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ABSTRACT This study explores the application of Generative Adversarial Networks (GANs) for gen-
erating wafer-level Wafer Acceptance Test (WAT) and Chip Probe (CP) test data in chip manufacturing
processes, with a focus on Design-Technology Co-Optimization (DTCO). The generated virtual silicon
data encompasses essential performance characteristics, physical electrical properties, wafer-level process
parameter distributions, as well as implicit information about wafer-level uniformity and defects. This
information represents non-random features on wafers, such as similar distorted wafer surfaces observed
in lots produced from various batches. This innovative approach overcomes data acquisition barriers,
efficiently compresses large datasets while ensuring data confidentiality, and holds immense potential for the
development of advanced Electronic Design Automation (EDA) tools, enabling the synergistic optimization
of manufacturing processes and chip design flow.

INDEX TERMS Generative adversarial network (GAN), wafer acceptance test (WAT), chip probe (CP),
design-technology co-optimization (DTCO), virtual silicon data, electronic design automation (EDA).

I. INTRODUCTION
To attain a competitive advantage in the semiconductor
market, chip design processes must aim to enhance pro-
duction efficiency, reduce costs, and maintain high-quality
standards. In recent years, the industry has transitioned from
primarily focusing on yield to considering overall produc-
tivity. Productivity encompasses a wide range of factors,
including cost, price, performance, yield, and competitive-
ness. Therefore, comprehensive optimization is essential
across various aspects, such as design margins, timing sign-
off, process recipes, packaging testing, binning strategies, and
system-level considerations.

The Design-Technology Co-Optimization (DTCO)
methodology has gained significant attention and adop-
tion in physical design processes to enhance the overall
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productivity and competitiveness of semiconductor chips.
In this context, DTCO can be compared to a large-scale
neural network optimization process, as shown in Figure 1.
The result of our focus on inference is the optimization
of productivity, including chip monitoring, Wafer Accep-
tance Test (WAT), Chip Probe (CP), and System-Level
Test (SLT) processes, feature correlation analysis, machine
learning, and compensation techniques for binning strate-
gies. Conversely, during the back-propagation optimization
phase, our emphasis is on optimizing design and process
recipes. This entails chip model calibration, fine-tuning
process parameters, timing extraction, customization, and
optimization using WAT measurements for the device
library. Additionally, it involves On-Chip Variation (OCV)
regression for handling local variations and optimizing
design margins and sign-off strategies. Figure 2 illustrates
the actual implementation details of DTCO proposed in
this study.
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FIGURE 1. Design-Technology Co-Optimization (DTCO) flow.

FIGURE 2. Flowchart of the actual implementation details of DTCO proposed in this study.

However, the acquisition and exchange of valuable test
data often pose challenges and act as barriers to the over-
all advancement of industry technologies. Therefore, this
study introduces an innovative virtual silicon technology
that utilizes deep learning models to generate a significant
volume of chip data rapidly and accurately. This technol-
ogy accurately reflects the parameter distributions, defects,
and features present in wafer manufacturing processes.
Specifically, this study proposes a Generative Adversarial
Network (GAN)-based approach that trains and encapsu-
lates multidimensional WAT and CP test data using compact

GAN models. As a result, highly realistic chip data with mul-
tidimensional features is generated. This technology plays
a crucial role in optimizing chip design and improving the
manufacturing process, leading to enhanced production effi-
ciency, cost reduction, and improved product quality.

The primary contribution of this study is the introduc-
tion of an innovative virtual silicon technology that utilizes
Generative Adversarial Networks (GANs) to rapidly and
accurately generate large amounts of chip data, establish-
ing a Design-Technology Co-Optimization (DTCO) plat-
form and demonstrating its application in the platform.
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The technology accurately reflects parameter distribution,
defects, and characteristics present in the wafer manufactur-
ing process. It plays a crucial role in optimizing chip design
and improving manufacturing processes, thereby enhancing
production efficiency, reducing costs, and improving product
quality.

The remainder of the paper is organized as follows.
Section II discusses the significance of quality control in
semiconductor manufacturing and highlights the challenges
in obtaining essential test data for process improvement. The
section reviews existing literature and emphasizes the need
for more advanced modeling and analysis methods, as well
as explicitly stating research objectives. Section III details
the GAN-based approach for generating virtual silicon data.
It discusses the data transformation process, augmentation
techniques, and the structure of the GAN model used. It also
analyzes the complexity of the proposed method and elab-
orates on the practical applications and implications of the
GAN-generated chip data. Section IV presents the experi-
mental results of the generated silicon data using the proposed
GAN model and its application in a collaborative opti-
mization platform. The section includes visualizations and
quantitative metrics to assess data quality. Finally, Section V
summarizes the contributions of the study, emphasizing the
potential of GANs and virtual silicon data in chip design,
as well as the practical implications of the proposed approach
in real-world semiconductor manufacturing. It acknowledges
the challenges and the need for further research and develop-
ment in this area.

II. BACKGROUND
In semiconductor manufacturing, quality control is crucial for
cost savings and timely delivery [1], [2]. WAT is a critical
step in semiconductor manufacturing, used to identify wafer
defects, improve yield, and control costs [3], [4], [5]. How-
ever,WAT parameters are often high-dimensional, redundant,
and challenging to obtain, hindering accurate yield predic-
tion [6], [7]. CP identifies defective dies in wafers, reducing
packaging and testing costs and providing yield information.
Nevertheless, CP is time-consuming and expensive. Engi-
neers use WAT-based yield prediction to save time and costs
in lieu of CP [8], [9]. However, current key parameter identi-
fication methods have issues, including sacrificing selection
model stability for single-parameter relationships and time
efficiency for combined-parameter effects [10].

Xu et al. [6] proposed a hybrid feature selection method to
identify key WAT parameters influencing wafer yield, which
consists of two stages: filter selection and wrapper selection.
In the filter selection stage, a minimum Redundancy Maxi-
mum Relevance (mRMR) filtering parameter pre-screening
criterion based on Mutual Information (MI) is proposed.
In the wrapper selection stage, a wrapped key parameter
identification model based on Genetic Algorithm (GA) and
Deep Belief Network (DBN) is designed. Fan et al. [11] pro-
posed a new fault diagnosis framework that utilized a series
of Machine Learning (ML) techniques for classification and

data visualization. The study chose the Limited Random
Synthetic Minority Oversampling Technique (LR-SMOTE)
model, combined with vector-valued data augmentation and
Principal Components Analysis (PCA) for the classification
task. The findings suggest that this new ML solution shows
great promise as a valuable tool for fault diagnosis of theWAT
and CP processes in semiconductor manufacturing. Addi-
tionally, this study suggests that future research in this field
should explore how to develop an appropriate version of Gen-
erative Adversarial Network (GAN) [12], [13] to augment the
time series data of the process stations corresponding to faulty
wafers.

Traditional models often simplify events by assuming
Gaussian distributions, disregarding the fact that physical
quantities in real chips frequently exhibit skewed-normal
or log-normal distributions. Additionally, these models tend
to overlook the interdependencies among vectors in high-
dimensional spaces. Figure 3 demonstrates that even if
each dimension’s feature follows the distribution of the par-
ent population when examined individually, the combined
distribution in high-dimensional space may lose the interre-
lationship between them, analogous to rolling dice.

FIGURE 3. Interdependencies and correlation among features.

However, such simplifications may not accurately capture
the various characteristics and interrelationships within the
chip manufacturing process in real-world scenarios. To better
simulate the behavior of real chips, it is crucial to consider
features such as non-Gaussian distributions, skewed-normal
distributions, or log-normal distributions while fully account-
ing for the interdependencies in high-dimensional space.
Figure 4 illustrates the correct feature projection relation-
ships: the probability distributions of features in each dimen-
sion follow the parent samples; the correlation distribution
between any two features adheres to that of the parent sam-
ples; the correlation distribution among selected features in
high-dimensional space conforms to the distribution observed
in the parent sample.

Due to the multitude of process parameters involved
in wafer manufacturing, the relationship between process
parameters and wafer or chip-level test data becomes highly
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FIGURE 4. Feature projection.

intricate, making it challenging for traditional methods to
effectively model and analyze. Figure 5 depicts that even
with a comprehensive understanding of the distribution and
interrelationship of chip-level features, the lack of wafer-level
coordinate information results in the loss of characteristics
related to the actual wafer fabrication uniformity. This is
a prevalent issue in current simulation analysis modeling.
In fact, the distribution of feature vectors in high-dimensional
space lacks authenticity, leading to significant discrepancies
between production data and simulated data.

This prejudice limits our understanding of the device mod-
eling and affects the accuracy of simulations. To overcome
this challenge, it is essential to develop more advanced mod-
eling and analysis methods that fully consider the complexity
of process parameters and the significance of wafer-level
coordinate information. This will enable accurate simulation
of chip characteristics and processes, providing more reliable
production data and simulation results. It is of great impor-
tance for enhancing efficiency and quality control in the chip
design industry.

Existing literature has investigated the utilization of deep
learning models for simulating and predicting wafer man-
ufacturing processes. Wang et al. [14] proposed a novel
deep learning model called adaptive balancing generative
adversarial network (AdaBalGAN) for the defective pat-
tern recognition (DPR) of wafer maps with imbalanced
data. Hu et al. [15] proposed a method for wafer defect
detection based on a Deep Convolutional Generative Adver-
sarial Network (DCGAN). This approach utilized a DCGAN
to learn the distribution of defect images on wafers and

employed the generated model for defect detection and
classification. Furthermore, other research demonstrated the
potential of Generative Adversarial Networks (GANs) for
various other applications in the manufacturing domain [16],
[17], [18], [19].

However, our research differs from existing literature in
several aspects. Our research methodology primarily focuses
on the application of GANs for generating virtual silicon data,
which is crucial for optimizing chip design and improving
the manufacturing process. We have successfully achieved
the generation of highly realistic virtual silicon data and
proposed a platform for the analysis and co-optimization of
chip and wafer-level data based on GAN models. To better
capture the variations in wafer-level processes, we have incor-
porated additional physical features into the construction of
the training dataset. These improvements can enable more
accurate simulations of the behavior in the chip manufac-
turing process and contribute to a better understanding of
the interactions among chip characteristics. This will provide
more precise simulation tools for chip design and manufac-
turing, aiding in optimizing chip performance and process
control.

This study also provides a comprehensive analysis and
optimization platform that can accurately simulate and
predict various parameters and features in the chip man-
ufacturing process, as shown in Figure 6. This will assist
semiconductor fabs in better understanding and master-
ing process control, while improving production efficiency
and product quality. Our approach not only exhibits high
reliability but also promotes collaboration and knowledge
sharing among interdisciplinary teams. Overall, our research
brings new insights and solutions to the field of chip
implementation.

Our research is making exciting breakthroughs in several
key areas. Firstly, we achieve high-quality chip data gener-
ation by encapsulating millions of multi-dimensional data
points into a compact GAN model, providing more efficient
and accurate tools for chip manufacturing simulation and
analysis. Secondly, we expand the scope of existing research,
offering new ideas and directions while emphasizing the
simplicity and practicality of the model, thereby providing
feasible solutions and reliable tools for the field of chip
manufacturing.

Our research outcomes have significant practical value as
they provide clear guidelines for process recipes in semicon-
ductor fabs, reduce chip-testing costs, and improve product
quality. Moreover, they facilitate the co-optimization of chip
design and process technology and foster cross-disciplinary
collaboration. In summary, our research opens new avenues
for simulation and analysis in chip co-optimization, laying
a solid foundation for achieving more efficient and accurate
methods in this field.

Based on the preceding background, the primary research
objective of this study is to explore and implement application
of GANs for generating wafer-level WAT and CP test data
in chip manufacturing processes, with a focus on DTCO.
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FIGURE 5. Loss of realism in the distribution of physical features of chips at the wafer-level.

FIGURE 6. Probability distributions of generated data dimensions matched to the original population samples.

We aim to establish a working model for advancing DTCO
and illustrate its potential using a fundamental GAN model.
Through this model, we intend to generate virtual silicon data
to realize several tangible advantages of DTCO. This will
indirectly highlight the potential within the Electronic Design
Automation (EDA) field for developing models, exploring
algorithms, and creating tools through collaborations with
both industry and academia.

III. SYSTEM ARCHITECTURE
This study employs aGenerativeAdversarial Network (GAN)
model to capture the uniformity characteristics of defects
and parameters in the wafer manufacturing process using a
large volume of multi-dimensional data. GANs consist of two
neural networks, a generator, and a discriminator, working in
a competitive manner. The generator generates data, while
the discriminator evaluates the generated data’s authenticity.
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The two networks are trained iteratively, with the generator
striving to create data that’s indistinguishable from real data,
and the discriminator trying to tell the real from the fake.
This back-and-forth process continues until the generated
data closely matches real data. Furthermore, data augmen-
tation techniques are used in conjunction with GANs. Data
augmentation is amethod for increasing the size of the dataset
by applying various transformations to the original data. For
example, it can involve rotating, cropping, or otherwise alter-
ing the data to create additional variations for training. These
techniques are crucial for improving the efficiency of our
approach in chip and wafer test data modeling. Through the
implementation of GANs and data augmentation, we enhance
our capability to generate realistic and diverse data. This
approach contributes to the optimization of chip design and
manufacturing processes, enabling the development of more
accurate and efficient simulation tools. As such, it plays
a significant role in our research. Initially, the proposed
platform transforms the original multi-dimensional data into
two-dimensional images, and set multiple feature dimensions
(parameter C), as shown in Figure 7. The size of parame-
ter C is correlated with the network size, and the training
time exhibits non-linear growth. Based on computations per-
formed on a personal computer CPU, the proposed platform
selects the feature dimensionality C to be between 10 and 18.

FIGURE 7. Transformation and integration of wafer-level
multidimensional training dataset.

We attempted training on an ordinary laptop (Intel
Core i7-1255U, 1.70GHz, 32GB RAM). With a feature
size limit set between 10 to 18 dimensions, the training
time was 8 hours, resulting in a model of decent quality.
To further increase the feature size, we explored differ-
ent generative model architectures, such as the Wasserstein
Generative Adversarial Network (WGAN). In comparison,
WGAN showed roughly seven times faster convergence and
potential for further improvements in similarity compared to
this study.

In this study, we further augments the training dataset
using small angle rotation transformations to simulate the

occurrence of rotational defects and process parameters dis-
tributions in the wafer manufacturing process, as shown
in Figure 8. This augmentation technique enables us to accu-
rately capture the key features in the wafer manufacturing
process, thereby improving the training effectiveness of the
model.

This study utilizes a Convolutional Neural Network (CNN)
to construct the Generative Adversarial Network (GAN)
model, as shown in Figure 9. The GAN model is responsible
for generating chip data with various process features while
incorporating potential defects. The generator component of
the model consists of multiple convolutional layers and Tanh
activation layers to generate wafer images. Simultaneously,
the discriminator component also includes multiple convo-
lutional layers and Sigmoid activation layers to distinguish
between real and generated data. These design components
work together to achieve the goal of generating high-quality
silicon data.

This study presents algorithms 1 and 2 to implement the
proposed GAN model for chip and wafer test data modeling.
The algorithms define the following functions: fVSD( ) for
Virtual Silicon Data preprocessing and fGAN ( ) for GAN
Training aimed at Virtual Silicon Generation.

GAN training consists of optimizing two components:
the discriminator’s parameters, which are adjusted to maxi-
mize classification accuracy, and the generator’s parameters,
which are tuned to thoroughly deceive the discriminator. The
generator G creates images from random noise. In other
words, it learns a mapping from a random noise vector z
to an image y, G: z → y. Simultaneously, the discrimina-
tor D learns a mapping from an image x to some values
between 0 to 1, which indicates the probability that the input
comes from the real data distribution. The training process
evaluates cost through a value function, denoted as V (G, D),
which considers both the generator and the discriminator. The
training process can be expressed as follows:

minGmaxDV (D,G) = minGmaxDEx∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))]

During the model training process, this study employs
the gradient descent optimization algorithm to minimize
the difference between the generated chips and real chips.
To enhance the stability of the model, this study utilizes
techniques such as batch normalization and the LeakyReLU
activation function. Through several hundred iterations, the
GAN model is capable of generating highly realistic silicon
data, including the chip’s position on the wafer, the uni-
formity of physical features at the wafer level, and the
defects present in the chip manufacturing process. The train-
ing results provide a reliable data basis for the simulation
and analysis of the chip implementation and optimization
process.

Because semiconductor chip test data is not similar to
images of people or scenes in real life, which can intuitively
represent quality visually, this study utilizes Jensen-Shannon
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FIGURE 8. Augmentation of training dataset through small angle rotation transformations.

FIGURE 9. The architecture of the proposed GAN model.

Divergence to demonstrate the similarity between individual
dimensions at the lowest level and the parent sample. Addi-
tionally, it combines spatial distributions of two or more
dimensions to illustrate the quality of data generation.

The most challenging aspect of the framework in this
study is the adjustment of training hyperparameters. A too
large learning rate can lead to model divergence, while
a too small learning rate results in very slow training.
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Algorithm 1 VSDataset Preprocessing
1. Replace any NaN values in the data with zero.
2. Calculate the per-channel minimum and maximum values in the

data for normalization.
3. Normalize the data to the range [0, 255] and convert it to uint8.
4. Convert the mask to a boolean tensor.
5. Define a transformation pipeline with ToTensor, RandomRola-

tion, and Normalize operations.

Algorithm 2 GAN Training for Virtual Silicon Generation
Input: Generator (G) and Discriminator (D) models.
Output:TrainedGenerator (G) andDiscriminator (D) models.

1. Initialize Generator (G) and Discriminator (D) models.
2. Define Binary Cross-Entropy Loss Critcrion.
3. Initialize Optimizers for Generator and Discriminator.
4. Prepare chip data (ds) and create a DataLoader (VSDataset) for

batching.
5. Training Loop:
6. For each epoch in range (num epochs):
7. For each batch (images) in daialoader:
8. Generate random noise (noises) for fake

chip data.
9. Train the Discriminator:

10. Compute discriminator loss for real
and fake data.

11. Backpropagate and update the
Discriminator’s parameters.

12. Train the Generator:
13. Generate lake chip data using the

Generator.
14. Compute generator loss.
15. Backpropagate and update the

Generator’s parameters.

Therefore, in practice, it is advisable to employ a step-
wise learning rate (lr) adjustment, such as dynamically
changing the learning rate every 100 epochs as follows:
lr: = gamma ∗ lr, where gamma = 0.8, and the initial lr is set
to 0.001. In practical applications, the above suggestions are
by no means the ultimate solution. There is always room for
further optimization.

In this study, we also explore the option to employ the con-
ventional GAN model and optimize our loss using the Adap-
tive Moment Estimation (Adam) optimization algorithm in
conjunction with Binary Cross Entropy (BCE). This method-
ology can also be adapted to utilize WGAN. The adaptation
involves eliminating the BatchNorm layer from the Discrim-
inator and replacing the BCE loss function with Wasserstein
loss function. This modification results in a nearly sevenfold
increase in the model’s convergence speed, with an average
Jensen-Shannon Divergence similarity exceeding 99%. It is
important to clarify that this study does not intend to empha-
size neural network algorithms. Instead, our primary goal is to
showcase the potential of generating virtual silicon data using
a straightforward GAN.We offer a practical demonstration of
a working model applicable in various DTCO scenarios, uti-
lizing the generated virtual silicon data for the development
of viable EDA tools.

In reality, the industry recognizes that DTCO is crucial
for achieving real chip efficiency and optimizing produc-
tivity, encompassing factors like yield, cost, and overall
competitiveness. However, acquiring real data is a formidable
challenge. These datasets contain confidential information
that significantly impacts business competitiveness, leading
companies with access to such data to be reluctant to share it.
Furthermore, these datasets are often massive and not easily
transferable, hindering the establishment of practical data
exchange and working models. This study introduces a feasi-
ble working model that comprehensively addresses this issue,
covering foundational aspects such as the implementation
flow, sensor integration, data analysis, and the DTCO plat-
form, all the way to practical applications. Through the use of
generative neural network models, large volumes of data can
be compressed, concealed, scaled, and normalized to protect
sensitive information. This simple generative model facili-
tates data interchange across networks, fostering academic
research and continuous improvement. Furthermore, it opens
up numerous new opportunities for the development of EDA
algorithms and tools within the industry. It’s important to note
that this methodology is not limited to virtual silicon data but
provides a potential working model for DTCO.

IV. EXPERIMENTAL RESULTS AND COLLABORATIVE
OPTIMIZATION PLATFORM
This section presents the generated chip data using
the proposed GAN model of this study and conduct a
detailed analysis, while establishing a Design-Technology
Co-Optimization (DTCO) platform. The dataset used consists
of approximately 12 million chip data points, excluding
3σ outliers and missing chip data. Notably, chips with sys-
tematic defects are deliberately retained in the training set
for the GAN model. This study utilizes both data visu-
alizations and quantitative metrics to evaluate the quality
of the generated silicon data. For instance, this study uses
Jensen-Shannon Divergence to compare the similarity of
probability distributions between the generated data and
real chip data. Additionally, this study leverages the Kernel
Density Estimation (KDE) metric to quantify the numerical
differences between probability distributions of different
features. These evaluation methods ensure a reliable and
accurate assessment of the quality of the generated silicon
data.

To protect the confidentiality of chip technology and wafer
process data, all charts and figures in the research results have
been uniformly normalized, limiting the numerical range
between 0 and 1.

The experimental results demonstrate that the scatter
plots between the features of the generated silicon data
by the GAN model and the real chip data exhibit a
high degree of similarity, effectively capturing the process
adjustment and variability in the early stages, as shown
in Figure 10. This figure illustrates the similarity between
the generated four-dimensional feature vectors and the dis-
tribution of real data. The left side displays CP features
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FIGURE 10. Scatter plots of features for generated data and real data.

FIGURE 11. Probability distributions of features for generated data and real data.

(X: Rou represents chip speed, Y: SIDD represents leak-
age current), while the right side shows WAT features
(X: VTS_ULVT_N represents NMOS gate threshold voltage,
Y: VTS_ULVT_P represents PMOS gate threshold voltage).

Moreover, further analysis using the Jensen-Shannon Diver-
gence index reveals that the probability distributions of the
generated silicon data closely align with the characteristics
of the real data, ranging from 0.98 to 1.0 across different
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FIGURE 12. Preservation of correlations between the combination of generated data in high-dimensional space and the original real data.

FIGURE 13. Feature uniformity of 15 generated wafer data.
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FIGURE 14. Probability density distribution of multidimensional features.

FIGURE 15. Cross-probing between WAT and CP.

dimensions, as shown in Figure 11. Furthermore, the com-
bination of generated data in high-dimensional space still
preserves the correlations of the original real data, as shown
in Figure 12.

To enhance the quality of the generated model, we can
selectively omit some parameters that are not important in
actual production to avoid the model learning abnormal val-
ues during the early stage of process parameter adjustment.
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FIGURE 16. Process recipe optimization.

GAN models are more effective in learning the non-linear
relationships and feature representations in chip manufac-
turing processes, capturing fine details and better fitting the
distribution of real data compared to traditional methods
that analyze real data. Further analysis demonstrates that
GANmodels can learn and capture the parameter distribution
and uniformity details in the chip manufacturing process,
as shown in Figure 13. This information on uniformity
represents non-random features on wafers, such as similar
distorted wafer surfaces observed in lots produced from var-
ious batches.

Figure 14 shows the probability density distribution of
multidimensional features. It illustrates the compromise
space between yield and design margin based on the gener-
ated large dataset of chip data, providing specific guidance
for future design recipes and capacity optimization. The pro-
posed GAN model of this study demonstrates good stability
and generalization performance across different training and
testing sets.

The cross-dimensional data correlations generated
by the GAN model offer exciting applications for

Design-Technology Co-Optimization (DTCO). We observe
correlations between wafer-level process parameters, such
as the threshold voltage (VT) of N-MOS and P-MOS, and
chip-level performance (Fmax) and leakage current (SIDD),
as shown in Figure 15. The variability of the NP process
recipe exhibits a negative slope coefficient and intercept.
Through the analysis of cross-dimensional correlations and
data interactions, we can more effectively identify trade-offs
and optimization directions between target energy efficiency
and process recipes.

Figure 16 presents another application of high-dimensional
feature profiling. By conducting cross-dimensional and cor-
relation analysis, such as utilizing wafer-level process param-
eters as a reference, we can efficiently provide targeted
process adjustment strategies and guidelines to enhance
chip performance (e.g., an averaged ring-oscillator fre-
quency; ROu) while preserving the same characteristic
(e.g., SIDD). This enables us to optimize the process while
preserving certain desired qualities.

Figure 15 can be likened to a dynamic language trans-
lation expert and bridge, facilitating mutual understanding
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between experts on the left side representing the design house
and those on the right side representing the semiconductor
fab. This mutual understanding is achieved through real-time
cross-probing displayed on the user interface, enabling both
sides to comprehend each other’s objectives and directions.
Similarly, Figure 16 can be considered a static content transla-
tion expert and bridge. It translates the XY plane coordinates
using the parameters of the semiconductor fab and the Z-axis
using the parameters of the design house. This is achieved
through high-dimensional contours that present optimization
objectives and specific directions, which are clear to both
parties. For example, a typical designer may desire a chip
with reasonable speed and power efficiency. Traditionally,
this would involve extensive analysis of real chip efficiency
using split wafers, followed by iterative adjustments of the
manufacturing parameters with the semiconductor fab to find
the best process window. Nevertheless, by integrating data
across different dimensions and projecting data into higher
dimensions, we can establish a model much like a translation
expert or bridge that enables experts from different domains
to immediately and accurately identify the process window
positions that suit each other, expediting the convergence
process. Figure 16 also demonstrates that the specific best
process window and optimization directions provided by vir-
tual data match the original data. This is highly exciting.

In order to evaluate the practical applications of the gener-
ated chip data in DTCO, a comprehensive series of tests was
conducted. These tests encompassed various critical aspects,
such as the distribution and uniformity of process parameters,
detection of wafer surface defects, trade-offs between process
parameters and design margins, chip performance prediction,
optimization of productivity and binning strategies, among
others. The experimental outcomes confirmed the promising
potential of our GAN-generated chip data in facilitating the
development of novel Electronic Design Automation (EDA)
tools for DTCO-related domains.

V. CONCLUSION
Defect detection and classification are critical steps in
any semiconductor manufacturing process, involving a sig-
nificant investment of time, materials, and labor costs.
The primary contribution of this study is the introduc-
tion of an innovative virtual silicon technology that utilizes
deep learning models to rapidly and accurately gener-
ate a substantial volume of chip data. This establishes a
Design-Technology Co-Optimization (DTCO) platform and
demonstrates its application in the platform. The technology
precisely reflects the parameter distributions, defects, and
characteristics present in the wafer manufacturing processes.
Specifically, the study introduces a Generative Adversarial
Network (GAN)-based approach to train and encapsulate
multidimensional WAT and CP test data, resulting in the
generation of highly realistic chip data with multidimen-
sional features. The research outcomes demonstrate that
the proposed approach effectively assists in chip design
and wafer production for product optimization and process

improvement, resulting in enhanced production efficiency,
reduced costs, and improved product quality. This paves the
way for novel approaches in simulating and analyzing chip
co-optimization.

However, GAN also faces several challenges, such as
selecting the appropriate architectures for the generator
and discriminator, handling high-dimensional and com-
plex data, and requiring significant time and computational
resources. To better transform data into trainable models,
we adopt a method of converting multidimensional data
into two-dimensional images with multiple feature channels.
Additionally, we simulate rotation defects and variations in
process parameters that may exist in wafer manufacturing
during the training process.

In summary, we believe that generated models, includ-
ing but not limited to GAN, hold immense potential in the
development of new Electronic Design Automation (EDA)
tools. By utilizing these generated models, clear guidelines
for design and process recipes can be provided, leading to
reduced chip testing costs and improved product quality.
Furthermore, it fosters collaborative optimization between
chip design and process technology across different domains.
However, achieving this potential requires further research
and development to overcome existing challenges and lim-
itations. We look forward to more researchers addressing
this issue and proposing innovative solutions, laying a solid
foundation for achieving more efficient and accurate chip
co-optimization methods.
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