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ABSTRACT Existing vehicle position estimation methods are mostly based on Global Positioning System
(GPS) or a fusion of GPS and machine learning methods to realize vehicle position estimation. While
highway tunnels are many, GPS signals are easy to be interfered, and the vehicle loading rate of GPS
devices is limited, this kind of method can not be realized in a wide range of applications. In this context,
taking into account the ETC equipment that has been deployed and applied in large scale in China, the
vehicle equipment loading rate is over 90%, but the ETC gantry interval is large, and it is not possible
to effectively perceive the vehicle driving status inside the segment. Therefore, this paper is based on the
ETC transaction data to build the basic driving characteristics and short-term driving style of the vehicle
history segment, using GPS positioning data to build the internal characteristics of the segment, including the
characteristics of the road structure within the segment, the pattern of change of the vehicle position, so as to
put forward the highway in-transit vehicle position estimation method that considers the road characteristics
and short-term driving style. Firstly, the SC-Kmeans-Bilstm vehicle segment speed prediction model based
on PCA optimization is constructed by fusing vehicle short-term driving styles; secondly, the road model
within the segment is constructed by using moving average and wavelet smoothing methods; lastly, the
vehicle position data is temporally stabilized using linear interpolation and first-order inverse difference, and
vehicle position estimation within the highway segment is realized by using DLCNN-LSTM-ATTENTION
fusion model based on L1 regularization by combining vehicle segment speeds, road characteristics, and
vehicle base driving characteristics. Among them, the short-term driving style helps us to obtain the vehicle
segment speed more accurately, and the addition of the road model makes this method better explain the
variability of the data. The experimental results show that the present method can achieve on-travel vehicle
position estimation within 2km with an error of less than 50m in a full-sample highway environment, and
can provide over-the-horizon sensing for intelligent vehicles.

INDEX TERMS Vehicle position estimation, highway, road features, SC-Kmeans-Bilstm, spatio-temporal
data smoothing, L1 feature selection, DLCNN-LSTM-ATTENTION.

I. INTRODUCTION
In recent years, with the continuous integration of informa-
tion technology and the transportation industry, the concept of
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intelligent transportation systems has attracted attention from
all parties. Intelligent transportation systems aim to improve
traffic efficiency, optimize traffic flow, and improve traffic
safety. The prerequisite for achieving these functions is to
have a clear understanding of the location of vehicles in
transit. Therefore, in transit vehicle position estimation is a
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key foundational technology in the construction of intelligent
transportation systems, which has important applications
in path navigation, vehicle collaborative control, vehicle
collision warning, and other aspects [1], [2].

For highways, accurately estimating the location of
vehicles can monitor traffic flow and congestion in real-time,
which helps traffic managers understand the condition of
the road, take timely measures to alleviate congestion, guide
traffic flow to idle roads, and more effectively optimize road
conditions. Secondly, by estimating the location of vehicles
in transit, more accurate navigation services can be provided
for vehicles based on their real-time location information and
traffic conditions, optimizing their driving routes, avoiding
congestion and cumbersome routes, and thereby improving
driving efficiency and safety [3], [4], [5]. In addition,
by collecting vehicle location data, traffic management
departments can analyze the traffic flow patterns of different
periods and regions, providing a basis for traffic policy
formulation and rational planning. This helps to plan road
construction and transportation facility layout reasonably
to meet the growing transportation demand. Therefore,
accurately obtaining the location of vehicles in transit is of
great significance for ensuring the safety of highway driving
and improving the efficiency of highway operation [6], and
is also a key technology necessary for building a smart
highway.

With the accelerated integration of new-generation infor-
mation technology and the automotive industry, it has further
promoted the development of the intelligent automotive
industry. In transit vehicle position estimation is a crucial
part of intelligent driving systems and is of great significance
for the upgrading of the intelligent driving industry [7].
One of the foundations for achieving high-level intelligent
driving is the real-time perception of the driving environment
by intelligent vehicles [8]. The environmental composition
that causes the greatest impact on vehicles while driving on
highways is the surrounding vehicles. Therefore, achieving
position perception of vehicles in transit is the core task of
intelligent vehicles in perceiving the driving environment,
and it is also an important guarantee for the safety and com-
fort of intelligent vehicles [9]. The current popular perception
method is to perceive the location of vehicles around smart
cars through sensors such as LiDAR and cameras. However,
these methods are limited by the mechanical performance
of the equipment, weather, and other factors, and their
perception distance to the surrounding driving environment
is limited and unstable. In situations where road design
obstructs the view of equipment and low visibility, it is easy
to cause dangerous working conditions. Secondly, due to the
limited perception distance of devices, smart cars are unable
to perceive ultra low speed vehicles outside the sight range,
resulting in their inability to plan their speed in advance and
affecting the driving experience of smart cars. Therefore,
stable vehicle position perception is the key to the upgrading
and development of the intelligent vehicle industry.

In summary, accurately obtaining vehicle positions is
of great significance for the comprehensive construction
of intelligent transportation systems and promoting the
upgrading of China’s automotive industry towards intelligent
driving. With the continuous progress of social and economic
levels, the number of private cars is bound to increase
significantly, which will bring severe challenges to the
transportation system. At that time, the demand for functions
such as traffic flow guidance and road condition evaluation of
intelligent transportation systems will become even stronger.
How to achieve large-scale vehicle position estimation
without increasing costs has become a key issue.

We will organize the paper as follows: In the next section,
we summarize the relevant literature on vehicle position
estimation at home and abroad, and summarize its drawbacks
in the field of vehicle position estimation within highway
segments; In the third section, we discuss the differences and
innovations between our research and existing research; In
the fourth section, we introduced the implementation process
of our proposedmethod for estimating the position of vehicles
in transit on highways, taking into account road features
and short-term driving styles; The fifth section introduces
the application effect of our method in actual highway
environments; The final section summarizes the application
effectiveness of our method.

II. RELATED RESEARCH
With the rapid development of the automotive industry
and the increasing complexity of road design and traffic
situations, vehicle location estimation methods have shown
a trend of upgrading from relying solely on the Global
Positioning System (GPS), to multi-sensor collaboration,
and then to collaborative iteration of sensors and machine
learning methods.

The precise positioning of vehicles was initially achieved
by the Global Navigation Satellite System (GNSS) and
the GPS. However, due to communication interruptions
and multipath errors in tunnels, canyons, and other road
segments, GPS and GNSS have poor performance and cannot
meet the requirements of modern intelligent transportation
systems [10], [11], [12], [13]. Therefore, formany application
scenarios that require precise and reliable positioning,
independent GNSS or GPS is considered unreliable [2], [14],
[15], [16].

To solve the problem that GPS or GNSS alone is prone
to interference, Zongwei Wu [15] et al. proposed a method
to improve the attitude estimation accuracy of a low-cost
inertial navigation system/GPS (INS/GPS) integrated vehicle
by utilizing the heading angle measured by the GPS, which
effectively reduces the effects of yaw angle error, sideslip
angle, and the noise of the GPS measurements, and improves
the positioning accuracy compared to the GPS/GNSS alone.
GPS/GNSS alone improves the positioning accuracy. Due
to the complementary nature of sensors [18], [19], [20],
information from GPS and vehicle motion sensors is widely
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used for vehicle position estimation to obtain reliable and
accurate vehicle position. Rezaei and Sengupta [21] et al.
proposed a vehicle position estimation scheme based on
the integration of GPS and vehicle sensors and used a
Kalman filter for data fusion to improve the vehicle position
estimation accuracy. The loading rate and cost of vehicle
motion sensors are always difficult to balance

To address the problem of GPS positioning accuracy
degradation or signal loss when a vehicle moves in an
area where GPS signals cannot be received (tunnels or
underpasses) or in an area where very strong multipath
propagation occurs (areas surrounded by buildings covered
by high glass). Omar et al. [22] designed a position estimation
method for the integration of GPS and waypoint projection
nav-igation systems, and through the simulation to verify the
effectiveness of their method. Wang et al. [23] et al. first
proposed a robust Direction Of Arrival (DOA) estimation
method based on sparse Bayesian learning (SBL) to achieve
DOA estimation of target vehicles under nonuniform noise
conditions. Then, based on the DOA estimation results, every
two base stations in the localization system cross-localize
the target vehicle once. Finally, based on the results of
three cross-localizations, robust localization can be achieved.
A large number of simulation results show the effectiveness
and superiority of the method. Guo et al. [24] intro-
duced multi-output (FDA-MIMO) radar into an intelligent
transportation system (ITS) and used tensor decomposition
to process transportation big data (TBD) to improve the
real-time performance of target position estimation. An
algorithm is proposed for angle and distance estimation in
multi-output radar systems where array gain phase error
and spatial color noise coexist. Firstly, a four-dimensional
tensor was constructed using the temporal irrelevance of
colored noise to eliminate the impact of colored noise on ITS.
Secondly, a directional matrix containing target information
is obtained through parallel factorization. An optimization
problem was constructed for the array gain phase error, and
the Lagrange multiplier method was used to solve the optimal
solution. The influence of gain phase error is eliminated by
utilizing the optimal solution and directional matrix. Finally,
the position information of the car was obtained by fitting and
solving using the least squares method (LS). Havyarimana
et al. [25] proposed a fusion framework based on sparse
Gaussian Wigner prediction (SG-WP). This method assumes
that the measurement noise is a non-Gaussian distribution,
and uses a generalized error distribution as an approximation
of the non-Gaussian density. It combines the advantages of
random matrix theory and sparse characteristics to provide
enhanced vehicle positioning capabilities. Jo et al. [26]
addressed a significant limitation in existing models, which
often assume that vehicles travel on a flat plane without
con-sidering the impact of road slopes. Furthermore, they
highlighted the high cost associated with three-dimensional
vehicle positioning equipment. They analyzed how road
slope affects location estimation and proposed an estimation

algorithm that accounts for this influence. By compensating
for errors caused by roadside slopes, this algorithm enhances
the precision and reliability of location estimation. However,
a common drawback of the methods mentioned above is their
reliance on GPS devices or base stations for assistance. This
limitation prevents scalable applications and confines them
to vehicles equipped with GPS or necessitates large-scale
base station deployments. Consequently, the scope of the
application is significantly restricted, and the associated costs
are substantially increased.

With the continuous advancement of communication tech-
nology, Vehicular Ad-Hoc Networks (VANETs) have found
widespread applications in intelligent transportation systems
[27], [28], [29], [30], [31]. Tsai et al. [32] introduced a col-
laborative positioning algorithm (CPDR) aimed at improving
GPS location accuracy within VANETs by incorporating
Dead Reckoning (DR) algorithms. In this work, the DR
algorithm helps filter out some unreasonable GPS positions
by referencing travel history records. However, VANETs
pose several challenges, including highly heterogeneous
vehicle network design, security, privacy concerns, and the
dynamic nature of vehicular mobility. These factors create
additional challenges for protocol designers. Particularly, the
constantly changing scenarios due to vehicle mobility result
in short lifetimes for multi-hop paths. In such situations,
protocols that rely on knowledge of the system’s state can
be inefficient due to frequent network changes. Moreover,
VANET applications may require a different protocol stack
[33]. Additionally, VANETs must grapple with the trade-off
between the deployment rate of vehicular hardware devices
and the associated cost.

In recent years, neural network models have gained
widespread adoption in intelligent transportation systems
due to their outstanding performance. Wan et al. [34]
introduced a novel system architecture incorporatingMassive
Multiple-Input Multiple-Output (MIMO) or Reconfigurable
Intelligent Surfaces (RIS) along with multiple autonomous
vehicles for vehicle positioning. By leveraging geometric
algebra, they reformulated the Direction of Arrival (DOA)
and polarization estimation problem as a new block sparse
recovery problem. They achieved DOA and polarization
parameter estimation for autonomous vehicles with relatively
low computational complexity using the deep network
architecture SBLNet. Meanwhile, Yuexia and Chong [35]
proposed a high-precision vehicle localization method based
on neural networks and Road Side Units (RSUs) fingerprints.
They divided the localization area into uniform grid regions,
collected Received Signal Strength Indicator (RSSI) data
from different RSUs in each grid region, and constructed
an RSU fingerprint database. During the localization phase,
they utilized Backpropagation Neural Networks (BPNN) to
estimate the approximate coordinates of the target vehicle.
Using these estimated coordinates as the center and the
maximum prediction error of the BPNN as the radius, they
constructed a fingerprint-matching region. This approach
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allowed them to calculate the precise coordinates of the
target vehicle through local fingerprint localization. Alzyout
and Alsmirat [36] introduced a short-term vehicle location
prediction framework that enhances prediction accuracy
and framework execution time by dynamically adjusting
parameters and employing both multi-selective and single-
selective ARIMA models. Anitha and Duraiswamy [37]
addressed the limitations of current methods in vehicle
location prediction, which often lack analysis of both current
and future vehicle positions and are affected by errors
in GPS location data. They proposed a heuristic mobile
vehicle location prediction algorithm, demonstrating that this
heuristic algorithm can accurately predict the future positions
of vehicles. In response to the shortcomings of existing
methods, Fan et al. [38] presented a deep learning-based
approach for next-step location prediction (DLNLP), incor-
porating contextual information into urban-level vehicle
motion prediction. Experimental results indicate that DLNLP
outperforms other methods such as MM, WMM, CNN, and
LSTM in terms of accuracy, recall, and balanced F-score.
Long et al. [39] addressed the limitation of existing location
prediction models, which focus solely on location and time,
oversimplifying the regularities and preferences in human
mobility. Furthermore, existing state-of-the-art RNN-based
models may fail to capture long-term patterns in sparse
scenarios due to the lack of sequential dependencies. They
proposed an individual vehicle location prediction method
that utilizes travel patterns and preferences. Experiments
conducted on three real vehicle trajectory datasets, each
containing over 10,000 individual vehicles, demonstrated that
the proposed model outperforms state-of-the-art models by
7%-10% in terms of prediction accuracy. Xiao and Nian [40]
tackled the issue of low prediction accuracy in existing meth-
ods. They introduced a vehicle location prediction algorithm
based on spatiotemporal feature transformation and a hybrid
LSTM neural network. This approach effectively reduces
information loss in vehicle trajectories and enhances the
accuracy of vehicle location prediction. However, it should
be noted that this model does not fully consider the impact of
road conditions.

After analyzing the literature review mentioned above,
we can identify the following shortcomings in the existing
methods:

(1) Most of the methods mentioned above have largely
overlooked the influence of road structure characteris-
tics on vehicle positioning, especially in provinces like
Fujian, which are primarily mountainous, and where
highways traverse through mountain ranges. Therefore,
methods that do not consider road features may not
necessarily be suitable in predominantly mountainous
regions.

(2) The low adoption rate of in-vehicle positioning
devices hinders their wide-spread application, thus limiting
the provision of comprehensive and accurate posi-tioning
information for intelligent transportation systems.

(3) The addition of extra in-vehicle positioning equipment
results in an increase in overall vehicle costs. From the
perspective of vehicle owners, unless there are significant
benefits, they may not be willing to bear the associated
expenses.

III. OUR CONTRIBUTION
In response to the challenges faced by existing methods and
the existing infrastructure, this paper proposes a highway in
transit vehicle position estimation method that considers road
features and short-term driving style by integrating ETC data
(Edata) and invehicle GPS positioning data. As of the end
of 2022, Fujian Province’s highways have generated over
5 million ETC transaction data daily, providing basic driving
characteristics for estimating the position of vehicles in transit
on highways. However, since Edata only records the status
information of vehicles during information exchange with
the gantry, the vehicle status information within the highway
segment cannot be obtained. GPS positioning data records
the driving status of vehicles within a certain time interval,
providing a modeling basis for estimating the position of
vehicles within a highway segment. The main contribution
of this article is:

(1) This method integrates Edata and GPS positioning data
(Gdata) for vehicle position estimation, excavates vehicle
driving patterns in Edata to construct basic driving features,
and uses corresponding vehicle Gdata to generate road
segment features and target state variables. Due to the
large-scale deployment of ETC devices on highways, this
method has better universality.

(2) In the vehicle segment speed prediction model,
based on the spatiotemporal dependence of the vehicle
segment speed, the SC-Kmeans-Bilstm model based on PCA
optimization is proposed, which fully takes into account the
influence of the spatiotemporal dependence of the vehicle
segment speed and the vehicle’s short-term driving style to
improve the model prediction accuracy.

(3) In vehicle location estimation, to address the instability
of vehicle location data in the spatial and temporal dimen-
sions, linear interpolation and first-order backward difference
are used to improve the data smoothness and maximize the
retention of the information entropy of the data; secondly,
the road features are taken into account into the model to
minimize the impact of the changes in spatial and temporal
features of the road on the performance of the position
estimation model.

(4) The DLCNN-LSTM-ATTENTION fusion module
based on L1 regularization is designed to achieve multimodal
feature fusion and abstraction at a deeper level to better
understand the multidimensional relationships of the data.
Also the inclusion of L1 regularization avoids the overfitting
phenomenon. In addition, the two-layer CNN can interact
and fuse different features in the second convolutional layer
to capture higher-level data patterns. The LSTM layer has
memory units and gating mechanisms to better capture and

VOLUME 12, 2024 8747



G. Luo et al.: Highway In-Transit Vehicle Position Estimation Method

utilize long-term dependencies in sequential data. Finally,
by applying an attention mechanism on the output of the
LSTM layer, we can adaptively learn the important weights
for each time step.

(5) Although vehicle position estimation has always been
a research hotspot in the academic community, to our
knowledge, we are the first team to propose using Edata and
Gdata to jointly achieve vehicle position estimation within
highway segments.

IV. MODEL CONSTRUCTION
The highway in transit vehicle position estimation model
considering road characteristics and short-term driving style
of vehicles first analyzes and processes the data problems
existing in Edata and Gdata to improve data matching
efficiency and reduce noise that affects the fitting degree
of the model, mainly including noise reduction processing
for duplicate, missing, and incorrect data. Based on the
denoised data, perform bidirectional matching between Edata
and Gdata, and construct vehicle basic driving features based
on Edata and Gdata respectively. Secondly, the short-term
driving style of the vehicle is integrated into the vehicle
speed prediction model to obtain accurate vehicle segment
passing speeds; Next, Since the segment speed of the vehicle
cannot fully reflect the driving pattern of the vehicle within
the segment, a road model within the segment is constructed
using moving average wavelet transform, and the vehicle
segment speed is combined to jointly map the changes in
vehicle position within the segment; Finally, based on the
basic driving characteristics of the vehicle, the segment speed
of the vehicle, and the road characteristics, a DLCNN-LSTM-
Attention method for estimating the position of vehicles in
transit is proposed to achieve accurate prediction of vehicles
in transit. The overall framework of the model is shown in
Fig 1. Table 1 summarizes the parameters and characteristic
variables involved in this article.

This method integrates Edata and GPS positioning data
(Gdata) for vehicle position estimation, excavates vehicle
driving patterns in Edata to construct basic driving features,
and uses corresponding vehicle Gdata to generate road
segment features and target state variables. Due to the
large-scale deployment of ETC devices on highways, this
method has better universality.

A. DATA PREPROCESSING AND ANALYSIS
When building a model, duplicate data makes the model
overly dependent on these data, leading to overfitting and
a decrease in generalization ability to new data. Missing
data may result in the model not being able to fully
utilize information, thereby reducing the accuracy of the
model. Data with incorrect information may cause the
model to be affected by outliers or unreasonable values,
leading to overfitting or errors in these data. Because the
experimental data comes fromEdata andGdata in real driving
environments, there are inevitably duplicates, omissions, and
incorrect information in the data. Therefore, it is necessary

TABLE 1. Notation frequently used.

to conduct deep cleaning of the data to ensure data quality
and accuracy and construct features related to vehicle position
changes based on the cleaned data as input to the model,
to maximize model fit.

1) DATA NOISE REDUCTION
To reduce data noise, the main objects for cleaning Gdata
include repeated positioning data of the same vehicle, long
positioning time interval, continuously changing speed but
unchanged vehicle position, data with a continuous speed
of 0km/h but unchanged vehicle position, and data points
with trajectory drift outside the highway. Among them, for
trajectory drift points, this question uses a drift point detection
method based on Gaode map path planning.

As shown in Fig 2, Gdata is affected by factors such as
satellite geometry configuration, receiver error, and noise,
resulting in individual positioning data points drifting outside
the highway network. The drift phenomenon can affect the
regularity of vehicle position changes and affect the fitting
effect of the model. Therefore, for trajectory drift points, this
article proposes a drift point cleaning method based on the
Gaode API, which calculates the distance between adjacent
two points of the vehicle trajectory through the Gaode API
and sets the calculation rule to prioritize high-speed. As long
as the vehicle’s positioning point drifts outside the highway,
its distance to adjacent positioning points must be much
greater than the distance between normal adjacent positioning
points. This article takes the position change per second at
the maximum speed of each segment as the threshold and
records the points where the vehicle’s position change per
second exceeds this threshold as drift points.

By analyzing the traffic speeds of typical segments of
highways in Fujian Province, it can be concluded that the
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FIGURE 1. Overall architecture of the model.

FIGURE 2. Visualization of Gdata.

average speed of segment 1 is 71 km/h, the maximum
speed is 111 km/h, and 85th percentile speed is 85 km/h;
The average speed of segment 2 is 80km/h, the maximum
speed is 121km/h, and 85th percentile speed is 92km/h; The
average speed of segment 3 is 83 km/h, the maximum speed
is 111 km/h, and 85th percentile speed is 94 km/h; The
average speed of segment 4 is 79 km/h, the maximum speed
is 110 km/h, and 85th percentile speed is 92 km/h. 85th
percentile speed is a reasonable choice that can represent the
speed of most vehicles. This is because some vehicles may be

traveling at slower speeds in normal traffic flow (e.g., because
of problems such as traffic congestion, poor road conditions,
etc.), while at the same time, some vehicles may be traveling
at faster speeds (e.g., speeding). However, most vehicles
typically travel at intermediate speeds, so the 85th percentile
speed is considered a good indicator to describe the speed
of most vehicles. However, to preserve the data samples to
the greatest extent possible, this article takes the distance
of position change per second at the maximum speed of
each segment as the threshold, and records points where the
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distance change of adjacent positions of vehicles per second
exceeds this threshold as drift points, and removes them.

In addition, there are issues in Edata such as license
plate garbled codes, missing transactions caused by no
information exchangewith the gantrywhen the vehicle passes
through it, and duplicate transactions when passing through
the gantry. Due to the occurrence of missed transactions,
it becomes difficult to obtain the time for vehicles to enter
and exit the gantry, resulting in the inability to perform
subsequent data matching. Therefore, this article directly
eliminates the missing transaction trajectory. Misregistration
of license plates can also lead to data mismatch, so they are
directly removed. For duplicate transaction data, this article
uses ‘‘flagid’’ and ‘‘entity’’ as the de-duplication subsets to
eliminate duplicate data from the data.

2) DATA MATCHING BASED ON SPATIOTEMPORAL
LOCATION
The Edata comes from the vehicle information that interacts
with the ETC gantry and is captured by the ETC system
when the vehicle passes through it. It includes information
reflecting the vehicle’s attributes such as the transaction time
between the vehicle and the gantry, vehicle type, and vehicle
entry time, but does not include the driving characteristics
of the vehicle within the segment, such as changes in
position within the segment, real-time vehicle speed, and
other internal vehicle status information within the segment.
If the distance between the two gantries is too large, the
traffic situation inside the segment changes, and it is easy to
distort the results with the actual driving status by estimating
the overall traffic status of vehicles inside the segment only
from the Edata. The Gdata records the vehicle’s position,
speed, heading an-gle, and other state information that
changes with time inside the segment at certain time intervals,
which can reflect the regularity of the vehicle’s traveling
state changes inside the segment. Therefore, to obtain more
accurate vehicle location information within the segment, it is
necessary to open the blind spot inside the segment using
Gdata in conjunction with Edata. Among them, the segment
is a small road segment consisting of two adjacent gantry
nodes of the highway, and the gantry that the vehicle passes
through first is called the front gantry of the segment, and the
gantry that passes through later is called the back gantry of
the segment, as shown in Fig 3.
This section proposes two-way data matching based on

spatiotemporal location, i.e., the time point of the vehicle’s
transaction with the front and rear gantries of the segment
in Edata determines the time range of the corresponding
vehicle’s localization in Gdata, which in turn specifies
the target vehicle located in the target segment in Gdata.
However, the color description of the license plate in the
Edata is at the top of the license plate characters, while the
characters indicating the license plate color in the Gdata are
at the end of the license plate. To match the Edata with
the Gdata, it is necessary to perform a string left rotation
operation on the license plate information string in the Edata,

and put the characters indicating the license plate color in the
Edata to the tail, to facilitate the data matching between Edata
and Gdata.

Firstly, obtain the Edata of the target segment and extract
the license plate data obu1 passing through the target
segment from the data; Secondly, match the vehicle data
corresponding to obu1 in the Gdata based on obu1. Since
Gdata cannot directly filter out the data of the corresponding
road segment, according to the transaction time of the vehicle
and the ETC gantry before and after the segment as a
qualifying condition, extract the GPS positioning data within
the time range of the information interaction between the
corresponding vehicle and the front and rear gantries of
the target segment in Gdata, and then we can obtain the
GPS positioning data inside the target segment. Finally,
by matching the ‘obupdate’ and ‘entime’ fields in Gdata,
reverse search the Edata for the corresponding time when
the vehicle enters and exits the current segment. If there
are positioning points at the same time in Gdata, no further
processing will be performed. If there are no corresponding
positioning points in Gdata, interpolate the time point data
of the vehicle entering and exiting the segment in Gdata.
Record the distance between the vehicle and the front gantry
of the current segment as 0 when entering the segment; When
leaving the segment, the distance between the vehicle and the
current gantry is recorded as the total length of the segment.

3) CONSTRUCTION OF BASIC DRIVING CHARACTERISTICS
OF VEHICLES
This section is based on the target vehicles within the target
segment matched in the previous step, and excavates the
hidden information in Edata to construct the basic features
of vehicle position estimation. Basic features mainly refer
to features that can be extracted from data without the need
for deep processing by machine learning models.It mainly
includes FS , FS−1, FS−2, VS−1, VS−2, VEN , VEN1, VEN2,
T, as shown in Table 1. And the basic features need to
be constructed based on the vehicle trajectory. The vehicle
trajectory in Edata is mainly composed of the gantry nodes
that the vehicle passes through. When a vehicle is driving on
a highway, the sequence of gantry position nodes it passes
through is its driving trajectory, as shown in equation (1)

Traj =< Node1, . . . ,Noden > . (1)

where Node1 is the starting point of the trajectory and Noden
is the end point.

Firstly, traverse the driving trajectory of each vehicle to
obtain the passing time nodes of adjacent gantry frames in
the vehicle trajectory, and calculate the time it takes for the
vehicle to pass through the segment composed of adjacent
ganties. Secondly, obtain the coordinates of adjacent gantries
and use the Gaode API to calculate the distance between
adjacent gantries; Then, calculate the vehicle’s travel speed
on historical segments based on kinematic formulas. Due to
the influence of driver status and traffic conditions on vehicle
speed, this article only takes the speed VS of the vehicle
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FIGURE 3. Schematic diagram of segments.

in the target segment and the speed VS−1 and VS−2 of the
first two segments closest to the current segment. To better
perceive the changing patterns of the target vehicle in the
model, this article further calculates the segment speed VEN
of the vehicle from ten minutes before entering the target
segment to the moment of entering the segment, as well as
the corresponding segment speeds VEN1 and VEN2 when the
vehicle passes through the previous two segments.

To maintain the authenticity of traffic flow to the greatest
extent and avoid significant differences between the calcu-
lated traffic flow and the traffic flow during vehicle travel due
to large time differences, this article only calculates the total
number of vehicles passing through the front and rear gantries
of the segment from the first ten minutes of the target vehicle
entering the segment to the transaction time point between
the target vehicle and the front gantry of the segment as the
corresponding traffic flow FS of the target vehicle during the
passage period. To match the segment speed of the vehicle in
the previous step, this article also calculated the traffic flow
FS−1 and FS−2 of the vehicle at the corresponding time when
passing through the first two segments of the current segment.
In addition, the Edata includes vehicle types, so vehicle type
features are directly extracted from the data.

B. PREDICTION MODEL OF VEHICLE SEGMENT SPEED
CONSIDERING SHORT-TERM DRIVING STYLE
In the driving environment of highways without significant
bends, vehicle speed is one of the important characteristics
that reflect changes in vehicle position. The faster the vehicle
speed, the greater the change in position. In actual driving
environments, speed is limited by factors such as traffic
flow, vehicle mechanical performance, and road structural
characteristics. This section analyzes the relevant factors that
affect speed changes. The input variables are required to
construct a vehicle speed prediction model based on the
analysis results.

1) ANALYSIS OF CORRELATION CHARACTERISTICS OF
VEHICLE SPEED CHANGES
a: ANALYSIS OF SPEED CHARACTERISTICS IN THE
DIMENSION OF VEHICLE FLOW
The traffic flow affects the driving environment of vehicles.
When the traffic flow reaches a certain level, the speed

of vehicles will also be constrained to varying degrees.
Figure 4 shows the difference in vehicle speeds between two
segments with different traffic flows. As shown in Fig 4,
in segments with high traffic flow, there are significantly
more vehicles with speeds below 50km/h than in segments
with low traffic flow, and as the flow increases, more and
more low-speed vehicles appear in both segments. Therefore,
when the traffic flow reaches a certain amount, it becomes
an important feature that affects speed, thereby affecting
changes in vehicle position.

b: ANALYSIS OF VEHICLE TYPE CHARACTERISTICS
The speed is not only constrained by the driving environment
of the vehicle but also by the type of vehicle. Under the same
road conditions, due to the limitations of vehicle mechanical
performance, the speed of large trucks may be lower than that
of small cars, and due to safety considerations, the braking
distance required for large trucks is long. Drivers will also
control the speed appropriately to prevent emergencies. As
shown in Fig 5, by analyzing the traffic speeds of various
types of vehicles in different segments of Fujian Province’s
highways, it is found that regardless of which segment,
the average speed, 85% percentile speed, and maximum
speed of passenger cars are greater than those of trucks and
special operation vehicles, and the difference is significant.
At the 15% percentile speed, only 15% percentile speeds for
passenger cars in segment 2 are lower than that of trucks
and specialized work vehicles. From this, it can be seen that
different types of vehicles have significant speed differences
due to differences in mechanical performance. The speed of
passenger cars is much higher than that of other types of
vehicles. Therefore, vehicle types should also be included in
the feature library that affects speed changes.

c: ANALYSIS OF DRIVING STYLE CHARACTERISTICS
Driving style refers to the behavior and habits of the driver
on the road, which directly determines the speed of the
vehicle on the road [41]. Radical drivers tend to exceed
speed, accelerate rapidly, and brake sharply, often ignoring
traffic rules and speed limit signs. This driving method may
cause the vehicle’s speed to soar in a short period. On the
contrary, a cautious and steady driving style often leads to
slower speeds. Prudent and steady drivers tend to follow
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FIGURE 4. Speed performance chart under different dimensions of traffic flow.

FIGURE 5. Statistical chart of segment speed characteristics for different types of vehicles.

traffic rules, maintain a moderate speed, and drive the vehicle
steadily. They pay attention to road safety and avoid sharp
turns and brakes, resulting in relatively slow speeds. An
economical and energy-saving driving style can also affect
vehicle speed. Economically energy-saving drivers focus on
efficient driving, adopt smooth acceleration and deceleration,
and plan their driving routes reasonably, effectively reducing
fuel consumption.

From Fig 5, it can be seen that there is a significant
difference between the maximum speed of passenger cars
and trucks and the 15% percentile speed, while the difference
between special operation vehicles is small. The reason for
this phenomenon may be that most special operation vehicles
travel with tasks, and the drivers of special operation vehicles
have strict requirements during recruitment, rich driving
experience, and high comprehensive driving quality, so their
speed is relatively stable. Buses and trucks are mostly private
cars or public vehicles owned by small businesses, and drivers
can drive their vehicles according to their habits. So its speed
fluctuates greatly. In summary, different driving styles have
a significant impact on the fluctuation and speed of vehicle

speed, so driving style should become one of the important
factors in perceiving vehicle speed.

2) SHORT-TERM DRIVING STYLE CONSTRUCTION METHOD
BASED ON SC-KMEANS CLUSTERING
Driving style is affected by many factors, and driving habit is
an important determinant. From the perspective of the overall
journey of car owners, each car owner has a fixed driving
style, including radical type, general type, and cautious
type, which are determined by daily driving habits. In the
actual driving process, driving style is affected by driving
tasks, driving environment, driver subjective factors, and so
on, and there are often changes between different styles,
especially the driving style changes in specific scenes that
have strong randomness. Therefore, this paper proposes
a short-term driving style considering the spatiotemporal
characteristics, that is, considering the driving state with the
strongest correlation with the current vehicle state in time and
space to build a short-term driving style, to more accurately
capture the driving characteristics of the vehicle’s current
journey.
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This section is based on the basic driving characteristics of
the vehicle, including VS−1, VS−2, VEN1, VEN2, FS−1, FS−2,
T; Then, the contour coefficient method is used to determine
the optimal driving style classification number; Finally, the
K-means algorithm is used to classify the spatiotemporal
characteristics of vehicle driving. The overall process of the
method is shown in Fig 6.

a: SELECTION OF DRIVING STYLE CLASSIFICATION NUMBER
Determining the number of driving styles is a subjective
problem in theory. There is no fixed rule or standard
to determine how many driving styles should be divided
into. However, when classifying driving styles, we need
to comprehensively consider many factors, including road
environment, drivers’ preferences, and driving habits. Due to
the complexity and diversity of driving styles, it is difficult
to get an accurate number of categories simply by subjective
judgment. The contour coefficient method can provide an
objective and quantitative evaluation method, help us select
the most appropriate classification number without fixed
rules, and increase the reliability and scientificity of the
analysis results.

Contour coefficient [42], i.e. SC index, indicates the
degree of compactness and dispersion among various types
of samples after clustering. The smaller the distance between
samples in the same class and the larger the distance between
samples in different classes, the greater the value of SC(i) and
the better the clustering effect. Therefore, it is often used as
a performance index to evaluate the clustering results. The
SC(i) calculation formula is as follows:

SC(i) =
b(i) − a(i)

max {a(i), b(i)} ′
(2)

In equation (2), SC(i) ∈ [−1, 1] represents the contour
coefficient of sample i, b(i) = min {bi1, bi2, . . . , bik}
represents the minimum value of the dissimilarity between
clusters, where bik represents the average distance of all
samples from the sample to other clusters Cj, and a(i)
represents the average distance of the sample to other samples
in the same cluster. When SC(i) is close to 1, it indicates that
the sample clustering is reasonable; when SC(i) is close to -1,
it indicates that the sample classification is unreasonable and
should be classified to another cluster; if SC(i) is close to 0,
it indicates that the sample is located at the boundary of two
clusters.

b: RECOGNITION OF SHORT-TERM DRIVING STYLE
After determining the number of driving style classifications,
it is necessary to classify them according to the driving char-
acteristics of vehicles. Raw data contains high-dimensional
features, while high-dimensional data sets increase model
complexity and computational cost. Dimensionality reduc-
tion can map data to low dimensional space, reduce the
requirements of calculation and storage, and reduce the
complexity of model training and inference.

The main goal of PCA is to map the high-dimensional
data into the low-dimensional space through some kind
of spatial linear projection, and at the same time try
to ensure the maximum variance of the data in the
low-dimensional space of the target, to prevent the loss of
more information of the original data [43]. Set the sample set
M = {X1,X2, . . . ,XM }, corresponding to the n-dimensional
feature X i = (x i1, x

i
2, . . . , x

i
N ). For the feature centralization,

the covariance matrix is as shown in Equation (3) -(4).

C =

[
cov(x1, x1) cov(x1, x2)
cov(x2, x1) cov(x2, x2)

]
(3)

cov(x1, x1) =

∑M
i=1(x

i
1 − x̄1)(x i1 − x̄1)

M − 1
(4)

The eigenvalues λ and corresponding eigenvectors u, of the
covariance matrix C will be ranked from largest to smallest
and the first k eigenvectors corresponding to them will be
selected. The formula for calculating the new eigenvectors
after dimen-sionality reduction is shown in equation (5):

y1i
y2i
. . .

yki

 =


uT1 · (X i1,X

i
2, . . . ,X

i
n)
T

uT2 · (X i1,X
i
2, . . . ,X

i
n)
T

. . .

uTk · (X i1,X
i
2, . . . ,X

i
n)
T

 (5)

Based on the new feature volume after dimensionality
reduction, the K-means algorithm measures the similarity of
different data objects by selecting an appropriate distance
formula. The distance between data is inversely proportional
to the similarity, i.e. the smaller the similarity, the larger the
distance.

TheK-means algorithmfirst gives the corresponding initial
clustering center C based on the number of driving style
classifications and calculates the distance from the initial
clustering center to the rest of the data objects, which is
chosen in this paper as the Euclidean distance [44]. In this
paper, the Euclidean distance is chosen, and the formula for
the Euclidean distance from the clustering center to other data
objects in the space is shown in equation (6):

d(x,Ci) =

√√√√ m∑
j=1

(xj − Cij)2 (6)

In equation (6), x is the data object, Ci is the ith clustering
center, m is the dimension of the data object, and xj, Cij are
the attribute values of the data object x and the jth dimension
of the clustering center Ci.

Based on the Euclidean distance, the similarity is measured
and the target data with the highest similarity to the
clustering center is assigned to the corresponding cluster.
After allocation, the data objects in the k clusters are averaged
to form a new round of clustering centers, thus reducing the
sum of error squares of the dataset, calculated as equation (7):

SSE =

k∑
i=1

∑
x∈C

|d(x,Ci|2 (7)
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FIGURE 6. Flow chart of short-term driving style construction.

The magnitude of the value of SSE is used as a measure
of how good the clustering results are, and when it no longer
changes or converges, the iteration is stopped and the final
result is obtained.

3) PREDICTION OF VEHICLE SEGMENT SPEED BASED ON
BI-LSTM
The so-called bidirectional LSTM is that one LSTM unit
processes forward input and the other unit processes reverse
input [45]. It can retain both past information and future
information, which can make the network better understand
the information before and after a certain time. The principle
of bidirectional LSTM is shown in Fig 7.

If used α represents the forward propagation sequence in
Fig 7, using β Represents the backpropagation sequence.
Given that the input of the characteristic graph is represented
by (x1, . . . , xn), the calculation of Bi-LSTM is as follows
equation (8)-(10):

hαt = sigmod(uαxt + ωαht−1 + bα) (8)

hβt = sigmod(uβxt + ωβht−1 + bβ ) (9)

yt = sigmod(hαt υα + υβh
β
t + bf ) (10)

The weight vectors corresponding to the forward and
backward propagation of the expression are uα , uβ , ωα , ωβ ,
ωβ , υβ , respectively; the forward and backward propagation
of the hidden layer at the moment t is hαt , h

β
t , respectively;

the output of the node at the moment t is denoted as yt ; the
corresponding bias is denoted as bα , bβ , bf .
The bidirectional LSTM used in this paper contains two

bi-directional LSTM layers and a fully connected layer.
Among them, the first bi-directional LSTM layer, which
contains 64 LSTM units, has an activation function of ReLU
and returns complete sequence information. This layer is
responsible for extracting temporal dependencies from the
input data and allows information to be passed forward and
backward simultaneously to fully capture the characteristics
of the time series. The second bi-directional LSTM layer, also
contains 64 LSTM units with an activation function of ReLU.
this layer further deepens the understanding of the time
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FIGURE 7. Schematic diagram of bi-directional LSTM.

series data and captures more complex temporal patterns. The
output layer contains 1 neuron and is used to generate the
final prediction. Finally, the model is compiled using Adam
optimizer and mean square error as a loss function.

C. ROAD MODEL BASED ON MOVING AVERAGE WAVELET
SMOOTHING FOR BOX GRAPH ANOMALY DETECTION
A basic vehicle motion model widely used for 2D heading
projection is shown in equation (11) - (13), which adopts a
2D planar road assumption with state vectors consisting of
heading ψ , east X, and west position Y. The model is based
on a 2D planar road assumption.

9k = 9k−1 + △T · ωXY (11)

Xk = Xk−1 + △T · VXY cos(9k−1 + △T · ωXY ) (12)

Yk = Yk−1 + △T · VXY sin(9k−1 + △T · ωXY ) (13)

However, as shown in Fig 8, when there is a gradient in the
road, it will decompose the gravity force formed by the total
weight of the vehicle and the passengers into the resistance
of the vehicle to move forward. When the output power is
kept constant and friction increases, P is a constant when the
output power is kept constant as shown in equation (14). If
the friction increases, then the driving force must increase to
maintain a constant power. According to Newton’s second
law, the driving force is proportional to the acceleration
(a) and mass (m) as shown in equation (15). Therefore, when
friction increases, the driving force must be increased to
maintain the same power, but this also results in a decrease in
acceleration. The speed of the vehicle is proportional to the
product of acceleration and time as shown in equation (16).
As the acceleration decreases, the vehicle speedwill decrease.
Therefore, there is an effect of uphill position on vehicle

speed, especially for large loaded vehicles.

P = Fdrive ∗ v (14)

Fdrive = m ∗ a (15)

v = a ∗ t (16)

FIGURE 8. Schematic diagram of vehicle speed under the influence of
road gradient.

Edata can only be used to calculate the segment speed of
the vehicle by obtaining the time point and segment distance
of the vehicle entering and leaving the segment and using the
vehicle kinematics formula. However, the vehicle segment
speed cannot reflect the real-time speed of the vehicle. For
example, if the first half of a segment is uphill and the second
half is downhill, the probability is that the vehicle’s speed on
the uphill portion will be lower than on the downhill portion.
Due to the offset of uphill and downhill segments, the speed
of vehicles in the whole segment may be similar to that in flat
segments. Therefore, the segment speed of the vehicle can
only accurately reflect the time when the vehicle arrives at
the rear gantry of the segment, and cannot reflect the position
change law of the vehicle within the segment. This paper
further constructs the road structure characteristics and the
vehicle segment speed to jointly map the vehicle position
change law in the segment. The overall construction process
of the road model is shown in Fig 9.

1) DETECTION OF ABNORMAL ROAD ELEVATION DATA
BASED ON BOX GRAPH
There are many tunnels on the highways in Fujian Province,
and the GPS signals are susceptible to interference, resulting
in uneven road elevation data in the raw data, and a
common error is the existence of multiple different values of
elevation information at the same location. To reduce the data
anomalies that lead to road model distortion, the box-and-line
diagram method is used to screen the elevation data under the
same location dimension for outliers.
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FIGURE 9. Flowchart of road model construction.

FIGURE 10. Schematic diagram of abnormal data detection of the
box-plot.

Box-plot is a method of describing the data using
five statistics: upper bound (maximum value in the non-
anomalous range), upper quartile, median, lower quartile,

and lower bound (minimum value in the non-anomalous
range). In this paper, it is used as an adaptive threshold for
determining data outliers. The basic principle of box-plot
analysis is to arrange the data from small to large and
calculate the quartile of the data. Calculate the outliers of
the data through the quartile, and the calculation formula is
shown in equations (17) - (18):

K ≤ L1 − 1.5(L3 − L1) (17)

K ≥ L3 + 1.5(L3 − L1) (18)

where: K is the abnormal value, that is, the data is in an
abnormal state; L1 is the upper quartile; L3 is the lower
quartile.

2) MOVING AVERAGE WAVELET SMOOTHING ROAD MODEL
Based on the data after outlier cleaning, the moving average
method is used to slice the road according to 100m as the
minimum unit, that is, taking 100m as an interval, and taking
the average value of the elevation information of vehicles
in this interval as the elevation data of the starting point of
this interval. For example, the average value of the [100,200]
interval is used as the elevation information at 100m, and
so on. Then, the linear interpolation method is used to
interpolate the missing elevation information in the middle of
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the data after taking the average value of the moving interval.
However, there are local uneven points in the interpolated
data, which is inconsistent with the actual road elevation of
the highway. Therefore, this paper uses wavelet transform to
smooth the above road data.

Wavelet Transform [46] is a commonly used signal pro-
cessing method that can be applied to smooth data. Wavelet
functions have localization characteristics in both the time
and frequency domains and can provide information in differ-
ent time scales and frequency ranges. Utilize the multi-scale
analysis characteristics of wavelet transform to reduce noise
in data. By selecting appropriate wavelet functions and
decomposition levels, we can filter out high-frequency
noise components and retain smoothing trends at lower
frequencies, thereby achieving data smoothing.

Let x(t) be a square integrable function, denote x(t) ∈

L2(R), and the definition of its continuous wavelet transform
is shown in equation (19)

WTx(a, b) =

∫
x(t) ψa,b(t)dt (19)

In equation (19), ψa,b(t) =
1

√
aψ(

t−b
a ) is the base wavelet,

a ̸= 0 is the scaling factor, and b is the translation factor. The
scaling factor compresses or extends the wavelet waveform,
and the translation factor shifts the wavelet on the t-axis.
The process of wavelet decomposition and reconstruction
structure is shown in the wavelet transform section of
Figure 9.

In the figure,F0(z) and F1(z) respectively represent the
filtering coefficients corresponding to the low-pass filter
and the high-pass filter, while H0(z) and H1(z) respectively
represent the filtering coefficients corresponding to themirror
filter of the low-pass filter and the high-pass filter, satisfying
H0(z) = F0(−z) and H1(z) = F1(−z). The decomposition
process of the signal is as follows: on the one hand, the
elevation information x(z) is ‘‘downsampled’’ after passing
through a low-pass filter to obtain an average signal c(z)
with half the scale and resolution, which is the low-
frequency component; On the other hand, x(z) undergoes
‘‘downsampling’’ after passing through a high-pass filter to
obtain a detailed signal d(z) with a scale and resolution
reduced by half, which is the high-frequency compo-
nent. The formula for signal decomposition is shown in
equations (20) - (21):

cj+1(z) =

∑
m∈z

cj(m)F0(m− 2z) (20)

dj+1(z) =

∑
m∈z

cj(m)F1(m− 2z) (21)

The process of reconstructing elevation information is
as follows: the signal is stretched by inserting zero values
between two samples on average, that is, upsampling, and
then passing through a low-pass filter to obtain a large-
scale low-resolution approximation, that is, low-pass output;
After upsampling the detail signal and passing through a

high pass filter, a high pass output can be obtained, and the
recon-structed signal x(z) can be obtained by adding the two.
The signal reconstruction for-mula is shown in equation (22):

cj(z) =

∑
m∈z

cj(m)F0(z− 2m) + dj+1(m)F1(z− 2m) (22)

D. VEHICLE POSITION ESTIMATION MODEL BASED ON
SPATIO-TEMPORAL SMOOTHING
DLCNN-LSTM-ATTENTION WITH L1 REGULARIZATION
Based on multi-dimensional features such as vehicle segment
speed, road characteristics, short-term driving style, and
the time the vehicle has entered the segment, this section
proposes the DLCNN-LSTM-Attention method based on L1
regularization for predicting the position of vehicles on the
road [47], [48]. However, the distance between the vehicle
and the front door frame in the current segment is positively
correlated with time and is in a non-stationary state. Non-
stationary state data seriously affects the fitting performance
of the model. Therefore, before conducting vehicle position
estimation, this article smoothes the vehicle position data
from both the temporal and spatial dimensions.

1) SMOOTHING MODULE FOR THE TIME DIMENSION OF
VEHICLE POSITIONING DATA
The original trajectory of a vehicle is usually composed of a
series of trajectory points, which can be represented as L =

{pi|i = 1, 2, 3, . . . ,N }. Among them, pi = (distancei, ti) is
the distance between the vehicle at the time ti and the front
gantry of the current segment. Due to the different sampling
intervals and the possibility of losing trajectory points, the
trajectory points of the original vehicle trajectory are uneven
in terms of time dimension, that is, the positioning time
interval is inconsistent and diverse, as shown in Fig 11. Due to
unevenness in the time dimension, vehicle position changes
can be in a non-stationary state. The non-stationary data is too
disorganized, and some even have no rules to follow, making
it difficult for the model to capture the patterns of vehicle
position changes, which affects the model’s fitting effect on
the data.

FIGURE 11. Statistical diagram of vehicle positioning time interval.
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From Fig 11, it can be seen that the most frequent
occurrence of the positioning time interval is 15s, followed by
20s, 30s ranked third, andmost of the neighboring points have
short positioning time intervals. Considering that the highway
road condition is good, the traffic density is small, and the
vehicle speed will not change abruptly during the vehicle
driving process, except for unexpected situations. Based
on this characteristic, this paper cuts the highway segment
into multiple subinterval with GPS positioning points as the
starting and ending points, and the vehicle’s driving speed in
the subinterval is regarded as an approximate uniform speed.

As shown in Fig 12, the relationship between the distance
of the vehicle from the start of the subinterval and time can
be viewed as linear within each subinterval. The positional
relationship between pi and pi−1 can be expressed as
equation (23). Therefore, in this paper, the trajectory data
within spacei are linearly interpolated according to the time
change respectively, so that the interpolated vehicle trajectory
points are homogenized in the time dimension.

pi = pi−1 + (ti − ti−1)vi−1 (23)

2) SMOOTHING MODULE FOR SPATIAL DIMENSION OF
VEHICLE POSITIONING DATA
Since the vehicle is traveling in the segment, its distance
from the front gantry of the segment is necessarily positively
correlatedwith its traveling time in the segment, which results
in the vehicle position data being in a non-smooth state in the
spatial dimension. The usual treatment is to differentiate the
data so that the data is in a smooth state. As for the Edata,
the difference operation will result in the loss of the initial
position p0 of the vehicle when it enters the segment, which is
the only accurately determined vehicle position based on the
Edata, i.e., the position of the vehicle when it passes through
the gantry. To preserve the information entropy of the Edata
to the maximum extent, this paper uses reverse first-order
differencing to spatially smooth the data.

After first-order inverse differential smoothing, the dis-
tance between the vehicle and the gantry is mapped as the
amount of change in vehicle position at adjacent moments
△p. As shown in Fig 13, the change △p of vehicle position
in the period from the previous time to the current time is
estimated by the vehicle position at the previous time, vehicle
short-term driving style,road characteristics, and vehicle
basic driving characteristics,and then pi is derived from pi−1
and △p.

3) DLCNN-LSTM-ATTENTION FUSION MODULE BASED ON
L1 REGULARIZATION
Based on the spatiotemporal stabilized data, we defined a
vehicle position estimation model using DLCNN-LSTM-
ATTENTION fusion module based on L1 regularization to
achieve vehicle position estimation. The overall structure of
the model is shown in Fig 14.
The number of input features to the model is not as high

as possible, but needs to be balanced against the complexity

of the problem, the characteristics of the data, and the
performance of the model. An increase in the dimensionality
of the features can cause the samples to become sparse in
high-dimensional spaces, and more data may be required
to maintain the reliability of the model. In addition, high-
dimensional data tends to lead to increased computational
complexity. When there are too many features, the model
may become overly complex, attempting to fit accurately
on the training data, but may have reduced generalization
ability on the test data. This results in a model that
performs well on training data but may not perform well
in real-world applications. On the contrary, choosing the
appropriate number and type of features can lead to a more
simplified model and improved computational efficiency and
generalization performance. For example, in the case of
highway traffic flow is small, its multiple speed and vehicle
location changes have less impact, when the traffic flow
features may increase the complexity and overfitting of the
model. Therefore, before regression prediction, this paper
uses L1 regularization to select features for the constructed
features. L1 regularization realizes the selection and sparsity
adjustment of the model features by adding the penalty term
of L1 norm, which makes the model more concise and
explanatory, and helps to prevent overfitting.

Lasso is a linear regression method that incorporates L1
regularization to obtain the parameters of a classification or
regression model by minimizing the empirical error as shown
in equation (24)

β̄ = argmin ∥Y − Xβ∥ + λ

n∑
i=1

|βi| (24)

where X is the feature vector, Y is the response vector, and β
is the weight vector of the features.

The regularization term is the L1 norm, and the reg-
ularization parameter alpha controls the strength of this
regularization term. When the value of alpha is small, the
model prefers to keep the coefficients of all features, and
the model will have a stronger fitting ability, but overfitting
may occur, especially when there aremore features.When the
value of alpha is large, the model will more strongly drive the
coefficients of some features to zero, thus realizing the effect
of feature selection and the model will become more sparse.
This helps to reduce the complexity of the model and improve
the generalization ability, but it may also lose some predictive
performance of the model. Therefore, the regularization
parameter is crucial for feature selection, and the selection of
the regularization parameter is not scientifically sound when
realized only by experience. To achieve reasonable feature
selection, this paper uses cross-validation to adjust the values
of regularization parameters in the Lasso model.

First, we define a two-layer CNN layer containing convolu-
tion and pooling operations for extracting local features from
the input data. We used multiple convolutional kernels and
ReLU activation functions to capture nonlinear relationships
in the input data, as shown in equation (25). By maximizing
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FIGURE 12. Schematic diagram of vehicle position change.

FIGURE 13. Schematic diagram of vehicle position prediction process.

the pooling operation, we reduced the dimensionality of the
features to reduce the impact of non-essential features on the
model fitting effectiveness.

RELU =

{
x, x > 0
0, x < 0

(25)

Double-layer CNN can simultaneously process multiple
input features, such as vehicle speed, traffic flow, and vehicle
type. The first layer convolution can detect the local pattern
of each feature and capture the relevant information of
different features. The second layer convolution can fuse and
abstract these multimodal features, to better understand the
multidimensional relationship of data. In addition, double-
layer CNN can capture the spatio-temporal relationship. The
first layer convolution can extract local features of data
in time and space, while the second layer convolution can
further Abstract these spatio-temporal patterns. There may
be complex interrelationships among vehicle speed, traffic
flow, and vehicle type. For example, the vehicle speed at a
certain time may be related to traffic flow and vehicle type.

FIGURE 14. Schematic structure of DLCNN-LSTM-ATTENTION model based
on L1 regularization optimization.

Double-layer CNN can interact and fuse different features
in the second-layer convolution, to capture higher-level data
patterns.

Next, we introduce an LSTM layer for processing sequence
data with temporal dependencies [49]. The LSTM layer has
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memory cells and gating mechanisms to better capture and
utilize long-term dependencies in sequence data. We use
64 hidden cells and set them to return the complete output
sequence to preserve the information of the sequence. The
details of each computation of LSTM are as follows:

The forgetting gate can be described as shown in
equation (26).

ft = sigmoid(wf [ht , xt ] + bf ) (26)

Here ft represents the amount of information passed.
The input door can be described as equations (27) - (28).

it = sigmoid(wi[ht−1, xt ] + bi) (27)

C̃t = tanh(wc[ht−1, xt ] + bc) (28)

Cell state (information transmission) Ct is shown in
equation (29).

Ct = Ct−1ft + itCt (29)

The output gate Ot is shown in equations (30) - (31).

Ot = sigmoid(w0 [ht−1, xt ] + bo) (30)

ht = Ot ∗ tanh (Ct) (31)

In equations (25) - (30), wf , wi, wc, wo are all weight
indicators, and bf , bi, bc, bo are all offset.

Compared with the RNN model, LSTM adds several gate
settings, especially the forgetting gate, which can filter the
input information of the previous period, to retain the key
information and forget part of the unimportant information,
which is the key that LSTM can overcome the gradient
disappearance. However, LSTM still has the phenomenon of
losing important data information when the input sequence
is too long, so it needs CNN to process the original data and
filter out part of the unimportant information, to improve the
accuracy of prediction.

To further improve the model performance, we introduce
an attention mechanism to enhance the attention to the input
sequence. By applying the attention mechanism on the output
of the LSTM layer, we can adaptively learn the importance
weights for each time step. By generating query vectors and
value vectors and computing the attention scores between
them,we can obtain the attentionweights. Then, byweighting
and summing the attention weights with the value vectors,
we obtain a context vector that weights and averages the value
vectors of different time steps to capture the information of
the time steps with higher attention.

Finally, to synthesize the information from the output of the
LSTM layer and the context vectors, we concatenate them.
Through the Concatenate layer, we will obtain a synthesized
feature vector that contains the raw output of the LSTM
layer as well as the key information from the attention
mechanism. This synthesized feature vector is spread into a
one-dimensional vector and passed through a fully connected
layer for final regression prediction. The model is trained
using the Adam optimizer using the mean square error as the
loss function.

The attention mechanism will calculate the attention
weight of each input part according to the change rule
of vehicle position combined with the current input and
task requirements, i.e., to determine the importance of
each part for the current task, and to weigh different
parts, so that the model can pay more attention to the
important information. Thus, the information related to
the current task is strengthened. This can help the model
to pay better attention to important features and improve
the performance of the model when dealing with complex
tasks. In addition, this dynamic weight allocation mech-
anism enables the model to capture the features related
to the task more accurately, thus improving the model’s
performance and generalization ability. Thus, by combining
these three models, the DLCNN-LSTM-ATTENTIONmodel
can better understand the data and improve prediction
accuracy.

V. EXPERIMENTAL ANALYSIS
A. DESCRIPTION OF EXPERIMENTAL MATERIAL
The experimental data used the ETC transaction data
of Fujian Provincial Expressway from September 3 to
September 5, 2020, and the Gdata of two passengers and
one hazardous vehicle. Edata contains information such
as vehicle number, transaction time, etc., as shown in
Table 2. The two-passenger and one hazardous data contain
information such as real-time vehicle speed, longitude,
latitude, and direction angle of the vehicle, as shown in
Table 3.

TABLE 2. ETC transaction data attribute table.

TABLE 3. GPS data attribute table.

To verify the generalization ability of the model under
different road features, the experimental road segments were
selected as G3 Ningde Gutian to Fuzhou Minhou segment,
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G15 Fuqing Jiangyin Port to Putian segment, and G76 Fujian
Zhangzhou to Longyan segment. Among them, the coastal
segment is the segment from Jiangyin Port to Putian, the
mountainous segment is the segment from Ningde Gutian
to Fuzhou Minhou, and the segment from Zhangzhou to
Longyan, Fujian. The three segments are all segments of
the same type with large traffic flow and can reflect the full
sample traffic conditions of the highway. The experimental
segment is shown in Fig 15.

B. SETTING OF NETWORK PARAMETERS AND SELECTION
OF EVALUATION INDICATORS
1) THE SETTING OF NETWORK PARAMETERS
In the comparison experiments of different predictionmodels,
the choice of network parameters largely determines the
performance of the algorithm. In our study, the parameters
involved in each experiment are chosen according to the
actual situation of this study by referring to a large number of
literature or using empirical and trial-and-error methods. The
network parameter settings for each model in this method are
shown in Table 4.

2) SELECTION OF EVALUATION INDICATORS
Appropriate evaluation indexes can accurately and intuitively
reflect the prediction effect of the model and compare the
predicted value of the model with the real value of the dataset
to quantify the performance of the model. The evaluation
metrics are selected as mean absolute error (MAE), root
mean square error (RMSE), Mean Absolute Percentage Error
(MAPE), and (coefficient of determination) R2. Relative to
the mean error, the mean absolute error is absolutized without
positive or negative cancellation, thus better reflecting the
true picture of the prediction error; RMSE reflects the data
dispersion; MAPE (Mean Absolute Percentage Error) is a
measure of the relative error between the predicted value and
the actual value. It is used to evaluate the performance of pre-
dictionmodels in prediction problems, especially in scenarios
involving percentage error. To improve the interpretability
of the model evaluation metric and remove the influence
of the size of the test set values itself, R2 is introduced to
judge the superiority of the prediction model, avoiding the
influence of the degrees of freedom on the prediction results.
The larger the R2 is, the better the model fit is indicated,
and its value range is [0,1]. Its calculation formula is shown
in Table 5.

C. CONSTRUCTION OF SHORT-TERM DRIVING STYLE
FEATURES
To more accurately capture the change rule of vehicle
position, this paper first classifies the short-term driving style
of vehicles according to the driving characteristics of vehicles
in the historical segments during the current trip, and the
construction results are shown in Fig 16(a) to Fig 16(d).
In each segment, the model subdivided the driving style of
the vehicle into different categories according to the traffic

flow, speed, and vehicle type. Among them, in segment 1, the
model classifies the target vehicles into 4 categories based on
each characteristic variable when the vehicles are traveling;
in segment 2, the target vehicles are classified into 2; in
segment 3, the target vehicles are classified into 2 categories;
and in segment 4, the target vehicles are classified into
10 categories.

It can be seen that there are some differences in the driving
characteristics of vehicles in each category in each segment.
For example, as shown in Fig 16(b), category 1 vehicles
indicate the passing speed characteristics of vehicles when
the traffic flow is large; category 0 can be seen as the driving
characteristics of vehicles when the traffic flow is small.
Therefore, the short-term driving style reflects, to a certain
extent, the driving pattern of vehicles in different driving
environments, which provides an important estimation basis
for the subsequent vehicle segment speed prediction and
vehicle position estimation.

D. EXPERIMENTAL ANALYSIS OF VEHICLE SEGMENT
SPEED CHARACTERIZATION CONSTRUCTION
The inputs to the model contain σ , VS−1, VS−2, VEN ,
VEN1, VEN2, FS , FS−1, FS−2, T , the outputs are the Speed of
the vehicle in the current segment. Secondly, the continuous
variables in the input data of the model are normalized to the
maximum and minimum values to improve the performance
stability of the model. Continuous variables include VS−1,
VS−2, VEN , VEN1, VEN2, FS , FS−1, FS−2.
As shown in Fig 17(a) to Fig 17(d), our predicted velocity

trends in each segment are generally consistent with the
actual velocity trends. In segment 1, the average absolute
error, root mean square error, correlation coefficient, and
average absolute error percentage of our prediction results
are 2.83%, 12.93%, 0.89%, and 12.77%, respectively. In
segment 2, the average absolute error, root mean square error,
correlation coefficient, and average absolute error percentage
of our prediction results are 2.30%, 9.48%, 0.85%, and
11.88%, respectively. In segment 3, the average absolute
error, root mean square error, correlation coefficient, and
average absolute error percentage of our prediction results
are 2.98%, 13.30%, 0.84%, and 12.43%, respectively. In
segment 4, the average absolute error, root mean square error,
model fitting degree, and average absolute error percentage of
our prediction results are 3.08%, 17.52%, 0.78, and 11.30%,
respectively. From the predicted performance indicators,
vehicle owners will drive their vehicles more based on their
driving habits when the road traffic condition is good, and
our model takes into account the short-term driving style of
vehicle owners, which can better capture the dynamic change
of the speed pattern.
Secondly, the proposed model is subjected to ablation

experiments regarding short-term driving style, and the
results of the experiments are shown in Table 6. Without
considering the short-term driving style, the mean absolute
error, root mean square error, correlation coefficient, and
mean absolute error percentage of our model are 3.19,
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FIGURE 15. Experimental road schematic diagram.

TABLE 4. Model parameter setting table.

TABLE 5. Model evaluation indicators.

15.27, 0.85, and 15.72%, respectively, in segment 1; in
segment 2, the mean absolute error, root mean square error,
correlation coefficient, and mean absolute error percentage
of our model are 2.05, 8.67, 0.86, and 11.62%; in segment 3,
the mean abso-lute error, root mean square error, correlation

coefficient, and mean absolute error percentage of our model
were 3.23, 13.54, 0.84, and 13.72%; in segment 4, the mean
absolute error, root mean square error, correlation coefficient,
and mean absolute error percentage of our model were 3.31,
18.80, 0.77, and 11.40%, respectively.
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FIGURE 16. Short-term driving style classification chart.

In the experiments of segment 1, segment 3, and segment 4,
the performance of the model without considering the
short-term driving style decreased to a certain extent com-
pared with that considering the short-term driving style. In
segment 2, the performance of the model without considering
the short-term driving style is slightly better than that of
the model considering the short-term driving style, but the
improvement is small. According to the overall comparative
experiment of the four segments, taking short-term driving
style into account in the model helps explain the degree
of data variation and accurately obtain the predicted target
value.

E. CONSTRUCTION OF ROAD SLOPE CHARACTERISTICS
The road structure constructed by the road model based on
moving average-wavelet smoothing for anomaly detection
of the box-and-line diagram is shown in Fig 18. Among
them, Fig 18(a), 18(c), 18(e), and 18(g) show the original
road elevation information in Gdata data, and Fig 18(b),
18(d), 18(f), and 18(h) show the road structure after moving
average-wavelet smoothing. As can be seen from the figures,
the original road elevation information is disorganized,

TABLE 6. Effect table of vehicle speed prediction model ablation
experiment.

and the heights under the same geographic location are
uneven, which makes it impossible to obtain an effective
road structure. The road model constructed by moving
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FIGURE 17. Effect diagram of vehicle speed prediction.

average-wavelet transform is similar to the road structure
stacked with elevation information in the original data in
terms of contour, which proves the similarity between the
constructed slope and the actual slope. In this paper, the
main consideration for road features is the effect of slope.
Therefore, only the slope of the constructed road model is
concerned.

Since the vehicle elevation information is more cluttered
and there are trajectory drift points, if the GPS trajectory
drift points are too concentrated in a small interval in the
segment, these drift points will be eliminated, resulting in
sparse elevation information in some of the intervals. This
may lead to a large gap between the slope derived from
the model and the actual slope. To avoid the influence
of a few slope distortions caused by data sparsity, this
paper will obtain the slope value for the maximum and
minimum normalization, the uphill segment is categorized
as between [0,1], and the downhill segment is categorized
as between [−1,0], to avoid the influence of the abnormal
slope to the maximum extent, and to improve the antinoise
ability of the model. Finally, the effectiveness of the
slope features constructed by this method is also further

verified in the subsequent vehicle position estimation ablation
experiments.

F. EXPERIMENTAL ANALYSIS OF FEATURE SELECTION
To improve the efficiency of the model and reduce phe-
nomena such as overfitting. Feature selection is performed
using L1 regularization based on predicted vehicle segment
speeds, roadway characteristics, and vehicle-based driving
characteristics. The results of the L1 regularization feature
selection for each segment are shown in Table 7. In segment 1,
five features are finally selected as inputs to the model,
which are VS_pred , FS , T, Pprevious, and 2; in segment 2, all
features are selected as inputs to the model; in segment 3,
six features are finally selected, which are VS_pred , FS , FS−1,
FS−2, Pprevious, 2; in segment 4, there are seven features
finally selected, which are VS_pred , VS−1, VEN2, FS , Pprevious,
Pprevious, 2.
Lasso tends to produce a sparse model, i.e., only a small

number of βi are non-zero, and these small number of
features with non-zero weights are extracted as important
for classification. Thus Lasso can explicitly extract features,
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FIGURE 18. Road structure diagram.

i.e., those feature terms with non-zero weights, while
constructing a classification model. However, in segment 2,
all the features proposed in this paper are input into the
speed prediction model. The reason for this phenomenon
may be that segment 2 is located in the port, and the

overall traffic flow is large, which leads to the weak
correlation between the features of this segment and the
corresponding features of the segment before this segment,
resulting in L1 regularization selecting all features into the
model.
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TABLE 7. Table of L1 regularization feature selection results.

G. EXPERIMENTAL ANALYSIS OF SPATIO-TEMPORAL DATA
STABILIZATION
To verify whether the data after spatiotemporal stabilization
meets the stability requirements, the ADF test is performed
on the data. The results of the test are shown in Fig 19,
where each subplot has four parts corresponding to the
indicator values of the four segments. The left side of each
section shows the values of each indicator obtained from
the original data and the right side shows the values of
each indicator obtained from the smoothed data. As can be
seen from Fig 19(a), after smoothing the data, the ADF
statistics of segment 1, segment 2, and segment 4 are smaller
than the critical values, and the ADF statistics of segment
3 are also substantially reduced from the original data. As
can be seen from Fig 19(b), the p-value value of the data
after the smoothing process is significantly reduced and the
p-value values of segment 2 and segment 4 are less than
the level of significance, which indicates that the data of
segment 2 and segment 3 have been smoothed after the
process. While the p-value values of segment 1 and segment
3 are greater than the significance level, the number of their
steady-state trajectories has been substantially increased after
the smoothing treatment as shown in Fig 19(c) and Fig 19(d).
To retain the information entropy of the data to the greatest
extent, the data are not further smoothed in this paper.

H. MODEL PREDICTION PERFORMANCE COMPARISON
AND SPATIAL DIMENSION GENERALIZATION ABILITY
ASSESSMENT
This experiment aims to validate the prediction performance
of the model. In this experiment, CNN, bilstm, DNN,
CNN-ATTENTION, LSTM-ATTENTION, and TGCN are
used to compare with the proposed model, DLCNN-LSTM-
ATTENTION, and the recursive prediction distance is
uniformly set to 2km, and the vehicle enters the target
roadway with the front doorframe of the vehicle as the
initial node, and the vehicle’s position at the next moment
is predicted recursively position of the vehicle at the next
moment. The results of the model’s prediction in each

FIGURE 19. Smoothing effect of vehicle position data processing.

segment are shown in Fig 20(a) to Fig 20(d) in comparison
with the rest of the prediction models.

From Table 8, it can be seen that the values of MAE,
RMSE, MAPE, and correlation coefficient R2 for the
DLCNN-LSTM-ATTENTION prediction method used in
this paper in segment 1 are 25.32,42.15,5.05%,0.99 respec-
tively, which are the best values for all the prediction
models. In segment 2, the MAPE value of this model is
8.26%, which is 4.49%, 2.93%, 1.92%, 14.88%, and 0.78%
lower than the other five prediction models, respectively.
This model has the highest prediction accuracy and the
best prediction effect. In segment 3, the values of MAE,
RMSE, MAPE and R2 of the models used in this paper
are 41.35,65.53,9.38%, and 0.98 respectively, which also
show the best performance among all models. In segment 4,
the MAE value of this model is 40.82, which is smaller
than the MAE values of CNN, Bi-lstm, CNN-ATTENTION,
and LSTM-ATTENTION by 13.97, 17.12, 6.24, and 46.47,
respectively, but the MAE value is significantly higher by
6.09 when compared to the DNN. The DLCNN-LSTM-
ATTENTION model is more complex than the DNN model
with more layers and parameters to better fit the data and
capture its complex relationships. However, in some cases,
model complexity can lead to overfitting, especially with less
training data. Thus, in some cases, DNNmodels may perform
better due to their relatively simpler structure.

From the correlation coefficient R2 of the four road
segments, the R2 of our proposed model in each road segment
reaches 0.99, indicating that the model in the highway
full-sample traffic environment, a better fit to the pattern of
change in the position of the vehicle, and the speed of the
highway vehicle is more stable, less sudden changes in the
phenomenon of the change in the law of the position of
the model is better captured.

From the spatial dimension, the four segments are located
in different directions in Fujian Province, from north to south
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FIGURE 20. Experimental diagram of vehicle position estimation.

TABLE 8. Model performance comparison table.

and from east to west; the overall altitude ranges from tens
of meters to hundreds of meters. In four different segments
under the 2km recursive prediction, this paper proposed

model and vehicle position change law of the fit are above
0.98, the average absolute error is less than 50, and MAPE
is 10% or less, indicating that the model in the highway
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full sample spatial environment can achieve a high degree of
fitting to the vehicle position, the spatial generalization ability
is better.

I. ABILITY TO GENERALIZE THE TIME DIMENSION
The traffic flow of the highway changes regularly with time,
and the difference between the peak period and idle time is
large, When the traffic flow reaches a certain level, it will
have a limiting effect on the speed of the car. To verify the
performance of the model in different driving environments,
this paper regards 8:00 a.m. to 10:00 a.m. and 4:00 p.m.
to 6:00 p.m. as the peak period of highway travel, and
5:00 a.m. to 7:00 a.m. and 7:00 p.m. to 9:00 p.m. as the idle
period, and examines the model’s performance by time.

As can be seen from Fig 21(a) to Fig 21(d), during the peak
period, the average absolute error of the model is larger than
that of the idle period, and the RMSE and MAPE are larger
than that of the idle period. This is because vehicles traveling
in the peak period, high traffic flow on the highway, will
inevitably cause some restrictions on the speed of the vehicle,
and at this time travel more vehicles. When the traffic flow
is saturated, normal traveling vehicles encounter low-speed
vehicles, and the side of the vehicle behind the vehicle to
follow the car close, may not be able to change lanes in time,
this time is bound to need to slow down. This also leads to the
highway in which the traffic flow saturation speed fluctuation
is large, and the vehicle position change is not smooth, thus
reducing the predictive effect of the model.

The R2 value of the model is greater than the peak period
in the idle time segment, which means that the model fits
better in the idle time segment than in the peak period. This
is because the vehicle travels in the idle time segment, the
traffic flow on the highway is small, and the highway has no
substantial curves, The owner can drive steadily at a smooth
speed, and the highway are one-way multi-lane road when
the flow is small, the owner can change lanes ahead of time
when vehicle owner meets a low-speed vehicle to reduce the
dilemma of limiting the speed due to the conflict of driving
styles, so that he can maintain a stable speed. Another reason
for the vehicle to maintain a stable speed is that the highway
speed is faster, sudden changes in speed can easily lead to
accidents such as rear-end collisions, and emergency braking
has a big impact on the occupants, so the vehicle in the
highway traffic conditions are good, more tomaintain a stable
speed, which means that the vehicle position change is in a
smooth state so that the model can be a better fit to the data.

J. MULTI-STEP ESTIMATION CAPACITY ASSESSMENT
This experiment aims to test the multi-step estimation
capability of the proposed model. The evaluation results are
shown in Table 9. Among the estimation distances from 2km
to 5km, the MAE value at 2km is the smallest, and the MAE
value at 5km is the largest. Overall, the MAE value increases
with the increase of the estimation distance, and the RMSE
shows the same pattern of change as the MAE. This indicates
that the prediction accuracy of the model gradually decreases

with the increase in distance. The reason for this phenomenon
is that, due to the limitation of Edata, this paper adopts a
recursive prediction of vehicle position and takes the output
of the model as the input of the next estimation step. As the
number of estimation steps increases, the estimation error
is constantly accumulated. In recursive estimation, the error
tends to accumulate as each step propagates. This may cause
the estimation to become unstable over a long period as the
error may keep on amplifying. This problem may affect the
accuracy and stability of the estimation.

Although the larger the number of estimation steps, the
larger the gap between the vehicle position values estimated
by the model and the true values, the MAPE, which measures
the mean absolute percentage error between the estimated
values and the true values, decreases with the growth of
the estimation distance, which indicates that the ratio of
estimation error to estimation distance decreases to a certain
extent with the growth of the estimation distance, and
the model performs well in capturing long-term regularity
in the changes of vehicle positions on the highway. The
model performs well in capturing the long-term regularity
of highway vehicle location changes. In addition, from the
value of the correlation coefficient R2 of the model, in the
estimation distance of 2km-5km, the model of the vehicle
position change law has achieved a better fitting effect,
indicating that the model has a better multi-step estimation
ability, and can estimate the position of highway over-the-
horizon vehicles.

K. MODEL ABLATION EXPERIMENTS
To test the effect of each model on location estimation in
the proposed highway in-transit vehicle location estimation
method considering the road characteristics and short-term
driving style, this method is subjected to ablation experiments
in block 3. The role of each module in the estimation
performance is revealed by removing different modules step
by step. We have used the control variable method to perform
the ablation experiment on the models. The experimental
results are shown in Table 10.

It can be seen that both the slope and the vehicle segment
speed, when not taken into account, have some impact on
the performance of the model. However, the performance
improvement due to slope is smaller than the performance
improvement due to segment speed. The main reason for
this is that the main factor affecting the change of vehicle
position is the vehicle traveling speed. The faster the vehicle
speed, the greater the vehicle position change per unit time.
In addition, the segment where the ablation experiments
were conducted is located on the southeast coast with
no substantial up-and-down grades. For small uphill and
downhill slopes, the vehicle owner will adjust the output
power of the vehicle to offset the influence of the uphill and
downhill slopes, which in turn leads to a weaker influence of
the slope in the model.

In addition, the performance of the modules in the
DLCNN-LSTM-Attention fusionmodel used individually for
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FIGURE 21. Comparison of model estimation effects during busy and idle hours.

TABLE 9. Multistep estimation performance evaluation table.

vehicle position estimation shows that the MAE of DLCNN
is 50.28, the MAE of LSTM is 46.42, and the MAE of
Attention is 82.38. This indicates that DLCNN and LSTM

perform better relative to Attention in terms of the better
performance on the mean absolute error between predicted
and true values. Whereas, the RMSE of DLCNN is 152.57,
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TABLE 10. Effect table of vehicle position estimation model ablation experiment.

the RMSE of LSTM is 68.26, and the RMSE of Attention is
116.01. The relatively low RMSE of LSTM indicates that the
LSTM model performs better in terms of overall prediction
error. Finally, theR2 of the DLCNNmodel was 0.89, theR2 of
the LSTMmodel was 0.97, and the R2 of the Attention model
was 0.94. Thus, the LSTM and Attention better explained the
variability of the target variable.

From the two-by-two combinations of the modules, the
MAE of the DLCNN-LSTM model is 82.27, and the RMSE
is 116.16; the MAE of the DLCNN-Attention model is 53.61,
and the RMSE is 79.6; and the MAE of the LSTM-Attention
model is 81.44, and the RMSE is 114.43. The R2 of each
model exceeds 0.9, and the models achieve good results, but
the overall prediction error is still much larger than that of our
proposed model.

VI. CONCLUSION AND OUTLOOK
This paper is based on the ETC equipment that has been
massively deployed on the highway, considering that the ETC
gantry interval is large and cannot accurately perceive the real
driving state of the vehicles inside the segment, usingGdata to
construct the pattern of change of the position of the vehicles
inside the segment, the road structural features, and based on
the Edata to construct the historical driving characteristics
of the vehicles, the short-term driving style, and then to
predict the speed of the vehicles passing through the segment,
and on the basis, a highway in-transit vehicle position
estimation method considering road characteristics and
short-term driving style is proposed. The model performance
comparison experiments show that the model proposed in this
paper can better extract the change rule of vehicle position
from highway multi-featured data, and more accurately
estimate the vehicle position in the highway segment.

In terms of estimation error, as one of the practical
application scenarios of this method is to assist intelligent
driving on highways, and the detection range of the vehicle
lidar for intelligent driving can reach more than 100m at
present, errors within 100 m can be corrected by the vehicle
lidar. Therefore, the minimum detection range of the vehicle
lidar is regarded as the acceptable maximum error value in
this paper. The experimental results of spatial and temporal
dimensions show that this method can realize the accurate
estimation of vehicle position with an acceptable error range.
The multi-step estimation capability evaluation experiments
show that the model can realize long-range vehicle position
estimation. Although the estimation error is accumulated as
the estimation distance increases, the growth ratio of the
error is much smaller than the growth ratio of the estimation
distance, which lays a solid foundation for the over-the-
horizon estimation capability of the model. Finally, the

ablation experiment of the model also proves the rationality
of the model structure design.

In addition, as the research object of this article is the
estimation of vehicle position within the highway segment,
interference from intersections was excluded during the
experiment. In actual driving environments, intersections are
common. Therefore, when encountering an intersection in the
road, due to the diversity of vehicle path selection, accurate
estimation of vehicle position cannot be effectively achieved
at this time. Finally, in actual highways, the deployment
intervals of ETC gantry vary from a few kilometers to more
than ten kilometers, which also leads to the accumulation
of vehicle position estimation errors in the long-distance
estimation of this model. In future research, this article will
further expand the research by considering the impact of
vehicle owner’s path selection on vehicle position estimation
and how to reduce the accumulation of recursive estimation
method errors.
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