrices for each fold, providing a detailed view
of how the model classified different classes. Furthermore,
Figure 13 showcased the AUC-ROC curves for each
fold, indicating the model’s ability to distinguish between
types.

In Experiment 2, elevated precision, recall, and F1-score
levels, registering at 99.69%. Furthermore, the Cohen’s
Kappa value was recorded at 99.37, with a correspond-
ing specificity of 99.68%. The training process lasted
for 432.08 seconds. The test accuracy mirrored the high
performance, also resting at 99.69%. Figure 15 delved into
the confusion matrix, providing a detailed view of the
model’s classification performance. Figure 16 depicts the
AUC-ROC curve, reaffirming the model’s excellence in
binary classification by effectively distinguishing between
the two classes.
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TABLE 4. Results of 10 fold cross-validation on the dataset 2.

FIGURE 17. Accuracy and loss curves for 10 fold cross-validation on dataset 3.

FIGURE 18. Confusion matrices for 10-fold cross-validation on dataset 3 where 0, 1, and 2 represent AD, MCI, and CN, respectively.

C. RESULTS OF DATASET 3
In the context of Dataset 3, our model consistently demon-
strated exceptional performance across multiple evaluations.
During K-fold cross-validation, it consistently achieved

outstanding metrics, with an average precision, recall,
and F1-score of 99.26% and an impressive specificity of
99.45%. The Cohen’s Kappa coefficient, indicating the
model’s agreement with actual values, was also notably
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FIGURE 19. AUC-ROC curves for 10-fold cross-validation on dataset 3 where 0, 1, and 2 represent AD, MCI, and CN, respectively.

TABLE 5. Results of 10 fold cross-validation on the dataset 3.

FIGURE 20. Accuracy and loss curve for dataset 3 in experiment 2.

high at 98.81%. Furthermore, the model showcased an
exceptional mean test accuracy of 99.26%, as indicated in
Table 5. Visual insights from Figure 17 displayed accuracy

loss curves for each fold. In contrast, Figure 18 depicted
confusion matrices, and Figure 22 presented AUC-ROC
curves, highlighting the model’s robustness and ability to
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FIGURE 21. Confusion matrix for dataset 3 in experiment 2 where 0, 1,
and 2 represent AD, MCI, CN, respectively.

FIGURE 22. AUC-ROC curves for dataset 3 in experiment 2 where 0, 1,
and 2 represent AD, MCI, CN, respectively.

FIGURE 23. Confusion matrix for a model trained on dataset 2 and
assessed on the holdout dataset from dataset 3 here 0 and 1 represents
dementia and CN, respectively.

distinguish between different data classes. When applying
10-fold cross-validation without manually selecting slices,
the model yielded a mean precision of 98.28%, recall of
98.18%, F1-score of 98.13%, specificity of 99.09%, Cohen’s
kappa of 96.83, and test accuracy of 98.18%.

In Experiment 2, precision is sustained at 98.66%, recall
at 98.65%, F1-score at 98.65%, and Cohen’s Kappa value
at an impressive 97.85%, accompanied by an exceptional
specificity of 100%. Once more, the test accuracy reached
a remarkable 98.65%. Figure 20 provided insight into the
accuracy and loss curves. Figures 21 and 22 provided
valuable insights into the model’s performance under dif-
ferent experimental setups, with Figure 21 offering detailed
classification performance through confusion matrices and

FIGURE 24. AUC-ROC curve for a model trained on dataset 2 and
assessed on the holdout dataset from dataset 3.

FIGURE 25. LIME for dataset 1 (Top three features).

FIGURE 26. LIME for dataset 2 (Top three features).

Figure 22 reaffirming its excellence through the AUC-ROC
curves.
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TABLE 6. Comparing results of pre-trained CNN models with the proposed ViT-GRU on dataset 1.

TABLE 7. Comparing results of pre-trained CNN models with the proposed ViT - GRU on dataset 2.

FIGURE 27. LIME for dataset 3 (Top three features).

We also used this dataset as a holdout dataset for a
model trained on dataset 2 for binary classification. In this
evaluation, we merged two classes from the original 3-class
dataset, namely AD and MCI, into a single dementia class,
while CN remained unchanged. The model’s performance for
binary classification was assessed, resulting in a precision
of 96.12%, a recall of 95.96%, an F1-score of 96.00%,
a specificity of 95.65%, a Cohen’s kappa of 90.61, and a test
accuracy of 95.96%. The confusion matrix and AUC-ROC
curve are shown in Figures 23 and 24, respectively.

FIGURE 28. SHAP for dataset 1.

VI. DISCUSSION
The accurate and early diagnosis of AD is critical for
effective clinical intervention and management. In this study,
we proposed a framework that combines a ViT and a GRU
to detect AD characteristics from MRI images. ViT excels
at extracting intricate features from brain images, capturing
essential patterns relevant to AD. This gives our model a
potent data representation. The GRU, an RNN, is adept
at capturing sequential dependencies within these features.
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TABLE 8. Comparing results of pre-trained CNN models with the proposed ViT - GRU on dataset 3.

FIGURE 29. SHAP for dataset 2.

This is vital because Alzheimer’s progression unfolds over
time, and the GRU effectively handles such temporal data.
Unlike CNNs, which focus on spatial features, our ViT-GRU
model captures temporal dependencies in brain imaging
data, contributing to its superior performance. Furthermore,
our approach leverages ViT’s self-attention mechanisms,
enabling us to pinpoint crucial brain regions or patterns that
drive the model’s predictions. This enhances the model’s
explainability, a valuable aspect of AD detection. The
model’s performance in classification tasks was exceptional,
with accuracy rates of 99.53%, 99.69%, and 99.26% for
Dataset 1, Dataset 2, and Dataset 3, respectively. When
Dataset 3 was tested on a model trained on Dataset 2, the
accuracy was 95.96%. These impressive results demonstrate
the model’s effectiveness.

Our comprehensive study involved an in-depth anal-
ysis utilizing several pre-trained DL models, namely
ResNet50, MobileNetV2, VGG19, Xception, InceptionV3,
DenseNet121, and VGG16. We fine-tuned these models by
adjusting hyperparameters, incorporating dense layers after
the flatten layer, and, in some cases, unfreezing the last few
layers to achieve the highest accuracy. Our primary objective
was to assess their performance across key metrics such

FIGURE 30. SHAP for dataset 3.

as precision, recall, F1-score, specificity, Cohen’s Kappa,
training time, and test accuracy. Furthermore, we introduced
and evaluated our own proposed model, which outperformed
all other models in every measured aspect and demonstrated
significantly reduced training time. Tables 6, 7, and 8
present the comparative results for Dataset 1, Dataset 2, and
Dataset 3.

Incorporating XAI techniques into our model enhances
its interpretability, a crucial factor for its acceptance and
integration into clinical practice. By providing clinicians with
insights into the model’s decision-making process, we enable
them to understand the factors that contribute to the AD
diagnosis. This transparency fosters trust in the model and
allows clinicians to validate its decisions, ensuring that the
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TABLE 9. Comparative assessment of prior studies.

model aligns with their expertise and clinical knowledge.
The inclusion of XAI techniques distinguishes our study
from previous works and highlights its potential for practical
implementation in healthcare settings.

Our analysis of the DL model’s performance using
LIME, SHAP, and Attention map has yielded consistent

results, indicating that the model accurately captures the key
characteristics of AD. These techniques have highlighted
several well-established hallmarks of the disease, including
hippocampal atrophy, enlarged ventricles, cortical atrophy,
and white matter lesions [50]. Such findings indicate that
the model is effectively learning from the data and capturing

VOLUME 12, 2024 8407



S. M. Mahim et al.: Unlocking the Potential of XAI for Improved AD Detection and Classification

FIGURE 31. Attention map for dataset 1.

the underlying biology of AD. The insights gained from the
LIME and SHAP analyses have significant implications for
diagnosing and treating AD. By identifying the most critical
features, clinicians can focus on these areas when interpreting
MRI scans or other diagnostic tests. These can lead to earlier
and more accurate diagnosis, which is critical for effective
treatment and management of the disease.

We have presented our findings in Figures 25, 26, and 27
with each figure corresponding to a specific dataset
(Dataset 1, Dataset 2, and Dataset 3) in the LIME analysis,
accompanied by example images. Additionally, Figures 28,
29 and 30 depict results from the SHAP analysis, again
corresponding to Dataset 1, Dataset 2, and Dataset 3 along
with example images. Finally, Figures 31, 32, and 33 illustrate
the outcomes of the Attention map analysis, once more linked
to the respective datasets and featuring example images.

In addition, Table 9 comprehensively compares notable
AD classification approaches, considering factors such as
dataset, number of classes, classification method, image
count, and performance metrics. It highlights the diver-
sity in AD classification, with varying datasets and class
distinctions. Different techniques, including traditional ML
algorithms and DL models, are used for classification.
The number of images varies, indicating dataset sizes.
Performance metrics such as accuracy, precision, recall,
F1-score, specificity, and Cohen’s kappa value demonstrate

FIGURE 32. Attention map for dataset 2.

FIGURE 33. Attention map for dataset 3.

the effectiveness of different approaches. The proposed
ViT-GRU model outperforms other models and algorithms,
showcasing its potential as a state-of-the-art approach in AD
classification, leveraging self-attention and RNN.

A. FUTURE WORK
The model proposed in this study can be subjected to further
evaluation on more extensive and diverse datasets to assess
its effectiveness and generalizability in real-world scenarios.
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Furthermore, the model can be extended to include other
biomarkers, such as genetic markers and cerebrospinal fluid,
to improve the accuracy of AD diagnosis.

VII. CONCLUSION
In conclusion, this study presents a novel approach for
accurate AD classification using a ViT-GRU model and
XAI techniques. The proposed model demonstrates superior
performance on Dataset 1, Dataset 2, and Dataset 3, respec-
tively. These results outperform that of existing methods
and confirm the effectiveness of the ViT-GRU model in
accurately identifying AD characteristics from MRI images.
The incorporation of XAI techniques further enhances the
model’s interpretability, allowing clinicians to understand the
decision-making process and gain insights into the factors
driving AD diagnosis. By visualizing the significant features
contributing to the model’s predictions, clinicians can make
informed decisions and improve clinical interventions. The
ViT-GRU model also demonstrates superior performance
compared to other pre-trained models, taking less time to
train and providing the best accuracy, precision, recall,
F1-score, specificity, and Cohen’s kappa value. Overall, this
study highlights the potential of the ViT-GRU model and
XAI techniques in accurately classifying AD, providing
valuable insights for clinicians, and opening avenues for
real-world clinical applications. The proposed framework
holds promise for early and accurate AD diagnosis, enabling
timely interventions and improved patient care.
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