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ABSTRACT The importance of a high-quality dataset availability in 3D human action analysis research
cannot be overstated. This paper introduces DGU-HAO (Human Action analysis dataset with daily life
Objects). This novel 3D human action multi-modality dataset encompasses four distinct data modalities
accompanied by annotation data, including motion capture, RGB video, image, and 3D object modeling
data. It features 63 action classes involving interactions with 60 common furniture and electronic devices.
Each action class comprises approximately 1, 000 motion capture data representing 3D skeleton data and
corresponding RGB video and 3D object modeling data, resulting in 67, 505 motion capture data samples.
It offers comprehensive 3D structural information of the human, RGB images and videos, and point cloud
data for 60 objects, collected through the participation of 126 subjects to ensure inclusivity and account for
diverse human body types. To validate our dataset, we leveraged MMNet, a 3D human action recognition
model, achieving Top-1 accuracy of 91.51% and 92.29% using the skeleton joint and bone methods,
respectively. Beyond human action recognition, our versatile dataset is valuable for various 3D human action
analysis research endeavors.

INDEX TERMS 3D human action analysis, human action recognition, human activity understanding, motion
capture, multi-modal dataset.

I. INTRODUCTION
Securing high-quality human action datasets has become
increasingly important due to the recent surge in research
activities on human action analysis, which plays a vital
role in computer vision, machine learning, and artificial
intelligence. These datasets mainly consist of RGB videos,
sequences of images, 3D structural information of humans,
etc., and annotation of each action class. The annotation
data represents the label and description of each action
class. They are used to train and validate computer
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vision and machine learning models to analyze human
actions. Various applications use human action analysis
datasets, such as autonomous driving, security surveil-
lance, user behavior detection, sports analysis, and medical
diagnosis.

The analysis of human actions has traditionally been based
on RGB videos [1]. However, the recent availability of depth
cameras, such as Microsoft Kinect [2], [3], has enabled the
tracking ofmotion sequences in 3D. This development has led
to the emergence of multi-modality datasets, which include
3D skeleton information on human actions. These datasets
have garnered attention in the research field and have been
shown to achieve higher accuracy [4]. Several multi-modality
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datasets exist for human action analysis, such as Toyota
Smarthome [5], NTU RGB+D [6], [7], Northwestern-
UCLA [8], and PKU-MMD [9]. These datasets include 3D
structural data, representing human skeleton information for
each frame, as well as RGB images and videos. Human
action frequently involves interactions with objects, yet
current datasets face constraints in furnishing object-related
information and necessitate separate pre-processing for each
modality for model training. To overcome these challenges,
we introduce a novel dataset, DGU-HAO: Human Action
analysis dataset with daily life Objects, designed to address
these limitations.

DGU-HAO is a versatile dataset in human action analysis
research, encompassing tasks such as human action recog-
nition, human action generation, human pose estimation,
real-time detection, and more. In this paper, our dataset is
specifically validated with a focus on human action recogni-
tion. To address the constraints seen in prior datasets, DGU-
HAO meticulously gathered data from various subjects,
considering variations in age, body types, and movement
patterns, achieving a more balanced representation of these
characteristics. Moreover, it offers information on objects,
encompassing everyday furniture and electronic devices,
highlighting their interactions with humans in point cloud
data (PCD) format. Additionally, our dataset simplifies the
data pre-processing task by consolidating video, 3D human
structural, and label information into a single JSON file.
For an in-depth description of our dataset, please refer to
Section III.
We summarize our key contributions in this paper as

follows:

• DGU-HAO explores a new realm by gathering data
that includes common human actions related to the
use of furniture and electronic devices in home and
office environments. Our dataset stands out for offering
3D modeling information in PCD format for objects
engaged in human interactions, providing a distinctive
resource. This facilitates the exploration of the human-
object interaction domain.

• DGU-HAO is appealing due to its multi-modality,
featuring a total of four data modalities with suffi-
cient data samples. Moreover, its excellence lies in
the provision of annotation data in JSON format,
enhancing user convenience in utilizing the dataset.
This annotation data comprises comprehensive infor-
mation about each action class, including details on
objects, action classes, subjects, section tagging for
RGB videos, and 3D coordinate information for all
joints.

• DGU-HAO encompasses 126 subjects, considering
variations in age, body shapes, movement patterns,
and supplementary multi-modal information. This
enriched diversity enhances the model’s generalization
capacity and facilitates action recognition in various
environments.

The structure of this paper is as follows: Section II
reviews previous research on 3D-based human action analysis
datasets and deep learning algorithms. Section III describes
the structure of the proposed dataset and how we built
and pre-processed our dataset. Section IV explains the
dataset evaluation results with the human action recognition
algorithm and performance analysis. Finally, section V
summarizes the paper, provides conclusions, and discusses
future work.

II. LITERATURE REVIEW
A. 2D HUMAN ACTION DATASETS
The development of computer vision and pattern recognition
technologies is significantly influenced by 2D human action
datasets. Notable examples such as UCF101 [10], Kinet-
ics [1], [11], [12], HMDB51 [13], and NTU RGB+D [6],
[7] encompass a diverse range of activities, providing a com-
prehensive platform for evaluating algorithm performance
across various scenarios. These datasets play a crucial role
in advancing the understanding and capabilities of action
recognition algorithms.

UCF101 [10] is a widely used benchmark dataset
for human action recognition in videos, comprising
13, 320 video clips across 101 action categories. The dataset
encompasses diverse activities such as sports, daily life,
and various human interactions. Each video clip is captured
under realistic conditions, providing a rich and challenging
resource for evaluating the performance of action recognition
algorithms.

The Kinetics [1], [11], [12] serves as an extensive
benchmark for video-based action recognition, featuring
approximately 650, 000 video clips that encompass 700 dis-
tinct human action classes. Encompassing a broad spectrum
of activities, such as sports, routine actions, and intricate
interactions, each video clip has a duration of about
10 seconds, and there are at least 700 video clips for each
action class. The dataset is compiled from videos sourced
from YouTube.

The HMDB51 [13] is a widely utilized benchmark dataset
for human action recognition in videos, comprising 51 action
classes. It consists of 6, 766 high-quality clips extracted from
various sources, including movies and YouTube, covering a
diverse range of actions such as sports, dancing, and everyday
activities. Each action class contains at least 101 clips.

Nevertheless, as the majority of 2D datasets heavily rely on
RGB images or videos, there exists a constraint in adequately
conveying information about the depth of motion and spatial
location. This limitation poses challenges in accurately
discerning lateral shifts, obscured sections, and interactions
with objects that occur during movement. Consequently, the
introduction of a 3D human action dataset aimed to address
these constraints. Leveraging advancements in motion cap-
ture sensors and depth cameras like Microsoft Kinect and
the Optical Motion Capture System, the shortcomings of 2D
datasets were mitigated by more effectively capturing the
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TABLE 1. Comparison of the proposed DGU-HAO dataset and some other datasets for 3D action recognition. Our dataset provides point cloud data of
60 objects used in daily life. The JSON within the data modalities section tags annotation data for each data sample with metadata, including actor
information, motion scenario details, object code, action class, and its code.

spatial dimension and temporal characteristics of motion,
incorporating depth information alongside RGB frames.

B. 3D HUMAN ACTION DATASETS
Table 1 compares five existing 3D human action datasets and
the specifications of our DGU-HAO dataset.

One of these datasets, Northwestern-UCLA [8], encom-
passes RGB, depth, and 3D human skeleton data concurrently
captured by three Kinect cameras. It comprises ten distinct
action categories, including picking up with one hand,
picking up with two hands, dropping trash, walking around,
sitting down, standing up, donning, doffing, throwing,
and carrying. Ten actors performed each of these actions,
resulting in a dataset containing 1, 475 video and data
samples. It’s important to note that this dataset has limitations
due to the small number of human action classes and actors
included.

NTU RGB+D [6] is an expansive dataset, comprising a
total of 56, 880 samples derived from 40 subjects engaged in
60 diverse daily life action classes. The dataset was recorded
using three different views of RGB cameras, offering a
rich array of modalities, including depth maps, 3D skeleton
data encompassing 25 joints, RGB frames, and infrared
information.

PKU-MMD [9] consists of 1, 076 untrimmed video
sequences featuring 66 subjects captured from three different
camera views. This dataset contains 5.4 distinct action
categories annotated, yielding nearly 20, 000 action instances
and a staggering 5.4 million frames.

As described in [5], the Toyota Smarthome dataset
comprises 31 action motion classes and 16, 115 RGB+D
videos executed by 18 subjects. Nonetheless, this dataset has
limitations, including intra-class variations, class imbalances,
similarities among different action classes, unequal video
lengths, and fewer actors.

The NTU RGB+D 120 dataset, as introduced in [7],
involves data contributed by 106 distinct subjects and
encompasses over 114, 000 video samples captured across
155 different views, comprising 8 million frames. This exten-
sive dataset covers 120 unique action classes, encompass-
ing daily routines, interactive activities, and health-related
actions. In [7], the authors have introduced an innovative
framework known as Action-Part Semantic Relevance-aware
(APSR) to enhance the reliability of one-shot 3D action
recognition.

As depicted in Table 1, the DGU-HAO dataset showcases
a remarkable range in terms of data volume compared to
existing datasets [5], [6], [8], [9], with a maximum that
is approximately 46 times larger and a minimum that is
1.18 times larger, excluding the dataset in [7]. When focusing
on video data, our dataset stands out in both size and
resolution, surpassing all other datasets [5], [6], [7], [8], [9].
It offers roughly twice the volume of video data compared
to [7], which boasts the most substantial video data among
existing datasets and an astonishing 194 times more video
data than the dataset with the least video content [9]. While
our dataset offers fewer action classes than [7], it outnumbers
all other datasets [5], [6], [8], [9]. In terms of subjects,
we have gathered data from a diverse pool of individuals,
including various genders, heights, weights, and ages, thus
enhancing the overall robustness of our dataset.

Furthermore, our dataset includes point cloud data for
60 objects interacting with humans. Additionally, each data
sample is accompanied by an annotation file containing
meticulously refined motion capture information, presented
in a straightforward 1:1 correspondence in JSON format. This
structure greatly simplifies data processing and utilization.

C. HUMAN ACTION RECOGNITION NETWORKS
The Video-Pose Network (VPN) in [14] is integrated into
the top layer of a 3D convolutional network, comprising
two main components: the attention network and spatial
embedding processes. The attention network involves the
pose backbone and spatio-temporal coupler, which trans-
forms 3D pose input into a graph format using Graph
Convolutional Network (GCN) [15] to derive features for
each 3D pose, including attention weights capturing spatial-
temporal characteristics. The spatial embedding process
improves alignment between RGB images and 3D poses
by measuring distance mapping in the embedding space,
enabling accurate identification of similar 3D pose operations
using RGB images. This research is significant for predicting
human behavior by combining RGB and 3D Pose skeletons,
although it comes at the cost of slower processing speed.

VPN++ [16] is an advanced network that addresses
the shortcomings of VPN [14]. It transforms existing VPN
into VPN-F (VPN-Feature) and VPN-A (VPN-Attention)
and combines them to form VPN++. Both VPN-F and
VPN-A are teacher-student networks. The difference from
VPN is that VPN++ uses only RGB images to reduce the
time required for testing. Although the time required for
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action recognition has been reduced, it still exhibits a slower
speed. It faces challenges related to lower accuracy when
compared to recently developed action recognition networks
like PoseC3D [17] or MMNet [18].

PoseC3D [17] is a 3D-CNN-based approach for skeleton-
based action recognition, which takes 3D heatmap volumes
as input. 3D-CNN-based approaches first extract 2D poses
as coordinates from frames of a video. After extracting 2D
poses to be input into PoseC3D, the model generates pseudo
heatmaps for joints and limbs by stacking 2D heatmaps
along the temporal dimension, creating a 3D representa-
tion. PoseC3D outperforms the GCN-based approach for
robustness, interoperability, and generalization. Our dataset
is specifically structured to utilize 3D coordinate values of
individual keypoints as the model input. However, PoseC3D
operates by utilizing the 2D coordinate values of individual
keypoints in each frame. Consequently, PoseC3D may not be
the most suitable model for validating our dataset due to this
inherent mismatch in the input data format.

Model-based Multi-modal Network (MMNet) [18] is an
ensemble model based on GCN [15] and CNN models. The
input data of the MMNet is 3D skeleton data and RGB
videos; the model’s output is action class. The pre-processing
consists of mainly 2 phases to train this model. First, extract
joints and bones from the 3D skeleton data, respectively.
Secondly, extract the spatio-temporal region of interest (ST-
ROI) from the RGB videos. The framework of the MMNet
model is constructed with 3 individual networks. First, a GCN
network for training joints from 3D skeleton data. Second,
a GCN network for training bones from 3D skeleton data.
Lastly, a CNN-based ResNet [19] network for training ST-
ROI images from RGB videos. Finally, MMNet recognizes
action class by the ensemble of those 3 individual networks.

Hence, we decided that the MMNet [18] model was more
appropriate for validating our dataset, so we used MMNet to
validate the data. Our dataset comprises 3D motion capture
data, RGB videos and images, and 3D object modeling data.
The MMNet model extracts and uses 3D skeleton data from
3D motion capture data. The PoseC3D [17] model extracts
2D skeleton data from a 2D RGB image, stacks the 2D
skeleton data according to the time dimension, and uses it
as 3-channel data. In other words, human action data itself
is not 3D data consisting of x, y, and z axes. We tracked
human action using a motion capture sensor and obtained 3D
coordinate values of human action for the x, y, and z axes.
When using PoseC3D, it extracts its own 2D coordinate value
from RGB, making it challenging to properly verify the 3D
motion capture data we built. Therefore, we decided that the
MMNet model, which extracts 3D skeleton joints and bones
from 3D motion capture data and uses them as input data,
is more suitable for verifying our data.

III. DATASET STRUCTURE
A. DATA COLLECTION
The motion capture procedure occurred in a controlled
environment, where video recording, 3D motion capture, and

FIGURE 1. All data types were collected and built simultaneously. The
motion capture data coordinates of the finger were collected separately
from the motion capture data of the body part using MoCap Pro Super
Splay, a hand motion data collection device. The finger motion capture
data coordinates were merged with the body motion capture data
coordinates according to the human skeleton’s hierarchical structure.

object point cloud data collection occurred simultaneously.
This environment was carefully set up to avoid light
reflections and covered a range of 6 to 15 meters. The
setup utilized twelve Qualisys Arqus A9 cameras (Qualisys),
three Qualisys Miqus cameras (Qualisys), and a LiDar
Scanner (RTC 360, Leica), as illustrated in Fig. 1. To ensure
precision, calibration rods were employed to measure the
capture area and fine-tune camera settings, including lens
distortion, angles, and positions. Once calibrated, the cameras
defined the designated capture area where participants were
instructed to perform their actions. These participants wore
specialized suits with markers attached to key joint reference
points, enabling the capture of 3D spatial information. Before
the actual motion capture, basic motions were recorded to
assess capture quality and optimize settings through software
and hardware adjustments. The data acquired from this
optical motion capture setup served as the initial raw data,
which was subsequently processed and refined into a pre-
processed format.
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FIGURE 2. Configuration of the body joints and label in our dataset.

In the conversion to BVH format, the initial raw data under-
went processing with QTM (Qualisys Track Manager) and
underwent noise reduction procedures. Simultaneously, the
video data in MP4 format anonymizes sensitive information,
safeguarding the privacy of individuals.

The dataset includes 3D skeleton data and RGB format
data, which was captured via a camera. Using a camera,
the RGB dataset offers visual appearance information in
images photographed from multiple angles. Specifically,
three different RGB camera viewswere employed, positioned
at 0, -30 degrees, and 30 degrees with consistent height.
This configuration enables the capture of actions from the
front, left, and right perspectives. When utilizing the RGB
data for training purposes, it can be segmented and applied
per frame. This flexibility enhances performance by training
multi-modal data, using the corresponding visual data beyond
the skeletal information.

B. DATASET STRUCTURE
Our dataset consists of 67, 505 motion capture data samples
involving 126 subjects interacting with 60 different objects
across 63 unique action classes. It was meticulously designed
to emphasize clear differentiations between actions of similar
nature. To achieve this, we harnessed the power of multiple
modalities, incorporating both RGB frames and 3D skeletal
joint positions. This multi-modal approach equips the model
with a comprehensive understanding of various facets of the
data, enabling it to deduce contextual nuances and ultimately
enhancing its performance. Furthermore, our dataset includes
detailed labeling of 25 body joints, and you can observe the
configuration of these joints in Fig. 2.

1) DATA MODALITIES
In this research, we introduce a dataset gathered through
the utilization of the Qualisys Arqus A9 optical motion

TABLE 2. Data modality and description of each modality.

TABLE 3. Configuration of annotation data name format.

capture system. This comprehensive dataset encompasses
diverse data types, including motion capture, video record-
ings, images, and 3D modeling information, amounting to
67, 505 individual samples.
Our dataset is structured in various formats to accom-

modate different aspects of the data. The motion capture
data is provided in the BVH file format, with each frame
containing the 3D coordinates of the joints. We offer video
data stored in MP4 files for visual representation, capturing
the actions dynamically. Additionally, image data is presented
in JPG format, showcasing static frames of the actions,
as depicted in Table 2. Furthermore, the 3D object modeling
data is available in the FBX format, encompassing the
hierarchical skeleton structure and joint details. The dataset
includes annotation (JSON) data, encompassing segment
tagging, meta-information, action scenarios, and labeling
information for video segments. The Annotation data name
format configuration is shown in Table 3. The annotation data
contains skeleton coordinate values from the motion capture
data converted to JSON format per joint to facilitate the use
of the data.

2) ACTION CLASSES
We first selected 60 objects frequently used in daily life.
Then, we selected 63 action classes by considering how
people interact with those 60 objects and referring to the
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TABLE 4. Configuration of the subject body types and age groups.

NTU RGB+D dataset [6], [7]. For example, in the case of
a cell phone, a person’s interaction with the cell phone may
include pressing a button on the cell phone, answering a
call, and immediately hanging up after answering the call
(rejecting the call). Each action class consists of a total of
three phases: the subject approaches the object, uses the
object, and retreats after use. The inventory of action classes
has been meticulously arranged and can be found in Table 5
and Table 6. There are 63 distinct action categories, each
classified according to the furniture or electronic devices
commonly employed in daily activities.

3) SUBJECTS AND OBJECTS
We selected age-specific body type standards by considering
differences in movement patterns depending on the object
user’s age and physique and constructed a dataset by
recruiting at least 126 subjects evenly from the corresponding
body type standard distribution. Configuration of the body
type standards by age are provided in Table 4. We evenly
selected 126 subjects according to the above body type
standard table considering height and weight based on the
standard information on the Korean human body measured
through the Korean Human Body Measurement Survey.
Therefore, the male-to-female ratio is 53.5:46.5, and the age
ratio is 37% in the 10s ∼ 20s, 35% in the 30s ∼ 40s, and 29%
in the 50s∼ 60s. Additionally, we recruited subjects from the
general public so that their natural behavioral characteristics
could be demonstrated. Based on scenarios and action classes
in Table 5 and Table 6, we classified various subjects and
constructed a dataset by configuring the approaches, uses,
and retreat phases for the objects. Therefore, because we
constructed the dataset using a wide subject spectrum, our
dataset is effective in generalizing.

Our dataset encompasses 60 everyday objects commonly
encountered in household and office settings. These objects
are categorized into two main groups: furniture types
and appliances. The furniture types include a variety of
items such as chairs (12 types), sofas (5 types), desks

FIGURE 3. Overview of the data pre-processing to evaluate with the
MMNet model. To ensure the model data loader could properly process
our motion capture data obtained from Fig. 1, we converted the motion
capture data in BVH format into 3D skeleton metadata in text format.

(10 types), objects placed on tables (7 types), and various
other furniture pieces (e.g., wardrobes, beds, sinks, etc.,
totaling six types). Meanwhile, the appliances category
encompasses office equipment (e.g., computers, copiers,
etc., comprising 11 types) and home appliances (e.g.,
refrigerators, washing machines, etc., totaling nine types).
A total of 63 action classes interact with 60 3D-modeled
objects.

IV. DATASET PRE-PROCESSING AND EVALUATION WITH
MMNeT
A. DATA PRE-PROCESSING
We used the MMNet model [18] to evaluate the DGU-HAO
dataset. Therefore, we outline the pre-processing procedures
involved in acquiring the skeleton data, which serves as the

VOLUME 12, 2024 8785



J. Park et al.: DGU-HAO: A Dataset With Daily Life Objects for Comprehensive 3D Human Action Analysis

TABLE 5. 15 action classes and its action code with 40 furniture objects with its object code. All action classes belong to each motion scenario, with
seven motion scenarios. Each action class is interacting with one furniture object.

input for the MMNet model [18] in this section. We also
elaborate on the construction of the pre-processing pipeline.
The sequence of pre-processing steps is shown in Fig. 3.

1) BVH TO CSV
The BVH files initially contained joint positions in a relative
hierarchy, but our model necessitated global joint coordinates
for each frame during training. To achieve this conversion
from BVH files to CSV files containing joint positions,
we employed the bvh-converter tool and utilized the BVH
parser from cgkit.

The BVH parser meticulously analyzed the file structure,
extracting both joint positions and rotation information.
Subsequently, it converted the relative positions into global
coordinates using a ‘ZYX’ Euler rotation sequence. This

resulted in the extraction of 3D coordinates for each joint in
every frame, storing the data in CSV format. In this format,
each row corresponds to a frame, and the columns contain
the x, y, and z coordinates of the joints. Considering the
substantial size of the dataset, the conversion process was
notably time-consuming. To address this, we implemented
parallel processing in batches.

2) CSV TO SKELETON
To validate our dataset using the human action recognition
model, we select 25main joints from 75 keypoints refer to [6],
[7] as shown in Fig. 2. We pre-processed the CSV data into
3D skeleton data, formatted identically to the NTU-RGB+D
dataset [6], [7]. The information extracted from the CSV file
for each frame is thenwritten into a new skeleton file. This 3D
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TABLE 6. 38 action classes and its action code with 20 electronic device objects with its object code. All action classes belong to each motion scenario,
with 21 motion scenarios. Each action class is interacting with one furniture object.

skeleton data encompasses essential information, including
the total frame count, the number of detected individuals,
details for each person, joint count, and the 3D coordinates
of each joint. As we deal with the motions of a single person,
the number of recognized joints remains constant at 25. The
positions for the right and left hands are defined as the average
of the four sets of 3D coordinates for each hand. The 3D
skeleton data, sensitive to even minor positional variations,
plays a pivotal role and greatly influences the accuracy of 3D
human action recognition.

We applied a down-sampling rate of 10 frames per second
to enhance training efficiency, removing frames unrelated
to the specified action classes to eliminate extraneous
data.

B. EVALUATION ENVIRONMENT
In this study, we used the MMNet model [18] to validate
our dataset. The model was trained on 54, 334 samples
(80.48%) and evaluated on 13, 171 samples (19.52%), with
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TABLE 7. The hardware specifications.

TABLE 8. Configuration of the hyperparameters.

FIGURE 4. Visualizing a confusion matrix for 63 action classes based on
skeleton joint data, where the x-axis represents predicted labels and the
y-axis represents true labels.

accuracy calculated using confusion matrices generated
during training.

The hardware specifications used for evaluating the dataset
are provided in Table 7. Additionally, Table 8 presents the
hyperparameter configuration for the MMNet model, with
most of the parameters following the established MMNet
model settings [18].

C. EVAULATION RESULTS
In this study, two approaches were employed for data
validation: the first method involved training the model using
the 3D coordinate values of 25 joints as skeletal joints, while
the second method, known as skeleton bone, entailed model
training by connecting joints linked through the body’s bones
among the 25 joints, augmenting the dataset with real human
skeleton information.

Figures 4 and 5 provide visual representations of the
confusion matrices derived from the training results, where

FIGURE 5. Visualizing a confusion matrix for 63 action classes based on
skeleton bone data, where the x-axis represents predicted labels and the
y-axis represents true labels.

TABLE 9. Top 10 accurate action classes of the different methods on our
dataset. The rankings were organized according to accuracy, and
additional evaluation metrics such as F1 score, precision, and recall were
employed.

darker colors indicate higher values, with the x-axis denoting
model-predicted labels and the y-axis representing ground
truth labels. In Fig. 4, the diagonal matrix exhibits the
highest values corresponding to the skeleton joint method,
signifying effective learning in predicting action classes.
Similarly, in Fig. 5, illustrating the results for the skeleton
bone method, the diagonal matrix positions are the darkest,
indicating successful training in action class prediction and
affirming the dataset’s quality and integrity.

Table 9 presents the results of sorting the ten most accurate
action classes by method. In the skeleton joint method, the
action ‘A53: Refill a toner’ achieved the highest accuracy at
99.98%. Similarly, in the skeleton bone method, the action
‘A18: Putting in the item’ showed the highest accuracy, also
at 99.98%. Six out of the top 10 accurate action classes were
common to both methods, demonstrating the robustness of
the dataset.
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TABLE 10. Top 10 misclassified action classes of the different methods
on our dataset. The rankings were organized according to accuracy, and
additional evaluation metrics such as F1 score, precision, and recall were
employed.

Table 10 displays the results of sorting the ten action
classes with the lowest accuracy by the method. In the
skeleton joint method, the action ‘A01: Sit down with a
hand support’ had the lowest accuracy at 99.15%. For
the skeleton bone method, the action ‘A04: Crossing legs’
showed the lowest accuracy, but still achieved 98.67%
accuracy. However, compared to the high accuracy for
misclassification, it was confirmed that the performance was
poor in the F1-score and other performance indicators as
shown in Table 10. Similar to Table 9, six action classes out
of the bottom 10 were common to both methods, reinforcing
the dataset’s robust construction.

Furthermore, an observation revealed that most of the
top 10 accurate action classes involved interactions with
office equipment rather than home appliances. This suggests
slightly higher accuracy for actions related to office equip-
ment with distinct characteristics compared to similar actions
involving home appliances. However, it’s noteworthy that
even the lowest accuracy, 98.67% for ‘A04: Crossing legs’
in the skeleton bone method, is relatively high. Additionally,
with only about a 1.3% difference between the lowest and
highest accuracies (99.98%), it’s evident that all action class
data are evenly constructed.

Table 11 below compares test accuracy between our
dataset and other datasets trained using the MMNet model.
The accuracy results for datasets other than ours are based
on the MMNet model [18]. There is a discrepancy in
the experimental settings—the MMNet paper employed
80 epochs, whereas this paper utilized only 14 epochs.

For the skeleton joint method, our dataset achieved an
accuracy of 91.51%, slightly surpassing that of the PKU-
MMD dataset and exhibiting the highest accuracy among
the compared datasets. On the other hand, the skeleton bone
method recorded an accuracy approximately 1.1% lower than
the PKU-MMD dataset. Despite this, it ranked second in

TABLE 11. Comparison of the test accuracy of the MMNet model in our
dataset and the MMNet model in other human action recognition
datasets for each skeleton joint (SJ) and skeleton bone (SB) method.

accuracy among the seven datasets, demonstrating the robust
quality of our dataset.

V. CONCLUSION
This paper introduces a novel motion capture dataset tailored
for human action analysis, comprising an extensive collection
of 67, 505 video samples across 63 diverse action categories.
The dataset encompasses multiple data modalities, including
RGB images, videos, object point cloud data, and 3D skeleton
data, each associated with every action class, facilitating
versatile model training. The inclusion of a wide array
of human subjects has enabled the creation of a realistic
benchmark for human action recognition. When compared to
other 3D human action datasets (N-UCLA, NTU RGB+D,
PKU-MMD, Toyota Smarthome, and NTU RGB+D 120)
evaluated under the same conditions using the MMNet
algorithm, our dataset demonstrated notable performance,
particularly in accuracy. Specifically, the Skeleton Joint
method exhibited the highest accuracy among the datasets,
achieving a top-1 accuracy of 91.51%. The Skeleton Bone
method produced the most favorable results, boasting a top-1
accuracy of 92.29%, surpassing even the PKU-MMD dataset,
which achieved a top-1 accuracy of 93.40%. Notably, the
difference in top-1 accuracy between PKU-MMD and our
dataset in the Skeleton Bone method was merely 1.11%,
indicating a minimal distinction. Therefore, the experimental
outcomes underscore the utility of our motion capture dataset
as input for human action analysis models. Our dataset
is a general-purpose dataset that can be used for multiple
studies that analyze 3D human actions. In this paper, our
dataset was verified using a human action recognition model,
MMNet [18], but it is possible to apply various models, such
as human action generation and human-object interaction.
Nevertheless, it is essential to acknowledge the limitation of
our current evaluation, which solely focuses on human action
recognition. To address this limitation, we plan to propose
human action-object recognition networks, leveraging both
3D skeleton data and object point cloud data to enhance
model performance.
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