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ABSTRACT Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart
services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML)
techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent
network functions/operations, which are able to fulfill the various requirements of the envisioned 6G
services. The revolution of 6G networks is driven by massive data availability, moving from centralized
and big data towards small and distributed data. This trend has motivated the adoption of distributed and
collaborativeML/DL techniques. Specifically, collaborativeML/DL consists of deploying a set of distributed
agents that collaboratively train learning models without sharing their data, thus improving data privacy and
reducing the time/communication overhead. This work provides a comprehensive study on how collaborative
learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split
Federated Learning (SFL), a technique that recently emerged promising better performance compared with
existing collaborative learning approaches. We first provide an overview of three emerging collaborative
learning paradigms, including federated learning, split learning, and split federated learning, as well as of
6G networks along with their main vision and timeline of key developments. We then highlight the need for
split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g.,
intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource
management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems).
Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G
networks. We finally identify key technical challenges, open issues, and future research directions related to
SFL-enabled 6G networks.

INDEX TERMS 6G networks, wireless communication, federated deep learning, split deep learning, split
federated learning.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION
6Gwireless networks are growing to take a substantiallymore
holistic approach, catalyzing smart services and innovative
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applications [1], [2], [3], [4]. 6G is expected to ensure highly
efficient and timely data collection, transfer, learning, and
synthesizing at any time and anywhere. Applications such as
Smart Grid 2.0, Extended Reality (XR), Holographic Tele-
presence (HT), space and deep-sea tourism, and Industry
5.0 represent the main applications of next-generation 6G
systems [5], [6], [7], [8]. 6G will be driven by a vision
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towards ubiquitous intelligence integrated into every aspect
of mobile networks [9], [10], from network management
and operations to the specifics of intelligent vertical services
powered by 6G. From a network infrastructure perspective,
AI tools will play an integral role in automating multiple
operations/functions in 6Gwireless communication networks
and enabling a closed-loop optimization to support the
emerging 6G services [9], [11], [12]. From a service
provision perspective, heavily data-driven applications will
pervade that feature Machine/Deep Learning (ML/DL)
workflows spanning heterogeneous and potentially massive-
scale networks; These applications need to be efficiently
supported by the 6G infrastructure substrate, and this gives
rise to interesting communication-computation co-design
problems [13].
These trends are currently being reflected in the activities

of standardization bodies. The ITU Telecommunication
Standardization Sector (ITU-T) has already established many
focus groups (FGs), to promote data-driven AI applications
in next-generation networks, such as FG-ML5G about
ML for 5G networks, and FG-DPM for data processing
and management coming from IoT and smart cities. The
European Telecommunications Standards Institute (ETSI),
on the other hand, has initiated the Experiential Networked
Intelligence Industry Specification Group (ENI ISG), which
targets beyond-5G networks with the aim of introducing
AI-driven facilities for cognitive network management.
In addition, both academia and industry sectors have initiated
the development of AI-based schemes to improve the
performance of next-generation networks. Notable examples
include i) HEXA-X1 and its successor, HEXA-X-II,2 two
EU-funded 6G flagship projects where AI-based 6G tech-
nology enablers are a core theme, ii) DETERMINISTIC6G,3

another EU-funded project that leverages advanced DL
techniques for network performance awareness, in order
to provide deterministic networking capabilities to 6G net-
works, and iii) Nokia’s strategy to lead the 6G development
in the US.4

Developments in 6G are driven by the trend towards
exploiting the massive availability of data, which in turn
calls for moving from centralized and big data management
to small and distributed data [3], [14]. Thus, 6G networks
should leverage both small and distributed data sets at
their infrastructures to optimize network performance. This
trend will be manifested in the heavy use of distributed
and collaborative ML/DL techniques, which go beyond
traditional and centralized ones [15], [16]. Specifically, col-
laborative ML/DL consists of deploying a set of distributed
agents, that collaborate with each other to train learning
models, without sharing their local data [9]. In this context,
Federated Learning (FL), proposed by Google in 2017 [17],

1https://hexa-x.eu/
2https://hexa-x-ii.eu/
3https://deterministic6g.eu/
4https://www.bell-labs.com/institute/blog/nokia-is-leading-the-6g-

conversation-in-the-us/

has emerged to build cooperative learning models among
a set of learners, while protecting the privacy of learners’
data. However, implementing FL on top of 6G networks
is still challenging mainly due to the heterogeneity of
6G-connected entities (cars, drones, sensors, haptic devices,
flying vehicles, etc.) in terms of resource capabilities, as well
as because of concerns from aMLmodel privacy perspective,
since, by design, the continuously updated versions of a
learning model are shared with learners during the training
process [18].

To address such challenges, another DL technique was
recently proposed by MIT Media Lab’s Camera Culture
group called Split Learning or Split Neural Networks
(SplitNN) [19]. As its name indicates, it consists in splitting
a global neural network into multiple sections and training
each section on an independent device (learner), by using the
local device data. Thus, the training of the learning model
is performed by transferring the output of the last layer of
each section (smashed data) as input to the next section, from
one involved learner to another. Hence, compared with FL,
SplitNN improves model privacy since no single learner is in
possession of the global model, and reduces the computation
required by the different learners to build a global learning
model. Nevertheless, the main challenge of SplitNN is related
to the time overhead needed to build a learning model, due to
its sequential way of training. This may be very challenging
in 6G settings, particularly for massive networks and when
training time matters [20].

Finally, split federated learning (SplitFed or SFL) comes
to merge the two distributed DL solutions (FL and
SplitNN), to design an enhanced hybrid collaborative learn-
ing algorithm [20]. In particular, SplitFed splits the neural
network among the involved learners and server, as in
SplitNN, to optimize both data/model privacy and compute
resource usage.Moreover, SplitFed improves on training time
as compared to SplitNN, by adopting the parallel model
update paradigm of FL.

It is clear that SplitFed offers advantages over both FL and
SplitNN by optimizing model privacy, learners’ computation
resources, and training time overhead. This motivates us to
focus on SplitFed and show its main benefits when leveraging
it over 6G wireless networks.

B. REVIEW OF EXISTING RELATED SURVEYS
So far, many survey papers about the emerging 6G networks
have been proposed to review 6G technologies, development,
and enablers [3], [5], [21], [22], [23], [28]. In [3] and [7],
the authors presented a holistic vision about 6G systems
and their main tenets. The primary drivers of 6G are also
identified along with their promising applications, enabling
technologies, and performance requirements. Another survey
work was proposed in [21]. The authors focused more on
the different 6G-enabled scenarios with their challenges
and open issues. A 6G framework describing the main 6G
actors/components was also designed. In [22], the authors
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TABLE 1. Existing surveys on 6G, AI for 6G, and distributed learning for 6G. H: High, M: Medium, and L: Low.

discussed technologies that may help to transform wireless
networks toward 6G, and be considered as main enablers
for many potential 6G applications. A full-stack perspec-
tive on 6G requirements and scenarios is also provided.
Similarly, the authors describe a human-centric vision of
6G networks in [23]. A systematic framework, including
potential 6G applications in addition to key features of 6G,
such as privacy, improved security, and secrecy, is also

provided. An exhaustive survey about the current develop-
ments towards 6G was proposed in [5]. The authors also
highlight the main technological trends with their potential
enabled applications and requirements. Ongoing research
projects and standardization efforts are also outlined. In [6],
recent advances toward developing 6G systems have been
explored. The authors have proposed a taxonomy including
use-cases, enabling computing/communication/networking
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technologies, and promising AI techniques. Open research
challenges are identified and discussed. The emerging
technologies that can assist 6G architecture development in
meeting use-case requirements are identified and described
in [1]. These technologies include blockchain, AI, Terahertz
communications, quantum communications, cell-free com-
munications, dynamic network slicing, and integrated sensing
and communication, among others. Potential challenges and
research directions are also discussed. In [24], the authors
give a comprehensive survey on mobile network evolution
towards 6G, while focusing more on the architectural updates
featuring by leveraging AI, ubiquitous 3D coverage, and
improved network stack. Potential technologies that may help
in forming green and sustainable networks, such as Terahertz
and visible light communication, are also discussed. Besides,
a novel next-generation network architecture was designed
to facilitate the migration from 5G to 6G in [25]. This
architecture also provides various applications and technolo-
gies of 6G networks. In [12], the authors study the main
motivations for the need to move to 6G wireless commu-
nication. The authors analyze the limits of 5G networks,
providing a new synthesis of emerging services, including
high precision manufacturing, holographic communications,
and AI, while the key technologies of 6G in terms of critical
requirements, different drivers, enabling technologies, and
system architectures, were studied in [26]. In [27], the authors
have provided a roadmap study about the different use cases
for 6G enabling techniques, discussing recent developments
on 6G and open challenges with potential solutions, followed
by a development timeline of 6G.

Besides, a wide range of survey and review papers have
discussed the application of AI and its benefits for 6G net-
works [28], [29], [30], [31], [32]. These works focus mostly
on ML/DL algorithms. In [28], the authors discussed both
6G-enabled AI applications and AI-enabled 6G performance
and design optimization, while how AI is revolutionizing 6G
communication technology was described in [29]. Another
comprehensive survey about various ML techniques applied
to networking, communication, and security aspects in 6G
vehicular networks is proposed in [30]. In [31], the authors
focused on what AI can bring at both the physical layer and
link layer in 6G networks, they also present major challenges
when usingAI, and provide some future directions tomitigate
them in 6G networks. An AI-based architecture for 6G
networks to mainly enable smart resource management,
knowledge discovery, and automatic service adjustment,
is designed in [32].

However, few survey works have addressed distributed/-
collaborative learning techniques for 6G networks. Most of
them are focused on federated learning (FL) [9], [15], [33].
In [15], the authors introduced the combination between FL
and 6G, and provided enabling applications in 6G networks.
Critical issues, suitable FL techniques, and future research
directions leveraging FL for 6G are also described. Similarly,
the main requirements that are driving convergence between
FL and 6G are identified in [9]. In addition, the authors

designed a novel FL-based architecture and showed its bene-
fits in dealing with the emerging challenges of 6G. Moreover,
future research directions and critical open challenges in
FL-enabled 6G are also reviewed. In [33], the authors gave
a comprehensive study on how distributed learning can be
deployed over wireless networks while focusing more on FL,
distributed inference, federated distillation, and multi-agent
reinforcement learning.

On split learning (SL), to the best of the author’s
knowledge, only one survey work [34] has been presented.
In this work, the authors reviewed both FL and SL and
provided a survey on different technologies enabling them to
be combined in an Internet of Things (IoT) context. In [35],
the authors first proposed a combined architecture of both
FL and SL to leverage their advantages. Then, they studied
their convergence under non-independent and identically
distributed (non-IID) data related to 6G drone networks.
Numerical results showed the efficiency of the learningmodel
generated when combining both FL and SL.

Table 1 compares existing survey studies. As we show,
even though survey articles addressing 6G, and AI for 6G
systems exist, there is a lack of comprehensive surveys
that combine split learning and 6G to explore the potential
of split learning for developing efficient, reliable, privacy-
preserving AI-powered 6G systems. The relevant studies on
the integration of AI with 6G networks [28], [29], [30], [31],
[32], [34], [35] focus more on FL rather than the recent split
learning approach. In [34] and [35], the authors studied the
combination of FL and SL, but the focus was specifically
on IoT networks and Unmanned Aerial Vehicles (UAV), and
the technical aspects of 6G as well as 6G-enabled use-cases
remained largely unexplored. Therefore, the related literature
is missing a comprehensive survey of split learning (SL
and SFL) and its potential in designing the upcoming 6G
systems, which could be valuable in guiding practitioners and
researchers. This is the gap our work aims to fill.

C. OUR CONTRIBUTIONS
The main contributions of this article are summarized
below.

• Bridging the gap between SplitFed and 6G Net-
works:Understanding the integration of SplitFedwithin
6G networks requires viewing what this new distributed
learning algorithm represents. To do this, this survey
examines first the algorithms that precede SplitFed
learning to guide the reader to recognize the different
existing techniques before the emergence of SplitFed.
Additionally, the reader will gain a comprehension of
the principles of SplitFed and how 6G can benefit from
it. There are myriads of papers on the applications of
AI, such as Deep Learning and Federated Learning in
6G networks [15], [36]. However, the interplay between
SplitFed and 6G is absent from the discussion. This
comprehensive survey fills this gap by analyzing the
important contributions that the connection between
SplitFed and 6G can lead to.
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FIGURE 1. The structure of the article.

• A comprehensive survey of SplitFed for the most
important technical aspects and use-cases of 6G:
A deeper dive into the chief 6G technical aspects
(e.g., intelligent physical layer, intelligent edge com-
puting, resource management) and 6G use cases (e.g.,
holographic telepresence, digital twin, and intelligent e-
health) is taken to investigate how SplitFed can help in
enhancing the functionalities of all 6G stakeholders.

• Towards a successful implementation of SplitFed
over 6G networks: This work describes various tools
that can support the development, evaluation, and
validation of SFL-based solutions for 6G networks.
We first list multiple existing datasets for different 6G
technical aspects and use-cases. Then, we overview
multiple existing frameworks related to B5G networks
as well as collaborative AI techniques. Finally, this arti-
cle discusses multiple open implementation challenges
along with their potential solutions, as future directions,
in applying SFL to 6G systems.

D. PAPER OUTLINE
As shown in Fig. 1, the organization of this article is as
follows: Section I delineates the significant role of AI in
6G, highlights our motivation, and provides an in-depth
review of existing related surveys in addition to the main
contributions of this paper. Section II gives a background
on AI, collaborative learning, and 6G networks, which are
required for describing the potentials of SplitFed learning for
6G networks. In Section III, we describe the main challenges
and requirements pertinent to different key 6G technical
aspects and show how SFL can help in optimizing operations
and performance through a realistic scenario for each such
aspect. Section IV discusses five emerging 6G use cases
with a particular focus on how SFL can help in optimizing
some of their performance characteristics. To help towards
a successful implementation of SFL on top of 6G networks,
we list several existing datasets and frameworks (tools) that
can support the development, evaluation, and validation of
SFL-based solutions for 6G networks. As with any new
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TABLE 2. List of acronyms.
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technology, SFL has its limitations and challenges which
are presented in Section VI. This section gives not only the
main limitations of SFL, but also the still-open challenges of
applying SFL to 6G networks along with future directions.
We also provide the main limitations of our study as well
as the faced difficulties, that may be considered to stimulate
further research in Section VII. Finally, we conclude the
article in SectionVIII. For the ease of reference, the acronyms
used in this article are summarized in Table 2, in alphabetical
order. We should finally note that, in the course of this article,
we use the terms SplitFed and SFL interchangeably.

II. BACKGROUND
This section gives a background onAI, collaborative learning,
and 6G networks, which are required for describing the
potential of SplitFed learning for 6G networks. We start
by introducing AI and machine/deep learning as a main
branch of AI; this may help non-expert readers get a better
understanding of the concepts we introduce next, namely the
main collaborative learning mechanisms of interest in this
article: federated, split, and SplitFed learning. We finally
provide an overview of 6G networks, along with their main
vision and development timeline.

A. ARTIFICIAL INTELLIGENCE FUNDAMENTALS
Artificial intelligence is a computer science field that aims
to mimic human mind capabilities in solving problems
and making decisions. It enables machines, e.g., computer
systems, to simulate human intelligence process through
algorithms and rules by combining various fields, such as
reasoning, planning, learning, communicating, perception,
and interaction. In our study, we focus more on machine/deep
learning as an AI branch.

1) MACHINE LEARNING ALGORITHMS
Machine learning (ML) is a branch of AI that leverages
statistical and mathematical models to process and generate
inferences from robust dataset patterns. ML consists in
building learning models based on training data, typically
to obtain accurate predictions, as results. ML algorithms are
usually classified into three different categories:

• Supervised learning: It consists in mapping specific
inputs to an output considering structured and labeled
data. For instance, to train a learning model to recognize
pictures of dogs and cats, the model should consider
pictures labeled as dogs and cats. This category of ML
models can deal with two main problems: regression to
predict a continuous (real) value, e.g., temperature and
velocity, and classification to predict the class to which
a particular input data example may belong, e.g., picture
of cat or dog. Various supervised learning algorithms
have been developed. For example, linear and logistic
regression aim to learn the correlation between input and
output data by estimating the parameters of a linear or
logistic model fit to them [37]. Random decision forests
or random forests build a set of decisions trees in order to

make both regression and classification. Random forests
also belong to another category of learning algorithms,
called ensemble learning, which further includes algo-
rithms such as boosting machines and AdaBoost [38].
Support Vector Machines (SVM), on the other hand,
create classification and regression learning models
building on a statistical learning theory framework.
Particularly, they aim to learn the optimal hyperplane
that separates the data instances [39]. Artificial Neural
Networks (ANN) mimic the human brain, by linking
a high number of artificial neurons (perceptrons) with
each other via edges and their associated weights. The
purpose of an ANN algorithm is to learn the optimal
edge weights so that a loss function is minimized and
inference accuracy is increased. Deep learning is based
on ANNs with a large number of hidden layers in the
neural network [40].

• Unsupervised learning: In this family of approaches,
unlabeled data are processed to deduce common pattern-
s/information. Unlike supervised learning, data labels
are not known ahead of time. The ML algorithm pro-
cesses the whole dataset, classifying it into groups based
on common attributes. This category of ML includes
three different sub-classes: clustering, dimensionality
reduction, and association rules. K-means is a clustering
algorithm that divides data into k clusters, according to
the distance to each cluster’s centroid. Different such
distance metrics exist, such as dynamic time warping,
Euclidean, or Manhattan distance [41]. Dimensionality
Reduction is used to reduce the data dimension,
while keeping its main attributes. Principal Component
Analysis (PCA) is one of the main dimensionality
reduction algorithms, which operates by projecting data
geometrically onto new components, called Principal
Components [41]. Association rule mining learns the
different associations between the input data, which
will then help to determine the correlation/relationship
among them. For example, associations between shop-
pers can be established based on their purchasing or
browsing histories [42].
It is worth noting that there is also a mixed category
named semi-supervised learning, where only some data
are labeled [43]. In this category, a final output is known,
and the learning algorithm should figure out how to
structure and organize the data to achieve the desired
outputs.

• Reinforcement learning: The basic idea of this class
of learning is ‘‘learning by doing.’’ An agent learns
to perform particular tasks in a feedback loop by trial
and error, until achieving a desirable performance.
The agent receives either positive or negative reward
when it performs the task either well or poorly,
respectively. Hence, the agent aims to learn an optimal
policy enabling to maximize the reward. A typical
example of a reinforcement learning application is when
teaching a robotic hand to pick up a ball. Popular
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reinforcement learning algorithms include Q-learning,
Deep Q-learning, and Advantage Actor Critic (A2C)
[44]. Q-learning consists in finding the optimal policy
to transit from a state of the system to another. It aims to
learn a so-called Q-table, where ‘‘Q’’ stands for quality.
Each value of the table encodes the quality of picking a
specific action when the agent is at a given state. Deep
Q-learning replaces the Q-table with an ANN. This
allows the algorithm to handle problems with a con-
tinuous state space and cases where the state space is
prohibitively large. Finally, A2C consists in building two
different learning networks, named actor and critic. The
actor is in charge of making optimal actions, while the
critic network assesses their qualities [45].

2) DEEP LEARNING ALGORITHMS
An Artificial Neural Network (ANN) comprises a set
of artificial neurons, named also perceptrons, which are
computational components used to process and analyze data.
ANNs are generally organized in layers of neurons, where
neurons of a specific layer receive input from the layers
before, operate on this input, and pass the output of their
computations on to the layers that follow (though variations
of this organization exist). Deep Learning (DL) is a sub-field
of ML that is characterized by the application of ANNs
with many layers. ANNs with more than three layers are
usually referred to as Deep Neural Networks (DNN), and
some modern neural architectures may include hundreds of
layers. DL alleviates the need for manual feature engineering,
allowing instead the system to automatically learn features
of the input data that are important, by hierarchically
synthesizing higher-level features (e.g., shapes, in an image
classification problem) from lower-level ones (e.g., edges or
contours) as ANN layers progress. This is in contrast with
other ML designs where humans need to explicitly define the
representation of data in terms of input features. DL Themain
deep learning algorithms are as follows:

• Feed-forward artificial neural networks are one of
the most used deep learning forms, where data are
fed from the first to the last (output) layer, through
multiple hidden layers, and thus multiple computational
neurons [40]. A feed-forward ANN is usually coupled
to a back-propagation algorithm, that works back from
the results (output layer) towards the first layer in order
to correct errors and improve prediction accuracy of the
neural network.

• Sequence Algorithms enable to deal with sequential
data-related problems (time series), such as speech
recognition and language translation. Recurrent Neural
Networks (RNN), such as Long Short-Term Memory
(LSTM) networks, are typical examples of such algo-
rithms. They are mainly based on an internal memory
to save what happened in the previous layer, to decide
about the output of the current layer. For example, if we
saved the first two words of the well-known sentence,
‘‘Deep Learning Algorithms,’’ it would be much easier

to predict the third word ‘‘Algorithms.’’ Thus, recurrent
architectures decide about their future outputs based on
both the historical and actual states [46].

• Convolutional Neural Networks (CNN) is another deep
learning form that is mostly used for image recognition.
As in the typical ANN structure, CNNs include input,
hidden, and output layers. However, intermediate layers
can include distinct layer types, such as convolutional,
pooling, full-connected, and normalization layers [47].
These different types of layers can learn about both
simple and more complex image features like colors and
edges.

• Generative Adversarial Network (GAN): It is based
on CNN to deal with unlabeled data (unsupervised
learning) to extract common attributes from data [48].
In particular, GAN includes two competitive neural
networks. The first one generates new data examples
(generator), while the second one evaluates the quality
of such new data (discriminator). For instance, GAN has
been widely used to generate new realistic images.

• Auto-encoder: It is another unsupervised deep learning
algorithm used to learn efficient encodings of unlabeled
data. Auto-encoder comprises two main steps: encoder
to code the input data, and decoder to reconstruct the
input data from the code [49]. Applications include
detecting anomalies and reducing the noise of images.

DL models may be trained either in a centralized or a
distributed fashion. Centralized learning can be performed
by uploading all required data from all connected data
sources, such as remote devices, to a central node, e.g.,
a cloud server, to train a global model. The latter can then
be deployed to all involved entities, or it can be accessed
remotely as a service delivered from the cloud. In a mobile
network context, centralized training enables to optimize the
energy consumption of connected devices which are typically
battery-powered. At the same time, though, it is associated
with other critical challenges related to device privacy threats
due to sharing data, and increasing communication overhead
and costs. To overcome such challenges, distributed learning
emerges as a potential solution, due to its potential for
network cost savings and its inherent privacy preservation.
Enabling a set of learners to collaboratively build machine
learning models without sharing their private data enhances
data sovereignty and is a form of user empowerment. This is
a step towards democratizing deep learning processes, while
at the same time bearing the potential for resource savings at
the cloud end by distributing training load.

B. BACKGROUND ON COLLABORATIVE DEEP LEARNING
In this section, we give an overview of the main collaborative
deep learning schemes, ranging from federated learning,
to the recent split learning and SplitFed learning paradigms.

1) FEDERATED DEEP LEARNING
Federated Learning (FL) enables a set of nodes (clients) to
collaboratively learn a predictionmodel, without sharing their

VOLUME 12, 2024 9897



H. Hafi et al.: SFL for 6G Enabled-Networks: Requirements, Challenges, and Future Directions

FIGURE 2. Federated Learning Training.

own data [50], [51]. Thus, FL aims to build cooperative
learning models, while protecting the privacy of learners’
data. The FL process comprises three main steps (see Fig 2):

• Local learning initialization: During this first step,
a central node, e.g., cloud server, specifies learning
hyper-parameters in terms of the neural architecture
and deep learning algorithm to be used, along with its
configuration (number of layers and neurons, activation
functions, learning rate, optimizer, dataset features,
number of iterations, minimum required accuracy, etc.).
Such parameters are then transferred to all the involved
learners.

• Training of local models: Once receiving the learning
parameters from the central node, each learner starts to
build its local learning model leveraging its own data.
The local models, i.e., neural network weights, are then
communicated back to the central node after either the
specified number of iterations is reached, or the needed
accuracy has been achieved.

• Local models aggregation: During this step, the central
node aggregates all the received local models to generate
a global model, before sharing it with all learners. At this
stage, different aggregation algorithms can be used
such Federated Averaging (FedAvg) [17], FedProx [52],
FedPer [53], and SCAFFOLD [54].

Even though FL enables to train neural networks in a dis-
tributed, collaborative way, it still presents critical challenges
that should be addressed. One of the main challenges related
to FL is systems heterogeneity, where the storage, communi-
cation and computing capabilities of involved learners may
differ mainly due to the heterogeneity in hardware (memory

and processing units), network connectivity (Wi-Fi, 3G, 4G,
5G), and power source and state (e.g., battery level). Thus,
it is possible that not every learner is able to train a neural
network, nor to periodically share it with a central node [18].
Moreover, while FL avoids sharing learners’ data by design,
sharing model updates during the training process can reveal
private information, either to the central server, or to a third-
party [18].

2) SPLIT DEEP LEARNING
To overcome FL’s limits, another collaborative deep learn-
ing technique called ‘‘Split Learning’’ or ‘‘Split Neural
Learning’’ (SplitNN) has recently been developed [55].
As illustrated in Fig. 3, it is used to build deep neural networks
over multiple learners, while avoiding to share their labeled
data. In SplitNN, a deep neural network is split into multiple
sections (sub-layers) and each section is locally trained on
a different learner (user or server). Thus, the training of the
learningmodel is performed by transferring theweights of the
last layer of each section (smashed data), also named the cut
layer, to the next section. By this, SplitNN mitigates to share
learners’ data, and only the weights of the last layer are shared
with the next learners. Specifically, the neural networks in
SplitNN are trained through two main steps:

• Forward propagation: Each learner (for example an IoT
device) trains a partial deep neural network up to the cut
layer. The outputs of the cut layer are then transferred
to the next learner (server), that continues the training
without access to the data of the other learners (IoT
devices).
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FIGURE 3. Split Learning Training.

• Backward propagation: This consists in back-
propagating the gradients from the last section, to the
first section of the neural network. Only the gradients
of the cut layer are sent back from the server to the IoT
devices.

This process is repeated until the whole neural network
is trained and the required accuracy is reached. In practice,
SplitNN can be configured in three different ways:

• Vanilla split learning: It is the simplest configuration,
where the deep neural network is split between a set of
learners and a server, where the last section of layers is
located at the server. Learners start to train their neural
networks until the cut layer. Theweights of the cut layers
are then sent by the learners to the server to complete
the rest of training. For backward propagation at the
server, the gradients are back propagated from the last
layer towards the cut layer. The gradients at the cut layer
are then communicated back to the different learners,
to continue the backward propagation step.

• Split learning without label sharing: This configuration
also consists in splitting the neural network among
learners and a server. However, the label of each example
is located at the learner’s side. The neural network is
partitioned in a way that learners maintain the first
and the last layers of the neural network, so (i) the
output of the last cut layer in the forward pass is sent
back by the server to learners, which in turn (ii) start
back propagation by building the gradients from the
last section of the neural network without sharing the
corresponding labels, and passing the gradients on to
the server, which eventually (iii) sends back its output

and the back propagation process is finalized at the
learners’ end. This configuration is ideal for applications
where labels incorporate very sensitive information like
patients’ disease status.

• Vertically partitioned split learning: It is suitable when
multiple institutions, for example different network
operators, aim to train a common network over vertically
partitioned data (i.e., where each institution holds a
different set of features of the dataset) through a central
server and without sharing their data. The deep neural
network is split in a way that the institutions share
the same neural network sections, albeit with different
input features each. The last layers are located at the
server. Institutions train their neural networks up to the
cut layer, and the institutions’ outputs at the cut layer
are then aggregated and sent to the central server that
continues the training process.

Compared to FL, SplitNN improves data privacy by
sharing only the weights of a sub-section of the neural
network, up to the cut layer, rather than sharing the model
updates during the training process. In addition, SplitNN
strongly reduces the computation required by the different
learners to generate a global learning model, since each
learner is in charge of only a part of the neural network.

Despite the main advantages of SplitNN, however,
it presents a critical performance issue: The sequential nature
of training in SplitNN makes client resources idle, since only
one learner can be engaged with the server at one instance.
In particular, in settings with multiple learners, after one
learner finishes back propagation – thus a new version of the
global model, partitioned between the learner and the server,
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FIGURE 4. SplitFed Learning Training.

is available – the next one needs to begin its forward pass
on the most up-to-date model. Synchronizing the learner-side
part of the model can take place either in a centralized (the
learner-side model portion is uploaded by the last learner to
a central server accessible by other learners) or in a peer-to-
peer manner. In any case, new versions of the global model
are created one learner at a time, while the rest remain idle.
This may generate a considerable training time overhead,
especially when the number of learners is large [20].

3) SPLITFED DEEP LEARNING
SplitFed (or SFL) merges the two distributed ML solutions,
FL and SplitNN, to construct an enhanced hybrid collabora-
tive learning algorithm that always follows the learner-server
model [20]. It inherits the dual advantages of both FL and
SplitNN. It partitions the model into learner/client and server
sides, but all the sub-models are trained in parallel. In addition
to the main server that existed in the earlier SplitNN design,
a novel component is introduced in the architecture calledFed
Server (see Fig. 4). The working process follows a series of
steps: At first, the Fed Server starts the procedure by sending
the global learner-side model portion to all participating
clients. Next, all learners run at the same time the forward
propagation function using their own local data, till the cut
layer of learners, where they pass the smashed data to the
cut layer of the main server. Following the SplitNN principle
explained so far, the server takes over the rest of the forward
propagation, calculates the cost function and back-propagates
up to the cut layer of the server. Notably, as we shall describe
next, it is possible to execute this server-side process in
parallel for multiple clients. Then, each client continues the

TABLE 3. Comparison of collaborative learning algorithms.
H: High, M: Medium, and L: Low.

back propagation on its learner-side model portion. The cycle
of forward and backward propagation between the learners
and the server is carried out for some rounds without the Fed
Server. Then, the learners communicate their updates to the
Fed Server, that aggregates them and creates a global learner-
side model, which is sent back to all the involved learners.

There are two ways to perform server-side
synchronization:

• With Aggregation: The main server is responsible not
only of training its part of the model over the smashed
data received from clients, but also to aggregate the
back propagation results corresponding to each client’s
data into a single global server-side model at each
learning epoch. This takes place by executing federated
averaging over the values it computed during the
backward pass on each individual learner’s smashed
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FIGURE 5. Mobile Networks Evolution.

data. It should be noted that the main server processes
these smashed data in parallel.

• Without Aggregation: There is no aggregation at the
main server, and the server-side model is updated
in every single forward-backward pass, processing
smashed data from the various clients sequentially.
The smashed data themselves are received by clients
synchronously. Thus, at each instance, the main server
selects one client at random, in order to perform
forward-back propagation. The clients’ operations
remain the same (forward-back propagation), where
their models are sent periodically to the Fed Server
to aggregate them and generate a global (learner-side)
model.

To summarize, SplitFed splits the neural network among the
involving learners and server, as in SplitNN, to optimize both
data/model privacy and compute resource use. Moreover,
SplitFed improves on training time, as compared to SplitNN,
by integrating the parallel model update paradigm of FL.
Table 3 compares the three collaborative learning forms,
FL, SplitNN, and SplitFed, according to six main criteria:
privacy of the learning model, model aggregation, training
time overhead, needed computation resources, distributed
computing, and access to the raw data.

It is clear that the three collaborative learning approaches
enable a high degree of computation distribution, without any
access to the raw data. However, SplitFed offers more advan-
tages as compared to both FL and SplitNN by optimizing
model privacy, learners’ computation resources, and training
time overhead. This represents the main motivation of our
work to focus on SplitFed and demonstrate its benefits when
leveraging it over B5G/6G wireless networks.

C. BACKGROUND ON SIXTH-GENERATION (6G)
NETWORKS
6G mobile networks are expected to evolve towards con-
nected intelligence with the support of a wide range of
services with diverse and stringent requirements. In this
section, we provide an overview of the emerging 6G mobile
networks, ranging from mobile network evolution, to today’s
6G vision and development timeline of 6G-enabled networks.

1) EVOLUTION OF MOBILE NETWORKS
During the last four decades, mobile networks have
transformed through five different generations. Each new
generation integrates more capabilities and technologies to
enhance and empower our lifestyle and work. Before 1980s,
pre-cellular mobile generation was referred as the zeroth-
generation (0G) of mobile networks. It offered basic voice
communication using devices such as walkie-talkies [56].
In the 1980s, the first-generation (1G) of cellular networks
was launched, to support analog cellular telephony [57].
Second-Generation (2G) cellular telephony was introduced
in the early 1990’s. 2G featured a transition from analog to
digital technology, to provide new services such as MMS,
picture messages, and text messages in addition to voice
communication [58]. The International Telecommunication
Union (ITU) then launched initiatives to unify a frequency
band in the 2000 MHZ, supporting a single wireless commu-
nication standard for all countries. The third-generation (3G)
was introduced based on such standard to enable new and
advanced services, while optimizing network capacity [59].
These services include video calls, multimedia messages,
mobile TV, GPS (global positioning system), etc. The
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fourth-generation (4G) succeeds 3G cellular networks,
to introduce further improved mobile services, including
Voice Over IP (VoIP), online gaming, High-definition mobile
TV, mobile web access, and 3D television [60].
Currently, multiple network operators are deploying

5G mobile communication worldwide to support further
advanced services, such as ultra Reliable Low Latency
Communication (uRLLC) to ensure a communication latency
down to 1 ms, enhanced Mobile Broadband (eMBB) to
achieve data throughput up to 10 Gbps, and massive
Machine Type Communication (mMTC) to support a massive
deployment of devices, in particular over 100x more devices
per unit area as compared to 4G. In 5G, network availability
and reliability are expected to reach 99.999% [61]. Indeed,
network slicing and network softwarization are the main
technology enablers of 5G that introduce more programma-
bility, dynamicity, and abstraction of networks [62]. These
capabilities have enabled promising applications including
Augmented Reality (AR), Virtual Reality (VR), Mixed
Reality (MR), Internet of Things (IoT), autonomous vehicles,
and Industry 4.0 [63], [64]. Recent developments have
brought about several new concepts, such as Non-Orthogonal
Multiple Access (NOMA), beyond sub 6GHz to THz commu-
nication, Edge Intelligence (EI), Self-Sustaining Networks
(SSN), swarm networks, and Large Intelligent Surfaces
(LIS) [3], [4]. These concepts are expected to play a vital
role in empowering the next generations of wireless networks.
In addition, these concepts are also expected to be the
main enablers of many new applications such as Unmanned
Aerial Vehicles (UAV), smart grid 2.0, Extended Reality
(XR), Holographic Telepresence (HT), space and deep-sea
tourism, and Industry 5.0. However, the requirements of these
applications, including accurate sensing and localization,
availability of powerful computing resources, ultra-high
data rates, extremely low latency, very high reliability and
availability, surpass the 5G network capabilities [15], [21].
This has motivated the research and industrial communities
to envision 6G communication networks, which are expected
to consider the emerging communication concepts and
applications.

Fig. 5 gives the evolution of cellular networks, while
showing the key features of each generation. It also illustrates
the main envisaged 6G enablers, vision, requirements, and
applications.

2) TODAY’S 6G VISION
As envisioned today, extreme peak data rates over 1 Tbps
and a very low end-to-end delay of 0.1 ms are expected
to be provided by 6G networks. To attain such goals,
processing delays at the sub-microsecond range for specific
tasks may be required, and this will be facilitated by the
pervasive use of edge intelligence, a core theme in the 6G
vision. Both network reliability and availability are expected
to go beyond 99.99999%. 6G networks are expected to
provide high connection density of over 107 devices/km2,

and thus support Internet of Everything (IoE), which connects
massive numbers of Cyber-Physical Systems (CPS), devices,
actuators, and sensors. Furthermore, extreme mobility up to
1000 kmph is expected to be supported by 6G in addition to
a spectrum efficiency estimated to 5× that of 5G [3].

To enable emerging applications, 6G networks are
expected to meet multiple new requirements including mas-
sive Low-Latency Machine Type communication (mLLMT),
Mobile BroadBand and Low-Latency (MBBLL), ultra-
massive Machine-Type Communication (umMTC), and
Further enhanced Mobile Broadband (FeMBB). These new
requirements are enabled thanks to the new emerging
technologies in terms of Compressive Sensing (CS), dis-
tributed/collaborative learning, Edge AI, THz spectrum, 3D
networking, and blockchain/Distributed Ledger Technologies
(DLT). To this end, considerable efforts are made by research
community to developing and specifying 6G technologies,
applications, services, vision, and standards [65], [66].

3) EXPECTED 6G DEVELOPMENT TIMELINE
Developments of 6G networks progress along with the
finalization of 4G LTE-C, that followed LTE-B and LTE-
Advanced as well as the commercialization and deployment
of 5G networks [28]. By 2023, the definition of the 6G
vision in terms of requirements and development evaluation,
standards, technologies, etc. is expected. The technical
specifications of 6G are expected to be developed by stan-
dardization bodies like 3rd Generation Partnership Project
(3GPP) and ITU by 2026-2027 [28]. Network operators
are also expected to initiate 6G research and development
by 2026-2027, in order to perform 6G network trials by
2028-2029, and to start deploying 6G communication
networks by 2030 [21], [22], [28]. Fig. 6 illustrates the
expected timeline of 6G standardization, development, and
deployment.

III. SFL FOR 6G TECHNICAL ASPECTS
A. INTELLIGENT PHYSICAL LAYER
1) INTRODUCTION, REQUIREMENTS, AND EXISTING
SOLUTIONS
One of the major features of 6G is the ability to connect a
massive number of intelligent devices (IoE) [1]. Undoubtedly,
this would lead to a dramatic growth in the number of users
and emerging applications that impose diverse performance
requirements: extremely high data rate, extremely high reli-
ability and ultra low latency. As previous cellular networks,
the issue of spectrum scarcity is still ongoing, thus achieving
these goals is a challenging task. Notwithstanding the wide
spectrum offered by 5G, it is insufficient to cover the future
6G needs. For that, additional frequency bands are a necessity.
Multi-band spectrum that combines sub-6 GHz, millimeter
wave (30 - 300GHz), Terahertz (0.06 - 10 THz) and non-radio
frequencies (RFs) (visible and optical bands such as Li-Fi)
will be a central solution for 6G networks [2]. To usefully
exploit the limited resources, smart techniques for sharing
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FIGURE 6. Expected Timeline of 6G development [28].

and managing are mandatory. The intervention of AI in the
physical layer will be a further addition to deal with problems
that are cumbersome to model accurately with conventional
mathematical methods.

In the literature, many works are devoted to the utilization
of AI paradigms (ML, DL, FL) in the physical layer [67],
[68]. AI will render the transmission more reliable by
improving different aspects of the physical layer, e.g. signal
modulation, channel estimation, and error control. In [16],
the authors proposed a channel estimation model based on
Federated Learning, and their results show that their approach
offers 16× lower overhead than centralized learning.
Similarly, Automatic Modulation Classification (AMC)

is an attractive solution widely used for intelligent radio
systems. In a typical communication environment, the
modulation scheme is shared between both the transmitter
and receiver. However, this would increase the signalling
overhead, while a sniffer can interpret and identify the
modulation scheme used for transmission. AMC consists
in the identification of the modulation type of the received
signal without prior knowledge of the transmitter modulation.
A reliable modulation classifier needs to sustain a high
accuracy and low loss under various channel conditions and
SNR (Signal-to-Noise Ratio) rate. Of late, many studies
address the integration of deep learning algorithms to
replace conventional classifiers. For example, in [69] the
authors proposed a new AMC multi-class model with four
possible outputs (BPSK, QPSK, 8-PSK, 16-QAM) based on a
Recurrent Neural Network (RNN), which is the most suitable
for sequential data. The classifier exhibits noteworthy results
under different noise conditions. A CNN architecture has
also been successfully employed by [70] for the processing
of graphical representations of signals in a spectrogram

form. Recently, a distributed classification method for AMC
based on federated learning has been introduced in [71].
The proposed solution, so-called FedeAMC, shows a slight
performance gap with a centralized solution, i.e., CentAMC
(less than 2%). Another solution to set up a reliable
communication link at the physical layer in 6G systems
is to use a huge number of antennas at the transmitter
and receiver sides. This technology is called Massive
MIMO (Multiple-Input, Multiple-Output) [72]. It enables
the transmission/reception of signals from/to multiple users
simultaneously. Beamforming is a thriving technique used
in Massive MIMO. It is based on smart small antennas
that increase the transmitted energy to a specific direction,
in order to create narrow beams destined for particular users.
This method can boost the link’s capacity by reducing inter-
ference, providing more signal paths and higher throughput.
On the other hand, the orchestration of the massive number
of antennas would be complex and hardly manageable.
In this regard, many researchers leverage AI capabilities by
introducing new antenna design processes through ML. For
instance, in [73], a FL-CNN based model was designed for
analog beamformers, where simulation results demonstrated
that the framework minimizes the overhead of channel state
information (CSI) collection and transmission, and it is more
tolerant to channel changes and imperfections.

2) CHALLENGES AND HOW SFL CAN HELP
Despite the promising performance of traditional ML and
FL in physical layer design, they present some drawbacks.
Most studies apply centralizedML that entails the availability
of datasets at a central node, e.g., the base station (BS),
wherein a transmission of local data from user equipment
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(UE) is prerequisite. Thus, the BS starts the training
process after the collection of the required datasets from the
respective sources. Further, in existing FL-based approaches,
the generated datasets, e.g., the received pilots are kept intact
at the client side, and the base station forwards a replica of the
same model to all clients (e.g., mobile phones). Accordingly,
each client trains independently the whole model which is
prohibitive in terms of computing resources, that may not
always be available, due to the heterogeneous hardware
constraints. Another problem of FL stems from the migration
of the total parameters of the physical model, which causes
privacy and security issues. To cope with these limitations,
SplitFed (SFL) could be a better alternative. Contrary to
FL, the SFL technique does not share the entire model.
As a matter of fact, the model is cleaved into two parts,
one part for the clients and the other for the main server.
Then, only the dedicated sub-model is migrated towards
each client. Therefore, this will enhance the computing
and energy consumption and raise the level of the model’s
privacy. In contrast to SplitNN, the SFL client-side model
is trained by all the wireless devices at once, using their
own raw data (CSI, received signal, beamformer information,
etc.), which accelerates the learning stage. As mentioned
earlier, SFL can be applied for various practical physical
layer applications, ranging from channel estimation to error
control. The base station can act as a bridge between the
clients and the Fed Server to send the model updates for
aggregation purposes. Indeed, SFL can be seen as a hybrid
solution that combines the advantages of both centralized
and distributed ML paradigms, in order to confront the
performance parameters expected to surge in 6G networks.

3) REALISTIC SCENARIO
In order to elucidate the use of SFL at the PHY layer,
we propose an illustration of a realistic scenario for
modulation recognition based on SFL (see Fig. 7). The
model proposed in [70] used a CNN architecture, where
the input is the corresponding spectrograms of the signals
with a dimension of 100 × 100 × 3. The model comprises
four convolutional layers with a kernel size of 3 × 3 and
different number of filters from 64, 32, to 12 and 8. The
size of both zero-padding and stride are set to 1. The pooling
size of the max-pooling layer is (2, 2). The fully connected
layer consists of 128 neurons. To apply SFL, we consider a
system with k clients [c1, c2, . . . , ck ] and the client with the
highest computing resources will represent the main server;
we assume it to be the last client ck . First, we divide the
global model W (see step 1 in Fig. 7) into WC (client side)
andWS (server side) (step 2 in the figure). Then, we allocate
the first five layers to the clients (Conv, Max Pooling, Conv,
Max Pooling and Conv) and the remaining layers to the main
server (Max Pooling, Conv, Fully Connected and Softmax).
The used dataset is RadioML2016.10a [74], which considers
11 modulation methods, 20 different signal-to-noise ratios
(SNRs) and 1000 signals per modulation mode per SNR.

700 random signals, per modulation mode per SNR, are
chosen as training data, and the remaining are divided into
validation and test data. We distribute the dataset between
the (k − 1) clients for training, So, each client will have
[700 × 11 × 20 / (k − 1)] signals. In the first iteration,
the clients from c1 to ck−1 train the WC until the third
Conv layer. Then, each of them applies the ReLU activation
function and transmits the output to the main server (client
ck ) (step 3 in the figure). The rest of the forward operation is
performed by the main server and the recognition accuracy is
measured. Next, the client ck back-propagates the model until
its Max Pooling layer and sends the activation gradients for
the clients to continue the back-propagation on their client-
side local model (step 4 in the figure). After some iterations,
the k−1 clients forward their local weights to the Fed Server
to reconstruct the new global WC . The resulting averaged
model is then re-forwarded to all clients and the process
restarts (step 6 in the figure). The training is stopped once
the validation loss is not decreased (has stable values). Using
SplitFed in this scenario will be beneficial on several levels.
First, it would be time and energy saving for the client-
side, as each learner would just train five layers instead
of nine layers. It is also advantageous in terms of storage
requirements because of the small number of trainable
parameters implicated, compared to FL that typically require
a large number parameters due to the learnable layers. All
these previous points make SplitFed more suitable especially
when no computational capabilities are available.

B. RESOURCE MANAGEMENT
1) INTRODUCTION, REQUIREMENTS, AND EXISTING
SOLUTIONS
Resource Management (RM) in 6G would face significant
challenges. Owning to the uncommon number of expected
connected devices, network resources are projected to be
under a high strain. Accordingly, to meet the diverse needs
of each device and/or service, RM algorithms should be
able no only to allocate the resources but also to optimize,
adapt, prioritize and secure the allocation process. Typically,
RM problems are resolved using optimization and heuristics-
based methods. However, the foreseeable services and their
performance in 6G will hinder the utilization of traditional
solutions. For instance, one of the key capabilities of 5G
and beyond is Network Slicing. The general rule that
stands behind this technology is to build multiple virtual
networks (aka slices) on the top of a single physical
infrastructure [75]. A slice is a set of resources (memory,
computing, and network) and functions (virtual network
functions) customized to support a specific service, and
deployed at different levels, such as RAN, core network,
edge and cloud computing facilities [76]. The resource
allocation to different running slices should be managed in
an automatic and flexible way. For that, a range of research
works tackledAI-assisted network-slicing along the complete
lifecycle of a slice [77], [78], from admission control [79],
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FIGURE 7. SFL-based modulation recognition application.

resource orchestration [80], [81] to radio scheduling [82].
It should be noted that while significant efforts have been
put in these directions in the context of 5G, emerging
6G use cases will challenge Network Slice customization,
management and orchestration in multiple ways: Application
requirements will cut across the traditional 5G service classes
(eMBB, URLLC, and MIoT) [22], which implies that slice
resource management mechanisms will need to address new
throughput-reliability-latency (and potentially privacy) trade-
offs. Furthermore, handling massive numbers of potentially
short-lived slices can strain the control and management
planes.

Another aspect of RM is the power allocation problem,
where the transmitted power should conserve the signal’s
quality without causing interference. In [83], the authors
have developed a DL model for MIMO power control
to predict the power allocation profile of any UE based
on its position. The model has been trained to learn the
mapping between the UE’s position and the optimal power
allocation. The limited radio resources and the massive
channel access expected in 6G make the orthogonal multiple
access schemes (e.g., TDMA, FDMA and CDMA), used
in the previous generations of cellular networks, unable to
fulfill the needs of users. To handle this struggle, NOMA
(Non-Orthogonal Multiple Access) is a good candidate
for 6G. It covers multiple users using the same resource
block (same time and frequency) which brings about inter-
user interference [84]. To mitigate the latter, successive

interference cancellation (SIC) process is applied. In [85],
a DNN-aided SIC architecture was studied, where all the
users’ signals are successively decoded by the base station
from the strongest to the weakest. The input of each DNN
is the composite signal that contains all received signals,
and the decoded signals of all previous users (the input for
the first user is only the composite signal), and the output
is the decoded signal of the corresponding user. On the
side, the high-speed and high-mobility of some nodes (e.g,
drones and air-taxis) and the use of mm-waves in 6G may
lead to many handover (HO) events [86]. Cell selection
and handover management are major issues that must be
handled in 6G to allow users to continue communicating
smoothly without interruption, by moving from one AP/BS
to another. DL-based HO techniques prove their power in
literature. In [87], Hu et al. proposed a novel intelligent
HO control method where the handover decision-making
is based on the results of a deep learning-based model for
trajectory prediction. According to the test results, themethod
achieves higher accuracy than the other traditional systems
(on average, the accuracy value is 8% better).

2) CHALLENGES AND HOW SFL CAN HELP
The frequent changes in network conditions and config-
urations (fluctuating number of users, dynamic network
status) cause a degradation in traditional resource allocation
methods, which assume static networks and depend on fixed
network models. Within the last decade, a considerable
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number of works leveraging data-driven techniques to
solve issues related to resource management in B5G/6G
networks have been proposed [88], [89], [90]. Data-driven
approaches permit the training of a model on a large
amount of data, associate the relationship between input and
output, and forecast an optimal resource allocation. Among
the manifold data-driven algorithms that can be used for
resource allocation, we find traditional DL schemes, rein-
forcement learning with its DL-based variants, such as Deep
Q-Learning, and FL. However, the proposed techniques
cannot deal with all the challenges, especially when executed
over resource-constrained client devices. The training of
a complex FL-based resource management model with
low-resource devices can lead to many problems, starting
from the lack of storage resources, where the whole model
cannot be loaded into the small memory of the device and
also cannot be trained due to the lack of compute resources.
In addition, the training of the model will consume a lot of
energy and will be time consuming. In this scenario, to ensure
the training process in resource-constrained devices, we need
to split the model into shards between the different entities,
which will optimize the resource utilization with a fast
convergence time. So, SFL is a recommended technique for
the 6G network resource allocation optimization, especially
when device resources are scarce.

3) REALISTIC SCENARIO
To demonstrate the efficiency of SFL in solving resource
management issues, we project its application on Network
Slicing architectures in 5G and beyond. In [89] the authors
propose a new framework called ADAPTIVE6G based on the
Transfer Learning (TL) paradigm that offers incontrovertible
advantages by reusing an already trained neural network
model, instead of developing a fresh model from scratch,
to resolve related problems [91]. ADAPTIVE6G considers
three slices A (eMBB), B (mIoT), and C (URLLC) respec-
tively. Founded on the data collected from all slices, it builds
up a traditional Deep Neural ModelMDNN to predict the total
network loads. MDNN contains five neural layers: the input,
output, and three hidden layers. After optimizing MDNN ,
the learned weights are held as TL parameters to train a
new model called MADAPTIVE6G using the dataset of each
slice individually, releasing three models MeMBB, MmIoT and
MURLLC (one for each slice). Performing training on the
entire model and dataset may spend more time and energy
for devices that know tiny size and limited resources. In this
scenario, SFL may be applied in two manners:
· First, with the MDNN model by splitting the five layers
among the clients within each slice and the main server.
As depicted in Fig. 8, the first two layers are running
on the eMBB devices whereas the last three layers are
running on the main server, represented by the in-slice
manager entity (ISM). Given that context, the in-slice
manager plays twofold roles, namely the main server
and fed server for all slice devices. After some iterations,
each in-slice manager forwards the obtained model

towards the Slice OrchestratorManager (SOM) to create
the global model.

· Second, applying SFL on the MADAPTIVE6G model
inside each slice would be immensely beneficial in
terms of efficient use of network resources. With
this aim, we suggest a resource-aware split strategy
where the number of layers running on each slice is
not fixed but varying per slice based on its device
capabilities. Using this approach, we propose to split
the MADAPTIVE6G learning model into just one layer as
a client segment inside the mIoT slice due to its low-
power devices, while the remaining four layers are sent
to the main server. Following the same concept, eMBB
and URLLC devices can have more layers as they have
more computing resources and large memory compared
with mIoT slice devices. To achieve that, we suggest
preserving two layers for eMBB and URLLC clients and
running the other three layers on the main server. In this
scenario, ISM acts as the main server in close proximity
to slice clients whilst the SOM entity acts as a fed server
that aggregates the sub-models updates contributed by
the participating clients.

C. INTELLIGENT EDGE COMPUTING
1) INTRODUCTION, REQUIREMENTS, AND EXISTING
SOLUTIONS
Copious volumes of data are incessantly generated by
various types of ubiquitous devices. The transmission of this
amount of data to remote cloud servers puts a strain on
the network infrastructure, while their centralized storage
and processing require massive cloud resources. In the
reverse direction, massive content and service delivery,
as well as bounded latency requirements of real-time
applications, call for resource disaggregation and the delivery
of services from locations closer to end users. The Multi-
Access Edge Computing (MEC) paradigm offers answers
to these challenges [92]. It consists in moving computing
resources close to the data source and executing network
operator or third-party services at telco-operated edge data
centers close to the radio access network [93], [94]. ETSI
provides a comprehensive set of standards specifying various
aspects of the MEC architecture [95]. The integration
of AI algorithms into the edge enabled the emergence
of a new form called Intelligent Edge Computing (IEC),
which is a missing element in 5G networks [96]. IEC will
well be an important component in future 6G networks,
by making services more intelligent, secure, autonomous,
reliable and scalable. The appearance of distributed learning
such as FL and SplitNN has supported its progress by the
utilization of the edge capabilities to train and share models
providing added value and optimized services. A wave
of applications stimulates the deployment of edge-native
solutions, such as live video-based facial recognition in smart
spaces and air pollution monitoring, to name a few, that
call for real-time data processing. IEC starts to draw a
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FIGURE 8. An illustration of SFL for Resource Management (First Scenario).

keen interest among specialists and research communities,
wherein series of works study the intersection between AI
and edge computing. A recent study in [97] provides a
comprehensive survey on the IEC technologies in 6G. This
article describes the necessary IEC’s concepts and raises
new open challenges and future directions in IEC within
6G networks. In [14], the authors propose a self-learning
architecture based on self-supervised Generative Adversarial
Nets (GANs), to illustrate the performance improvement that
can be achieved by automatic data learning and synthesizing
at the edge of the network. Self-learning is a prominent field
inML, that allows automatic data collection, label generation,
feature extraction, and model construction without human
involvement. Self-supervised learning is one of the principal
axes of self-learning that permits the generation of labeled
data set from unlabeled data [98]. Recently, many researchers
have adopted the combination of federated learning and
edge computing in the context of 6G networks [99], [100].
This integration has proven successful in leveraging the
advantages of federated learning, including improved com-
munication efficiency and enhanced data privacy protection,
compared to conventional ML methods. However, while
FL decreases the communication overhead by transmitting
only model parameters instead of training data, it presents
some limitations. For instance, the training of complete
complex machine learning models necessitates substantial
computing, storage, and power resources, thereby presenting
challenges for resource-constrained edge devices. In this
context, adopting less resource-intensive solutions, such as

SFL-enabled models, may offer a viable approach to mitigate
this limitation.

2) CHALLENGES AND HOW SFL CAN HELP
Although intelligent edge computing is an attractive tech-
nology to cover the limitations of the cloud, there are some
challenges that need to be addressed, such as security and
privacy-associated ones, wherein different types of attacks
may be launched, such as data poisoning, data evasion, and
privacy attacks. At the same time, there is a persistent need
of the cloud in particular for big data processing due to
the limited computation and storage capabilities of edge
servers. Therefore, lightweight AI algorithmsmust be utilized
to provide smart applications for edge scenarios. In effect,
SplitFed and IEC form a complete unit, where each of them
will enhance and emphasize the qualities of the other. The
integration of SplitFed will accommodate IEC’s technology
requirements. Because of its model segmentation feature,
a large model can be optimally trained at the edge on
massive data generated in smart spaces permitting a more
efficient use of device resources. Also, with IEC, both the
Fed Server and the main server would be deployed at the
edge network instead of the cloud, which reduces the distance
between servers and edge devices, leading to a low latency
connection in the forward and backward propagation steps,
higher training speed, and less network traffic. Furthermore,
in addition to the protection of user data, SFL improves
on model privacy and ensures a high reliability due to the
high number of edge nodes (user devices and servers), that
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participate in the training process. Moreover, the proximity
feature makes the prediction of the end-user’s location easier,
and helps in the training of SFLmodels for localization based
services.

3) REALISTIC SCENARIO
To depict how SFL can be applied in Intelligent Edge
Computing, we examine a realistic scenario. In [101], the
authors propose a MEC deep learning-powered framework
for an optimal execution of vehicle collision detection
and avoidance services. The proposed architecture involves
predicting first the density of vehicles to be covered by aMEC
host. Then, according to the observed vehicle density, the
required MEC computing resources are deduced. To predict
the vehicle mobility, a long short-term memory (LSTM)
based model is used. It consists of five layers that start
with a fully connected input layer of 56 neurons, three
stacked LSTM layers, each with 56 neurons and an output
layer of 45 neurons. The evaluation process was made on
real-world taxi GPS data, consisting of 464019 entries,
recorded over 30 days in the city of San Francisco [102].
The system assumes that each taxi forwards periodically
the vector (timestamp, ID, GPS coordinates) to a central
server. In this regard, the incorporation of SFL could bring
significant improvements. Fig. 9 illustrates how SFL can help
in enhancing mobility prediction in the proposed framework.
First, the data remain on participating taxis and each taxi
carries out a part of model training. As stated before, only
model parameters would be transferred over the network.
Moreover, both servers involved in the SFL paradigm would
be at the edge, near the taxis, which will enhance learning
performance. Once a vehicle completes its local training
task, it sends the smashed data to the nearest base station
which plays the role of a bridge between the taxis and
the main server. Next, the main server continues with
the forward/backward propagation procedures and returns,
through the closest base station, the adjusted weights to
the taxis’ cut layers for the rest of training. The process is
repeated until reaching an expected level of accuracy.

D. PRIVACY, TRUST, AND SECURITY
1) INTRODUCTION, REQUIREMENTS, AND EXISTING
SOLUTIONS
6G is a hyper-connected network that allows communication
over the ground, air, sea and space [103], connecting the
digital, virtual, and physical worlds [104]. Undoubtedly,
this would open up a range of subject matters in terms
of privacy, trust, and security. How to deal with threats,
vulnerabilities, and attacks in an ultra-dense, heterogeneous,
and complex network? How to assure the CIA triad
(Confidentiality, Integrity, and Availability) and offer the best
user experience? How to build a trustworthy network and
defend users’ personal data against bad practices? In the
literature, a plethora of thematic solutions applying varied
approaches have been proposed.

In recent years, Distributed Ledger Technologies (DLT)
such as Blockchain are one of the most explored tech-
niques in this field due to their exclusive features such
as decentralization, replication, immutability, transparency,
and traceability [105]. This is manifested in the ongoing
discussion on the integration of Blockchain with networks
beyond 5G [106], [107]. In such networks, deployment cost
challenges associated with operating smaller (and denser)
cells due to higher radio frequencies, and accountability
challenges due to supporting multi-vendor settings arise.
These challenges call for efficient and trustworthy resource
and infrastructure sharing among different providers, and
blockchain can be seen as the fabric to support automated,
transparent, and accountable SLA management mechanisms
to implement it [108]. Accountability and transparency are
critical to build trust among the involved stakeholders, such
as network operators and device vendors. From a technical
standpoint, smart contracts executing on the Blockchain can
be used, among others, to encode rules to create and regulate
a RAN resource marketplace [109], [110], or to implement
automated negotiation mechanisms among infrastructure
providers for offering end-to-end network slices to vertical
service providers [111].
On the federated learning front, Issa et al. [112] and

Zhu et al. [113] survey recent works that integrate Blockchain
into federated learning design to address specific security and
performance issues of the latter. This body of works addresses
such issues in two major ways: (i) Using Blockchain and the
associated payment mechanisms to incentivize FL nodes to
contribute computation resources in exchange for specific
rewards. (ii) Replacing the traditional centralized FL design
with a Blockchain-powered, decentralized one, where there
is no single node that acts as the FL server; instead, this role
is shared by multiple FL nodes in a peer-to-peer manner,
where nodes exchange encrypted model updates and smart
contracts execute secure model aggregation, with the global
model being recorded in the Blockchain in an immutable,
transparent, and reliable way.

Contemporary cybersecurity solutions leverage the capa-
bilities of machine learning, since it enables the automatic
detection of abnormal behaviors. Several ML algorithms
confirmed their reliability in analyzing traffic data and
detecting malicious attacks. For instance, in [114], authors
proposed a new centralized solution combining RNN with an
Autoencoder to detect DDOS attacks. In another work [115],
CNN with RNN have been used for Android Malware
Detection. Recently, FL has also been actively introduced for
malicious attacks detection. In [116], authors proposed a FL
framework using MLP and AE, to detect malicious software
in IoT devices. In another work [117], authors leverage FL to
enhance privacy protections in 6G cybertwin networks.

2) CHALLENGES AND HOW SFL CAN HELP
With its vision towards connected intelligence, 6G is
expected to both feature AI-driven operation, and support
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FIGURE 9. SFL-enabled vehicle mobility prediction for a collision avoidance system.

key use cases that make heavy use of AI (see Section IV).
Therefore, it inherits AI security and privacy challenges that
have received significant attention. Based on the model life
cycle (training and testing), four types of relevant attacks
can be distinguished: model extraction and model inversion
attacks (privacy threats), and adversarial and poisoning
attacks (security threats) [118]. The goal of model extraction
attack is to generate a substitute model architecture as
a close approximation to the original model based on a
query dataset and the relation between the input and output
pairs. The model inversion attack, proposed in 2015 by
Fredrikson et al. [119], consists of finding the input that has
a high resemblance to the record that was used in the training
set. In adversarial attacks, the attacker leads the target model
to report false predictions with a high confidence. In poison-
ing attacks, the adversary focuses on polluting the model’s
training data. A variety of techniques have been integrated
to solve privacy-preserving DL, for instance, differential
privacy (DP) and homomorphic encryption (HE). The former
shields from the inversion attack by applying noise on the
input data whilst the latter is a cryptography technology that
enables to perform computation and processing on encrypted
data without revealing the original one. However, both
mechanisms raise model privacy-accuracy trade-offs. The
defenses for DL security threats are divisible into two main
categories: Adversarial defenses, such as pre-processing
and malware detection, and poisoning defenses that aim to
remove the poisoning samples during the training phase.
At present, there is no universal approach to address all deep

learning privacy and security issues. A synergy between FL
and SplitNN can be used to mitigate some of these problems,
particularly for model privacy violations. In view of the fact
that the model is split into sub-models and the duplicate
instances of the client side copy, the model would be more
robust and reliable regarding models’ attacks. For instance,
if one sub-model was invaded, the rest remain intact and the
attacker cannot infer all the attributes and parameters of the
model.

3) REALISTIC SCENARIO
The core objective of an Intrusion Detection System (IDS) is
guarding data, services and applications against threats and
attacks. Standard data-driven IDS involves the presence of
very large amounts of network traffic data in a central location
for training purposes. However, gathering data in a single
site abets intrusion attempts and facilitates data stealing.
In addition, the transmission of data over a vulnerable envi-
ronment endangers its security. Furthermore, the centralized
training on huge network traffic can affect latency, whereas
IDS claims analysis responsiveness. Authors in [120] propose
an unsupervised Deep Learning Approach for IDS that
encompasses a one dimensional convolutional auto-encoder
(1D CAE) and one-class classifier SVM (OCSVM). The
former (CAE) is utilized as a feature representation learning
method while the OCSVM is used for attack detection.
Note that one class classification is considered because of
the imbalanced IDS dataset (the model is trained only with
the knowledge of normal traffic). SFL applied to Intrusion
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Detection Systems can provide an effective strategy by
maximizing work division. For instance, in the features
learning phase, each host in the network downloads and
trains its client side CAE model (the encoder part) locally.
Afterwards, the server side recuperates the compressed data
(memorized in the Bottleneck layer) and decompresses them
(the decoder layer). Then, it calculates the MSE reconstruc-
tion loss and back-propagates the model parameters. The
cycle continues until convergence is reached. The application
of SFL at this stage alleviates the computational complexity
for the central processing server, preserves data privacy and
enhances bandwidth utilization.

E. ZERO TOUCH SYSTEM MANAGEMENT
1) INTRODUCTION, REQUIREMENTS, AND EXISTING
SOLUTIONS
The distributed network architecture and multi-service
support enabled by new technologies (SDN, MEC, net-
work slicing, and NFV) involve increased complexity in
the management of 5G and beyond networks where the
existing solutions are inefficient in managing, monitoring
and orchestrating all the operations and services of the
network. In 2017, ETSI adopted a new framework called the
Zero-touch Network and Service Management (ZSM) [121].
It aims to minimize human intervention by enabling the
full automation of all processes and networking services.
Emerging disciplines such as AI, ML, DL and Big Data play
a significant role in the self-governing of the network (for
instance: self-configuration, self-optimization, self-healing
and self-protection). Note that the aforementioned attributes
can be expanded to self-* to support more of the network’s
autonomic capabilities. This would be helpful in reducing
typical causes of humans errors, improving network per-
formance, and likewise shorten the time and operational
costs. There have been many research works that analyze the
benefits of integration of AI/DL algorithms in ZSM [122],
[123] in order to create an automated network for customers.
However, the success of the full automation process depends
on multiple parameters such as the learning algorithm being
used and the quality of the input data. Besides, many relevant
challenges would accompany this network transformation as
we will see in the next section.

2) CHALLENGES AND HOW SFL CAN HELP
To deal with the increased network complexity of beyond-
5G systems, full E2E automation is needed and AI-based
ZSM offers a good answer. However it also has limitations.
For instance, a higher accuracy with a short training time
is one of the fundamental challenges in AI/ML model-
based ZSM systems. Interface-level security issues (e.g.,
Open API security threats), E2E management, scalability,
privacy, near real-time systems are among the dares that
confront the application of ZSM. As we have seen in
the earlier sections, SplitFed could be introduced at any
mentioned point. For instance, it could be applied in the

case of network multi-tenancy, where multiple slices have
a variety of resource requirements (including radio access
network, core network, and cloud computing resources)
provided by different administrative domains. The latter
possess relevant and pertinent data for global management
and orchestration procedures, but are less willing to share it
with the global orchestrator. Under these circumstances, the
collaboration feature of SplitFed among the administrative
domains preserves data privacy while enabling network
learning.

3) REALISTIC SCENARIO
It would be tricky to disentangle ML/DL and ZSM. Both
concepts are elemental parts for the automation of network
operations. ML/DL could be integrated in the management
of several network categories described under the label
of the FCAPS model (Fault, Configuration, Accounting,
Performance and Security). In this example, we focus on
the work presented in [124] where the authors formulate
a new FL-based solution for performance and security
functions. The proposed model predicts slices’ service-
oriented Key Performance Indicators (KPIs) to act quickly
to the decline of one or more QoS parameters of a running
network slice and maintain the specification of a Service
Level Agreement (SLA). The authors assume the presence
of an in-slice manager to monitor the service-level KPI,
and train the FL local model. SplitFed, as an intelligent,
decentralized and cooperative solution, could be used to
further enhance the performance of the model. Instead of
training the entire deep neural network model, each in-slice
manager trains a sub-model using its private data subset. After
some forward-backward passes between the participating
clients and the main server, the client-side sub-models are
aggregated by the Fed Server. Considering the parallel and
continuous aspects of SFL, it is coherent that the convergence
rate of the proposed model would be improved.

As could be observed throughout this section, all the exam-
ined papers either apply a traditional centralized learning or
federated algorithms as a distributed solution. In Table 4,
we highlight, for a list of selected works, how SFL can
enhance both techniques by identifying the corresponding
SFL agents (clients and servers), as well as the benefits that
would accrue from the application of SFL.

IV. SFL FOR 6G USE CASES
A. INDUSTRY 5.0, DIGITAL TWIN, AND AUTONOMOUS
ROBOTS
1) MOTIVATION
Digital Twin technology has a great impetus in the devel-
opment of governments and businesses in many fields such
as healthcare, industry, education and sports. It consists in
creating a connection between the virtual space and the
physical world [131] by developing a digital replica of a
physical asset (animate or inanimate). It has innumerable
added value applications, for instance creating an online
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meeting via avatars that would have the same features of
physical persons (voice, behavior and intelligence). In the
Qatar World Cup, the digital twin concept was applied by
bridging the digital and physical stadiums. The latter ingests
real-time data from millions of IoT devices that help in
monitoring the situation at every stadium (climate, security,
lights, etc.) and therefore take the appropriate action at the
adequate time. As well, the introduction of automation and
robotics have largely changed the way of working in several
areas, wherein some jobs have completely disappeared and
been replaced by machines. Examples include agriculture
robots for fruit harvesting, plant irrigation and scanning,
medical robots for assisted surgery and commercial robots for
delivery and sale. Both aforementioned technologies have a
profound impact in the development of the current industry
that has passed through many phases from the water power,
steam engine, electricity, oil and computers to the industry
5.0 that fuses all the emerging technologies. Digital Twin was
used in the maritime industry for shipbuilding processes in
order to comprehend the ship’s behaviors under the different
conditions by designing a cyber-physical system (CPS)
and therefore improve the safety of marine transportation.
Cobots or collaborative robots constitute one of the most
remarkable supporting technologies in industry 5.0. Unlike
traditional robots that work for humans, Cobots focus on
the integration of the human in the manufacturing process
by charging machines with dull tasks and entrust duties that
demand critical and cognitive thinking to humans [132]. This
collaboration and communication permit to leverage human
intellect and enhance the industrial process.

2) HOW SFL CAN HELP
AI and ML play a critical role in the future industry
to concretise the use of Autonomous Robots and Digital
Twins. For instance, to create a digital model for predictive
maintenance systems [133], [134], a pool of real-time data
generated by the sensors embedded in the physical system is
collected, then processed and analyzed by a central unit to
be leveraged by the DT model (for potential enhancements
to the real asset). However, the recurring transfer of complex
system data to a central entity may result in massive network
traffic and data privacy leaks. This was the basic cause
for the adoption of new advanced distributed solutions.
For instance, in [135] authors propose a new Federated
Learning framework for Industrial IoT where industrial
devices (robots, excavators, construction machinery, etc.)
perform their manufacturing tasks locally (e.g, training
a defective detection model) without sharing their own
dataset. This will increase the data privacy and decrease the
communication costs. However, the authors do not consider
some network constraints, such as the bandwidth utilization
and potential vulnerabilities that could be caused by the
transfer of the whole global model towards the industrial
devices. SFL, as a new technology, could be integrated along
with Industry 5.0, Digital Twin and Autonomous Robots as

well to deal with issues not previously considered for the
development of smart manufacturing models. For instance,
for Digital Twin-enabled 6G networks, SFL can improve the
efficiency of machine learning models dedicated to various
twin sources to manage the real system and predict its
future states by ensuring cost efficiency, resource-optimized
operation and instant wireless connectivity that keeps a
synchronized digital plane with the physical system. As well,
SFL models embedded on robots and Cobots could improve
the learning process performance by providing a distributed
and parallel training of complex systems over shared learning
models (client- and serve-side) and various data islands.

B. CONNECTED AND AUTONOMOUS VEHICLES
1) MOTIVATION
Preventing car crashes and saving human lives are among the
root reasons for smart traffic systems. Recent developments
in wireless communication technologies have brought rapid
and massive changes in the automotive industry world.
A new era of safer and smarter transportation is dawning,
namely via connected autonomous vehicles (CAV) [136].
The concept of a connected vehicle (CV) means that the
vehicle is equipped with sophisticated communication and
sensing modules (GPS, radars, cameras, sensors, etc.) that
allow it to exchange with its surrounding neighbors (other
vehicles, infrastructure and personal devices) giving birth to
many applications summarized under the termV2X (Vehicle-
To-Everything). An autonomous vehicle (AV) refers to a
vehicle that has the power to react by itself to any road
event without the need of a driver (braking, steering, obstacle
avoidance, etc.). A vehicle that possesses the potential to
carry out both actions is termed as a CAV. To enable these
activities, two sorts of technologies are used. The first
one pertains to connectivity, and features many developed
standards such as DSRC and C-V2X [137]. Secondly, we find
AI technology and its branches (see Section II) dedicated to
the automation part. In view of stringent and diverse Quality-
of-Service (QoS) needs imposed by smart-transportation
applications, that are data-intensive and delay-sensitive,
6G is expected to be the foundation of ITS deployment
because of its uniqueness in terms of reliability, latency and
massive connectivity. Artificial Intelligence as well will be
one of the prime pillars of the future 6G-supported ITS,
and research in this field begins to have contributors that
discuss a diversity of issues and viewpoints around the
topic. In [138], an in-depth review on how machine learning
can enhance the next-generation ITS main tasks in terms
of perception, prediction and management is deliberated.
In [139], the authors investigate the key enabling technologies
for 6G-V2X and their effect on the different 6G vehicular
network aspects, namely communication, computing, and
security. The authors subdivide these technologies into two
categories: revolutionary and evolutionaryV2X technologies.
Besides tactile communications, quantum computing, brain-
controlled vehicles and blockchain-aided V2X, one of the
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appealing revolutionized technologies discussed in the paper
that can improve the 6G-assisted ITS systems is intelligent
reflecting surfaces (IRS) [140]. After that, the authors expose
a variety of evolutionary technologies that need some changes
to becomemore suited to 6G-V2X, such as advanced resource
allocation.

2) HOW SFL CAN HELP
AI-aided solutions present a key part of a smart transportation
system strategy. However, the majority of existing research
papers for next generation ITS share the same basic patterns
of training. One pattern follows the traditional design in
which transport entities (smart car, smart road, smart traffic
light, etc.) forward, in a wireless and continuous manner,
information observed from embedded equipment (e.g.,
smart-car velocity, trajectory, direction and geographical
coordinates) to be processed in a central location [141]. The
transmission of these details menaces the driver’s privacy.
For instance, if attackers gain access to the future location
of a driver, they can easily determine the latter’s traveled
routes and therefore deduce sensitive information about the
driver, such as residence, job, health state, religious beliefs
and other. The second pattern consists in applying the reverse
operation, i.e., transmitting the whole model to the implicated
entities as in federated learning paradigm [142], [143]. Model
privacy leakage is the common threat with both techniques.
Future research directions are expected to strive not only for
solutions that consider data protection, but also that propose
model privacy-preserving mechanisms. The implementation
of SFL in the transportation and mobility industry would
improve on this aspect. SplitFed, as a promising technology,
will allow connected and autonomous vehicles to share the
training of a complex model without violating its privacy.
The model would be decoupled among the transport entities,
one part at the client’s side (vehicular nodes) and the second
part at the aggregator’s side (main server). In addition,
the interplay between SFL and edge computing can be
considered to achieve better, more timely, and safer decisions
via increasing the proximity among the involved servers
by hosting them at the edge. However, the high speed
and frequency changing of vehicular nodes may lead to
intermittent connection between nodes and servers (Fed
server and Main server) in the transmission of gradients and
smashed data. The duplication of servers could be a way to
address this issue.

C. INTELLIGENT EHEALTH AND BODY AREA NETWORKS
1) MOTIVATION
Healthcare is one of the areas that have witnessed vigorous
advances and improvements in both hardware and software
platforms through eHealth services and applications. For
instance, telemedicine has changed the standard practices in
healthcare centers, mainly during the COVID-19 pandemic
that hastened the use of teleconsultation, telediagnosis
and telemonitoring. These techniques provide patients a

personalized and easy access to health services irrespective
of their geographical positions especially in rural areas where
the healthcare system is unavailable or underdeveloped.
A significant development is the Internet of Medical Things
(IoMT) [144], also known as H-IoT (Healthcare-IoT).
It consists of all implantable sensors and wearable devices
(e.g., diabetic pump, smart watches, fitness bands) that
record constantly vital parameters such as blood pressure,
body temperature, oxygen saturation, glucose level and heart
rates, allowing users to track their health state, and detect
any abnormal signs. The interconnection among all devices
forms a new extension of sensor networks, called Wireless
Body Area Networks (WBANs) [145]. Through AI-assisted
analysis of big health-related data, produced by distinct types
of H-IoT devices, several medical applications of diverse
benefits are possible [146], [147], like lung cancer detection,
Alzheimer’s and Parkinson’s disease prediction and diabetic
retinopathy recognition. Because medical imaging is the
most used clinical examination for disease diagnosis, CNN
architectures have taken the lead in the wellness research
space and demonstrated high performance for various fun-
damental tasks. The deployment of WBANs must consider
many QoS features such as latency, power-consumption,
stable communication (even if the person is moving) and
interference mitigation [148]. Therefore, the selection of
the most appropriate communication technology is of great
importance. 6G is envisioned to streamline many aspects
in the smart healthcare systems by providing efficient and
economic remote services (e.g., surgical intervention via
video streaming, out of hospital care using holographic
communication) that would support healthcare practitioners
in their daily tasks [149].

2) HOW SFL CAN HELP
In 2020, Rieke et al. [150] introduced a paper that explores
the future of digital health with federated learning (FL) and its
potential impact on the various healthcare stakeholders. The
study shows how FL overcomes data security and privacy by
sharing the updated weights of trained local models instead
of the raw data from edge users. However, some points make
FL-based approaches not always efficient for healthcare use
cases. First, as it is known, images are the type of data
highly used in the e-health domain. In general, they are
characterized by a large size that requires models with huge
numbers of parameters. The frequent transfer of the whole
model over unreliable channels and limited bandwidth is a big
issue. Second, in contrast to some medical equipment such
as Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) scanners, clients are not always powerful;
they could be low-power electronic devices. In this case,
the training over the high-dimension model is not feasible.
Third, the proportional relation between the size of the model
and attack success rate (the higher the dimensionality of a
model, the higher its probability of being perturbed by an
attacker) [151] render the model less secure. Using SplitFed,
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medical devices would only have a lower dimensionality
part of the complete model (SplitFed has the ability to
vary/decrease the model portion of clients). This would save
more energy and make the model more robust to poisoning
attacks. Besides, given that the computation is performed in
parallel, a fast model training is envisioned. In sum, SFL
would be favorable for many future healthcare applications
that are based on resource-constrained devices and require
real-time services.

D. MULTISENSORY XR APPLICATIONS AND
HOLOGRAPHIC TELEPRESENCE
1) MOTIVATION
Developments at the intersection of diverse research fields,
including computer vision, sensing technology, wearables,
holographic display technology, edge computing, special-
ized AI hardware technology, and high-capacity/low-latency
wireless communication have made it possible to offer
users new experiences via eXtended Realities (XR): Virtual
Reality (VR), Augmented Reality (AR) and Mixed Reality
(MR). These experiences are difficult, even impossible,
to engage with in real life, such as visiting the moon’s
surface and climbing the deadliest mountain. VR consists
in creating an entire 3D virtual environment that highly
simulates the real world. The basic idea behind VR systems
is to display computer-generated images of the virtual space
in three forms: visual, aural and haptic [152] taking into
consideration the person’s attitude (position, orientation,
eye motion, etc). This representation immerses the user
(physically and mentally) into the virtual universe. The
AR concept, as its name indicates, permits to augment
the real environment. Unlike VR that isolates users totally
from their existing world, AR enhances it by adding more
virtual objects (digital contents) through digital devices
like smartphones, tablets, or AR glasses [153]. In effect,
the definition of the term MR is debatable, even among
experts [154]. E.g., in [155], the authors positioned MR in
the middle of AR and AV (Augmented Virtuality), while
in [156], authors categorize MR as an extension of AR,
although in [157], MR is defined as an amalgamation of
both VR and AR. The latter is the most common among
academic researchers. Numerous XR tools, such as VR
headsets, VR gloves, AR glasses, Teslasuit and Holosuit, are
used to support a wide range of XR applications in various
fields, including tourism, education, marketing, agriculture,
and medicine [158]. Hologram is another immersive media
technology that would surmount the distance barrier and
provide a real-time presence. It permits people to collaborate
and connect to each other by offering a natural conversation
experience to such an extent they feel like they are inside
the same room [159]. Unlike AR and VR, holographic
telepresence does not require wearable devices. At a remote
environment, images of humans and their surrounding items
are compressed and optimized before being sent over a high
bandwidth network connection. Afterwards, these images

will be reconstructed (decompressed and laser-projected) at
the users’ site. All the aforementioned technologies require
QoS guarantees (high processing, sufficient computation
power and extra-reliability connections) that surpass the
limits of the 5G network. Due to its specific technological
and technical aspects, the future 6G is the suitable candidate
to fulfill the requirements of XR/Holographic Telepresence
systems.

2) HOW SFL CAN HELP
AI/ML aided solutions are key in automating the complex
decision-making processes needed to realize future XR/Holo-
graphic Telepresence systems. However, the huge quantity of
data generated by VR and AR users make the use of a central-
ized learning paradigm almost impossible because of the high
network resource utilization. SFL, as a distributed learning
algorithm, is an effective way to reduce network load by
just forwarding the model updates that are smaller than user
data. In addition, if 6G communication is coupled with SFL
algorithms, the performance of XR classification/prediction
models could be enhanced. For instance, data confidentiality
and privacy are important in all XR applications since
sensitive information is implicated to control the XR contents
(e.g., eye motion and fingers’ position for the estimation
of 3D human body pose). In reference to this, SFL can
offer several benefits. First, the model is subdivided into
multiple sections (sub-models) between XR devices and the
main server. Clients start processing on their local data
before forwarding their intermediate outputs to the main
server to proceed with the training. This will reduce the
computational load of individual devices, ensure both user
and model privacy, capture context-aware information (e.g.,
user preferences) leading to customized XR content and
interactions. As well, 6G will guarantee a high bandwidth
and reliable communication for smashed data and gradients
transfer. Similarly, this also holds at inference time for an
object detection model that needs an accurate and rapid
identification (size, shape, color, location, motion) in order to
mix both virtual and physical environments instantaneously.
With SFL, the client first extracts low-level features locally
(e.g., color or motion information) from the data collected
in the physical environment. Then, it sends the intermediate
results to the server for extended analysis (such as object
localization). Accordingly, this will reduce privacy concerns
since sensor data from the physical environment remain on
the XR devices, minimize data transmission requirements
(only smashed data are shared with the server) and optimize
bandwidth usage. In the same way, with Holographic
Telepresence where the assimilation of the real environment
depends on well understanding all its components, a high
throughput and deep analysis of the data collected from the
real world are needed for a perfect virtual human training. The
combination of SFL and 6Gwill accelerate the understanding
of the real environment and prompt the customers to live an
interactive and convincing experience.
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E. SMART GRID 2.0
1) MOTIVATION
Most electrical power distribution systems rely on fossil-fuel
generators, which are detrimental to the environment due to
the high air pollutants induced by this technique. According
to [160], almost 40% of the CO2 emissions are due to power
generation. Furthermore, producing a large amount of power
in one site increases the delivery cost, particularly for distant
consumers where long transmission cables are required. Like-
wise, a centralized grid topology is more prone to reliability
issues, as a sudden fault involves a full blackout. Introducing
new information and communication technologies is a good
solution to deal with energy issues [161]. Smart Grid (SG) is
an intelligent and distributed digital power system designed
to effectively utilize the electricity network. In conventional
power networks, there is only one single source and only one
way to feed end-users. With SG, the power is emanated from
various sources (e.g., solar farm, wind farm) using multi-way
communication [162]. In order to build a flawless system,
incorporating intelligent and high performance technologies
into the diverse smart grid subsystems (generation, storage,
transmission, monitoring and distribution) is essential [163].
Indeed, Massive Internet of Things (MIoT) is one of the
cutting-edge technologies in supporting smart power grids,
including, for instance, smart meters, automated meter
reading, vehicle-to-grid systems, smart sensor and actuator
networks [164] to mention a few. All these smart devices
participate in the accurate and automated measurement,
extraction and transfer of parameter values from the different
part of the smart grid system. With the help of AI/ML
techniques, the analysis of the collected data would be
beneficial to estimate the state of the grid network, boost
the quality of experience (QoE), deploy dynamic pricing and
personalized energy services. Several ML/DL approaches
have been applied for smart grid networks, including, but
not limited to: CNN for load forecasting [165], LSTM-RNN
for photovoltaic power prediction [166], KNN for load and
price prediction [167], SAE for detection and classification of
transmission line faults [168], SVM for cyberattack detection
(covert cyber deception assault) [169], and, lastly, random
forests combined with CNN for energy theft detection [170].

2) HOW SFL CAN HELP
For better and faster grid management, energy data collected
from smart components should be analyzed quickly and
securely. However, it is difficult to address these challenges
with centralized learning schemes, which are the most
commonly encountered in literature. In effect, broadcasting
all the grid information towards a central location (e.g.,
cloud) extends the transmission time and augments security
and privacy threats since customer load profiles reveal a
lot of sensitive data (e.g., daily routine, time spent home).
Beyond that, the abuse of this information could involve
social issues, such as increased burglary threats when
residences are unoccupied. Applying distributed learning

algorithms in power and energy domains permits not just
understanding grid activities but protecting system data, too.
Many interesting works have used the federated learning
paradigm to tackle transmission delay and data privacy
concerns. For instance, in [171], the authors proffer a
federated framework for electricity consumer characteristics
identification where smart meter data are kept locally within
retailers, and only local weights are sent to a computational
center. Similarly, in [172] and [173], the authors expose col-
laborative FL architectures for learning power consumption
patterns and energy theft detection, respectively. In [174],
a new approach for electrical load prediction based on edge
computing and FL using residents’ behavior data is proposed.
Certainly, all smart-grid FL-based studies ensure data privacy.
Nevertheless, all neglect the model privacy aspect. SFL
provides a direct answer to this challenge. For instance,
to develop a SFL-based approach for faults location and
detection in a smart-grid system, the model would not be sent
over the network but partitioned into client and server sides.
All the grid clients, also called energy data owners (EDOs),
e.g., substations, train in parallel their sub-models using their
local data gathered from sensors and smart meters installed in
the smart grid. Then, the obtained parameters are exchanged
with the main server that resumes the training, aggregates
the EDOs shared models, and forwards the outcome back
to EDOs. After some rounds, the EDOs upload their local
models to the Fed server for aggregation. The process is
repeated until a desired accuracy is achieved. As a result, less
processing power from the grid network nodes is required,
while the split and parallelism features of SFL help to
protect themodel against inference attacks and supply service
providers (SPs) with energy-related knowledge in a brief
delay. Fig. 10 illustrates how smart-grid systems could benefit
from the SFL paradigm.

Table 5 analyses a selected group of studies related to 6G
use cases. In addition, it shows how SFL can be applied and
the advantages that this new algorithm presents.

V. DATASETS AND FRAMEWORKS FOR SUCCESSFUL
IMPLEMENTATION OF SFL-DRIVEN 6G NETWORKS
This section describes various tools that can support the
development, evaluation, and validation of SFL-based solu-
tions for 6G networks. We first list multiple existing datasets
for different 6G technical aspects and use-cases. Then,
we provide multiple existing frameworks related to each 6G
aspect/use-case.

A. EXISTING DATASETS FOR 6G NETWORKS
ML/DL model outcomes are greatly dependent on data
quality (type, size, source, format, etc). As low-quality data
leads to poor results, collecting and preparing appropriate
data is the first hurdle in the AI domain. Actually, there
is a lack of datasets related to the future 6G since it
is still under development, despite some initiatives (e.g,
DeepSense 6G). This scarcity is among the major reasons,
that push researchers to adopt datasets from other relevant
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FIGURE 10. Split Federated Learning in Smart Grid.

network technologies and configurations (e.g, 5G-specific
datasets). We discuss in this section some publicly available
datasets that could be used for solving both uses-cases and
technical-related issues. In this context, we distinguish two
types of datasets: (a) Technical datasets, where the data
are used to enhance core technical aspects of 6G networks,
(b) application datasets that can support 6G-enabled split
federated learning applications like smart-grid, healthcare
and smart-agriculture.

1) DATASETS FOR 6G TECHNICAL ASPECTS
• DeepSense 6G [186]: In order to promote ML/DL
research in cellular communication, a public, large-
scale and real-world dataset has been recently published
in [187]. It contains data about multiple dynamic
scenarios (34 scenarios as stated on the official web-
site of the dataset). Each scenario emulates a use
case (indoor communication, vehicle-to-infrastructure
communication, millimeter wave drone communication,
night/day time, rainy weather, and others). A scenario
comprises a set of units (camera, 2D/3D LiDAR,
radar, GPS, smart car, stationary base station, etc.),
and collects a set of modalities (e.g., RGB images,
position, beam power). These measurements could
be used for many SFL-enabled applications such as
beam prediction, user identification, positioning, object
detection/classification and more.

• 5GMdata [188]: It is a public and simulated telecom-
munication dataset, that has been generated using
traffic and ray-tracing simulators (SUMO/Remcom
Wireless InSite). The simulations with SUMO and
InSite represent the first phase before organizing the
raw data into a 5GMdata database, based on the target
application. Next, data post-processing is performed
by converting the 5GMdata into a format utilizable by
the ML/DL algorithm. Finally, the ML/DL experiment
using the associated data is run. This dataset could be
personalized to fit 6G cellular networks and develop
new split federated learning applications such as channel
estimation and beam selection.

• DeepMIMO [189]: It is a public and generated
dataset for mmWave/massive MIMO channels intro-
duced in [190]. It includes seven scenarios (according
to the official dataset’s website). For example, the first
scenario mimics an outdoor environment of two streets,
one intersection of 18 base stations (the height of each
BS is 6 m) and more than a million users distributed on
three uniform grids. The dataset provides three versions
(DeepMIMO v1, DeepMIMO v2, DeepMIMO 5G NR)
and many applications in the mmWave area, including
Intelligent Reflecting Surfaces (IRS), channel estima-
tion, and blockage prediction, to mention just a few.

• Telecom Italia [191]: It is a rich, open and multi-source
dataset largely used by academic researchers.
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TABLE 5. SFL contribution on a selected group of studies related to 6G use cases.

It aggregates telecommunications activities, namely:
SMSs, calls, and Internet usage data in the city of Milan
and the Province of Trentino. The data are recorded
every 10 minutes for two months (from 1/11/2013 to
1/1/2014). The dataset could be adopted for user traffic
prediction that plays a major role in designing smart
resource management solutions. References [192] and
[193] are recent works that have made use of Telecom
Italia dataset for 6G networks.

• Cellular Traffic Analysis Data [194]: It is a real-world
and labeled cellular dataset available at Github [195].
The traffic has been captured on several android devices
using virtual private network tunneling. The dataset
could be utilized to predict user traffic, and therefore,
ensure an adequate traffic-aware resource management.

• 5G dataset [196]: This is a public dataset described
in [197]. It is generated when a user is running
two services: downloading files and streaming videos
(Netflix and Amazon Prime applications) from two
mobility patterns, separately, namely: driving and static.
Various channel, context and cell-related details were

measured, such as downlink/uplink rates, mobile device
speed, GPS coordinates, SNR (Signal to Noise Ratio),
RSPR (Reference Signal Received Power), RSPQ
(Reference Signal Received Quality), etc. Based on its
features, the dataset could be used to automate various
network functions for 5G and beyond, such as intelligent
predictive handover, intelligent resource management,
and bandwidth prediction.

• UNSW-NB15 [198], [199]: This is one of the most
popular datasets used inML/DL-aided network security.
It was released in 2015. It has 44 features and about
2,540,044 data records distributed between normal
and attack traffic. UNSW-NB15 uses contemporary
methods to more reflect the real network traffic, and
contains modern attacks divided into 9 types, namely
Fuzzers, Backdoors, Analysis (e.g., port scanning),
DoS, Exploits, Generic, Shellcode, Reconnaissance, and
Worms.

• AWID (Aegean WiFi Intrusion Dataset) [200]: It
implements real Wi-Fi network traces of both legitimate
and illegitimate IEEE 802.11 WLAN traffic. Each
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record in the dataset comprises 155 attributes between
numeric and nominal values. The last version AWID3
focuses on IEEE 802.11w, Wi-Fi5 and WPA2 enterprise
attacks. The dataset is also considered for other wireless
communication technologies such as IoT and 5G [201].

• CIC-IDS2017 [202]: It is an intrusion detection
labeled dataset published by the Canadian Institute for
Cybersecurity in 2017. It contains benign and the most
up-to-date common attacks such as DDoS, Brute Force,
XSS, SQL Injection, Infiltration, Port Scan, and Botnet.
The dataset contains 2,830,743 records split into 8 files
with 78 features for each record.

• 5G-NIDD (5G - non-IP data delivery) [203]: This is a
fully labeled dataset generated from a functional 5G test
network, that can be used to develop and test AI/ML
solutions for identification, and detection of malicious
content in network traffic.

• Microservices configurations dataset [204]: In order
to verify if a cloud’s tenant configuration (in terms
of memory and CPU) is appropriate to its service
requirements, authors in [205] conducted an experiment
based on the execution of three concurrent applications
under diverse resource configurations, namely: Web
servers, RabbitMQ broker and the OpenAirInterface 5G
Core network AMF (Access and Mobility Management
Function). The experimental results led to the generation
of three different datasets (one for each deployed
application). For instance, the webserver dataset has
been produced from a parallel and increasing number
of requests (between 100 and 1000) sent to each web
server instance. The experiment left 16 features in
the web server dataset, 15 features in the 5G AMF
dataset, and 12 features in the RabbitMQ dataset. The
features include the timestamp ofmetrics’ collection, the
memory and CPU allocated to the container, thememory
and CPU used by the container, and other application-
related features. The dataset could be adopted to train
split federated learning models that manage automat-
ically the configuration of services’ resources for an
optimal execution and efficient computing resources
usage.

2) DATASETS FOR 6G USE-CASES
This section describes datasets related with popular 6G use-
cases that could be leveraged for SFL methods.

• PlantVillage [206]: It is a public plant disease dataset
used in [207] to develop a Digital Twin Framework for
Smart Agriculture, which represents one of the main
applications of 6G networks in industry 5.0. It contains
54305 leaf images from 14 crops, between healthy
and diseased, divided into 38 classes. PlantVillage is
the most cited among available plant disease datasets.
The authors removed the leaves from the plants
and photographed them with a single digital camera.
PlantVillage is a real dataset that could be used in
implementing SFL-based smart farming solutions. The

idea is to partition the data across the different simulated
collaborators (drones, cameras, etc.), potentially exper-
imenting with different data distributions (uniform/non-
uniform) and different forms of data partitioning (e.g.,
vertical vs. horizontal).

• Berkeley Deep Drive-X (eXplanation) [208]: It is
a real, public and large-scale dataset, that contains
77 hours of driving in 6,970 videos shot under various
driving conditions (day/night, highway/urban/rural area,
rainy/sunny weather, etc). Each video is approximately
40 seconds long and comprises 3-4 actions (accelerating,
slowing down, stopping, turning left, moving into the
right lane, and so on). All actions are annotated with a
description and explanation.

• Dataset of Annotated Car Trajectories (DACT) [209]:
It is a set of driving trajectories captured in Columbus,
Ohio, where each trajectory registers over 10 minutes
that can be divided into multiple segments annotated by
the operating pattern (e.g., speed-up and slow-down).
Furthermore, each trajectory is an ordered set of tuples
and each tuple consists of 11 attributes, such as: Trip
ID, vehicle’s speed in mph (miles per hour), vehicle’s
acceleration, latitude, longitude, type of segment (exit,
loop, turn, etc).

• MIMIC-III [210]: This is the acronym for Medical
Information Mart for Intensive Care III. It is a big,
anonymized and freely accessible medical database.
It covers data of forty thousand patients admitted in
intensive care units in Boston, USA, hospitals between
2001 and 2012. It provides an important benchmark
for evaluating health-related models based on split
federated learning.

• COVID-19 image data collection [211]: According
to [212], it is the largest public dataset for the diagnosis
of coronavirus disease. In addition to the chest X-ray
(CXRs) images, the dataset includes a list of metadata
such as patient ID, sex, age, temperature, time since first
symptoms, intensive care unit (ICU) status, incubation
status, hospital location, etc. It is a suitable resource for
building and evaluating several split federated learning
based applications, for example automatic detection of
COVID-19 cases, patient’s severity and the need for
mechanical ventilation prediction.

• VR streaming [213]: It is a publicly-available dataset
that comprises head tracking of 48 users fairly divided
between males and females. The data have been
recorded while users were watching 18 spherical videos
from 5 categories. Taking advantage of its features
(users’ way of watching, their head movements, and
directions they focus on), the data can serve as a
powerful source to enhance user experience in VR
applications by building SFL-based patterns for gazing
prediction and user identification.

• Irish CER [214]: The dataset is provided by the Irish
Commission for Energy Regulation (CER). It contains
customers’ electric load profiles from 6435 smart meters
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conducted on 536 days and half-hourly basis. Besides,
through a questionnaire filled in by the experiment’s
contributors, the dataset is enriched by many vari-
ables on occupant socio-demographic factors, their
consumption behavior, domestic properties, and home
appliances. By segmenting the whole dataset into dif-
ferent parts, it could be used to build several SFL-based
models to understand the electricity customer conduct,
for instance predicting the future load in one or multiple
nodes of a smart-grid network, forecasting the electricity
demand, and detecting faults and attacks.

• RAE (Rainforest Automation Energy) [215]: The
dataset includes 1Hz energy readings (mains and sub-
meters) from two residential dwellings. In addition to
power data, environmental and sensor data from the
house’s thermostat are included. As well, pertinent
sub-meter data for power utilities (heat pump and rental
suite) are captured and incorporated. The dataset record-
ings could be adopted for various applications including,
but not restricted to, energy saving, abnormal detection,
occupancy pattern and energy demand prediction.

Table 6 presents a comparative view between the above
existing datasets according to their properties (public or
private), label class (labeled or unlabeled), data distribution
(IID or Non-IID), generation procedure (real vs. simulated)
and applicable area (core 6G technical aspects or use case-
specific ones). In the last column, we provide some potential
6G applications for which the concerned dataset could
be used to develop SFL models. Note that datasets are
arranged in descending chronological order according to the
publication year.

B. EXISTING IMPLEMENTATION FRAMEWORKS
To implement split federated learning in 6G networks,
we need two sorts of tools. Firstly, network simulators that
play a significant role in modeling and analyzing the cellular
system. Secondly, ML/DL platforms for training, testing
and validating SFL models before being applied to the 6G
network. For that, a plethora of network simulators and AI
frameworks could be used. In the following, we present the
most popular and widespread tools in both academia and
industry.

1) MOBILITY AND NETWORK SIMULATORS
• SUMO (Simulation of Urban MObility)5: This is an
open source traffic generator, developed in 2001 by
the German Aerospace Center (DRL). It permits the
simulation and analysis of realistic user mobility and
traffic-relatedmodels. It offersmany features; we briefly
cite a few of them: building roads, considering streets,
intersections, traffic lights, high-speed routes, lane and
direction changing, etc. The extracted data from the trace
file could be used by another network simulator such as
OMNET++, NS2 and NS3.

5https://www.eclipse.org/sumo/

• NS36: This is a popular event-driven emulator/simulator
designed specifically for research and educational
purposes in computer communication networks. It is
based on two programming languages: C++ and
Python. The simulator core is developed entirely in
C++ with optional python bindings, which gives users
the ability to choose between C++ and Python to
write simulation scripts. It supports diverse network
technologies, including cellular networks such as 4G
(LTE) and 5G (NR).

• OMNET++ (Objective Modular Network Testbed in
C++)7: It is an extensible, modular, discrete-event
and free software simulator, targeted mainly for com-
puter network simulation (wired and wireless). It is
programmed exclusively in C++, and can be coupled
with several external frameworks such as Tensorflow for
ML/DL development. It is widely used for 4G and 5G
networks simulation.

• NetSim8: NetSim is a C language-based network simu-
lator that allows not only simulation but also emulation
of real-time traffic from real devices. In addition,
it is available under three versions (Pro, Standard and
Academic). Each version has different features, support
options and pricing (no free usage). It provides an easy
graphical user interface and a packet trace file with all
information needed for further analysis and evaluation
of performance metrics.

• Riverbed Modeler9: It is a commercial discrete event-
simulation environment, formerly known as OPNET,
used for the analysis of communication applications,
protocols and networks. Its sophisticated graphical
interface permits the user to build network topology
(nodes and links), display results, adjust the different
parameters, performing various experiments and scenar-
ios visually and rapidly.

2) ML/DL FRAMEWORKS
• PySyft10: This is an open-source Python library, devel-
oped by OpenMined. It integrates secure and private
deep learning algorithms such as Federated Learning.
In also implements differential privacy, and encrypted
computation. On Github, it has 8.6k stars and 1.9k forks.

• Federated AI Technology Enabler (FATE)11: This
software is an open source federated learning framework
in Linux. It implements secure computation protocols
based on homomorphic encryption and multi-party
computation (MPC). It has been applied in many
domains such as the finance and medical ones, and
acquired 4.8k stars and 1.4k forks on its Git repository.

6https://www.nsnam.org/
7https://omnetpp.org/
8https://www.tetcos.com/
9https://www.riverbed.com/
10https://github.com/OpenMined/PySyft
11https://github.com/FederatedAI/FATE
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TABLE 6. Benchmark datasets.

• FedML12: This framework is an open research library
enabling collaborative machine learning on decen-
tralized data. It was developed at the University of

12https://github.com/FedML-AI/FedML

Southern California based on PyTorch. It has 2.4k stars
and 572 forks on Github. It assures three computing
paradigms: on-device training for edge devices, dis-
tributed computing, and single-machine simulation. Fur-
ther, it encourages diverse algorithmic research through
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the design of flexible APIs and comprehensive reference
implementations (optimizer, models, and datasets).

• TensorFlow Federated (TFF)13: It is a free and open-
source TensorFlow-based framework. It is developed by
Google for federated learning. It has attracted about 2k
stars and 532 forks on GitHub. TFF proposes two APIs,
namely: Federated Learning (FL) API for high-level
interfaces (training and evaluation of users’ models) and
Federated Core (FC) API for low level interfaces (e.g.,
developing new FL algorithms).

• OpenFL14: It is a python-based, open-source frame-
work, developed by Intel. OpenFL is a versatile tool
that was initially deployed for medical imaging usage
(training brain tumor segmentation models). It provides
an efficient and reproducible method for developing
and evaluating FL algorithms. It gained 1.7k stars and
405 forks on Github.

• Flower15: It is an open-source federated learning
framework created by Adaptech Research. It provides
a high-level API that enables researchers to experiment
and build various FL use cases. It is compatible with
both PyTorch and TensorFlow frameworks and supports
a large number of clients. It gained 470 forks and 2.2k
stars on the github repository.

VI. OPEN CHALLENGES AND FUTURE DIRECTIONS
While SplitFed is a promising technique for collaborative
machine learning in decentralized 6G systems, there are still
several open challenges that need to be addressed for its
effective implementation in 6G networks. We discuss these
challenges along two dimensions: (i) SFL-specific issues,
which are related with its space of available architectural
and algorithmic configuration options, and have a scope that
goes beyond its application in/for 6G, and (ii) 6G-specific
challenges that stem from the expected characteristics of this
communication technology and their interplay with SFL.

A. OPEN CHALLENGES IN SFL
1) SPLITTING STRATEGY
Sharing the model among all the involved learners is the
first stage of the SplitFed algorithm. If we assume a SplitFed
ModelMwith ℓ layers, the total number of possible splitting
combinations is then (ℓ − 1). For each possibility Pi, i ∈

{1, . . . (ℓ − 1)}, the client and server sides would have i and
(ℓ − i) layers, respectively. Based on these alternatives, the
following questions should be answered: Which combination
would be suitable to split the model? Is dividing the model in
a random way a good strategy? Should the splitting strategy
take into consideration certain criteria, such as the number of
collaborators and clients’ computing resources?

13https://www.tensorflow.org/federated
14https://github.com/intel/openfl
15https://flower.dev/

2) COMPUTATION REQUIREMENTS AT THE SERVER SIDE
An aspect that is relatively downplayed in SFL research is the
fact that the desired parallelization in processing client data
is achieved at the expense of increased compute requirements
at the server side, as the server needs to maintain a copy
of the server-side model portion per client participating in
a training round. For settings with massive numbers of
clients, this could put significant strain on the server and
increase costs. At the same time, this observation reveals
interesting resource allocation and orchestration problems for
future research. For example, the size of the set of recruited
clients per training round can be dynamically tuned based
on the available resources on the server side, while multiple
main server instances, each responsible for a different client
subset, can be introduced – at the same time dealing with
synchronization and consistency issues towards building a
global shared model.

3) DATA FAIRNESS (IMBALANCED AND NON-IID DATA)
In SplitFed, each participating host collects its local data
from various heterogeneous sources and with different
features (source, location, period, etc.). Therefore, in many
settings, is unrealistic to assume that all SFL clients will
have iid-distributed local data. On the contrary, various and
non-stationary data are expected. Training a SFLmodel under
highly skewed data will cause a high weight divergence
and thus a model accuracy degradation [216]. Hence, new
techniques and algorithms have to be proposed to handle
data heterogeneity and improve the learning process on
non-IID data. Furthermore, some parties may represent
less or more samples than others leading to uneven data
distribution that will affect the learning model convergence
as well as the performance of SplitFed training process.
To overcome this, each client can apply dataset enhancement
strategies locally, for instance, using GAN algorithms or
data augmentation techniques (e.g., rotation, shearing, and
flipping for images) [217]. An alternative option is to support
collaborators by supplementary data from the main or Fed
server.

4) DATASET LABELING
The labeling procedure is an integral part of data preparation
for Supervised Split Federated Learning (SSFL). It consists
of appending informative tags to data (text, image, audio,
and/or video) to help the SFL model identify the class of
an unlabeled object. However, the distributed nature of client
data may lead to divergences in the labeling results (owing to
different annotators’ expertise level, biases or even malicious
falsification). This can cause noisy labels that severely
degrade the performance of the learned model. Ensuring
uniform and accurate labeling among all the SFL clients is
a challenging task that must be considered to enhance the
quality of local datasets and maximize the reliability and
accuracy of models. In this context, some techniques could be
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used, such as meta-learning, label correction, and knowledge
distillation [218].

5) AGGREGATION TECHNIQUE
The aggregation algorithm plays a crucial role for achieving a
good performance in a SFL design. It permits combining the
local sub-model updates from all the SFL nodes participating
in the training round. A robust aggregation technique should
be able to maximize the accuracy of the global model,
enhance the privacy of local updates, optimize the commu-
nication bandwidth and identify suspicious clients. In this
respect, multiple questions might be usefully discussed: is
it accurate to adopt the aggregation mechanisms developed
for Federated Learning [219] or new aggregation techniques
should be designed since model training in FL and SplitFed
are different? Furthermore, is it adequate to apply the same
aggregation algorithm for both the client and the server side
or should each part have its aggregation method that aligns
with its specific objectives?

B. OPEN CHALLENGES IN 6G
1) WIRELESS CHANNEL CONSTRAINTS
Higher frequency bands and Terahertz communication are
among the main features that set 6G networks apart
from other wireless technologies. These aspects have the
potential to provide faster data rates and lower latency
than current networks. However, they pose some challenges
including high path loss, signal attenuation, interference
and fading channels. Given these issues, a user in SplitFed
may disconnect from the main or Fed server during the
transmission of smashed data and/or clients’ weights. This
will interrupt the training process and call for higher time
to complete it. To enhance the reliability of the global
model learning, deploying more than one main/fed server
is recommended (server redundancy). However, starting
training on a different main/fed server from scratch is not a
good idea. For instance, if a client moves in the last stages
of its sub-model training, the required time to finish the new
trainingwould be very lengthy. For that, it is very important to
develop effective data/servicemigration techniques to resume
users’ training after being interrupted rather than starting
over.

2) DISPROPORTIONATE AND HETEROGENEOUS 6G USERS
In effect, the number of SFL contributors depends greatly
on the 6G target application. Some scenarios have few
participants where the failure of any party impacts the
whole communication system. In contrast, in some cases
with a great number of participants (IoT devices, mobile
phones, etc.), the disconnection of a 6G user does not
affect widely the performance of the SFL learning process
as a whole. Moreover, 6G clients can have multiple and
heterogeneous computing resources (CPU, storage, etc). This
will engender different sub-model training times that penalize
the generation of the global model. In this context, an efficient

strategy to choose the suitable number of clients with respect
to the target application and clients’ resource constraints
should be applied to allow the participation of as many clients
as possible and accelerate the performance improvement of
the SFL model.

3) IRRELEVANT AND HETEROGENEOUS 6G FEATURES
6G clients may sense irrelevant features of their private
data (lack of domain knowledge, measurements in imperfect
network conditions such as interference, noise, collision,
etc.) that can effectively increase the computational and
time complexity of the data preparation phase. Extracting
only representative information and filtering out inessential
details that do not affect the decision-making process
is of paramount importance. In this context, a semantic
information extraction model trained through the SplitFed
algorithm could be implemented. The model will learn from
diverse SFL collaborators that integrate multiple features.
The parameters of the local sub-models are then transmitted
to the main server for aggregation. The obtained model is
expected to improve the accuracy of extracted information,
clients’ energy efficiency and model training time overhead.

4) BLACK-BOX AND COMPLEX DEEP LEARNING
One of the main challenges of DL-based models, including
SFL, is that they do not provide any details about how
and why their decisions are made, and thus such decisions
cannot be properly understood and trusted by the different 6G
stakeholders such as managers and executive staff. Therefore,
the 6G stakeholders may not perform/execute the SFL-based
decisions. To deal with this issue, eXplainable Artificial
Intelligence (XAI) is an emerging paradigm that provides
a set of techniques, e.g., ante-hoc, post-hoc, visualization,
model-agnostic, etc., and aims to improve the transparency of
black-box DL decision-making processes [220], [221], [222].
In other words, XAI helps to explain the SFL-based decisions
to make them trustable and interpretable by the different 6G
actors [223].

5) SECURITY ISSUES
There is no doubt that the SplitFed reduces the risk of data
and model disclosures. However, this does not mean that
SplitFed is entirely proof against all attacks. Indeed, it is still
prone to security and privacy risks from the client level to
the server level. Diverse data-oriented attacks, such as data
tampering and data poisoning may target the SFL process
causing a significant loss in the global model’s accuracy
as demonstrated by a recent study [224], [225]. As well,
other threats and vulnerabilities could impact the success
of the SplitFed models: compromised/malicious Fed/main
servers, unsecured communication channel, clients dropout
and free-riding attacks. Hence, new defensive techniques
to protect SFL entities (Fed server, clients local data, cut
layer activations, main server, etc.) during model training,
aggregation, and transmission are mandatory to build a
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risk-free split federated learning ecosystem. In this regard,
Blockchain technology and Secure Multi-Party Computation
(MPC) can highly benefit SFL.

6) PERFORMANCE DEGRADATION OF SFL-BASED MODELS
As mentioned before, SFL can be used to optimize different
functions/operations related to 6G systems. However, a crit-
ical challenge is how to train and deploy SFL-based models,
while providing stable life-cycle performance. In fact, data
profiles evolving may cause performance degradation of the
AI learning models [226]. Thus, both models’ performance
degradation and new data profiles should be studied, to ensure
a stable performance of the intelligent 6G functions/op-
erations over time. Therefore, it is required to not only
perform continuous monitoring of both data and model
profiles, but also automate the whole development process
of SFL learning models, including data collection/extraction,
model training, validation, and deployment [227], [228].
In this context, the DevOps paradigm can be leveraged.
DevOps includes a set of practices that combine soft-
ware development (Dev) and IT operations (Ops). DevOps
aims not only to reduce the systems’ development life
cycle, but also to provide a continuous software delivery
with high quality, by leveraging paradigms and concepts
like Continuous Integration and Delivery (CI/CD). When
dealing with machine learning operations, and automa-
tion of the learning process, the paradigm is also called
MLOps [227].

7) SFL SCALABILITY
The number and stability of SFL collaborators are key
factors in the success of SFL-enabled schemes. Consequently,
frequent client drop-outs, whatever the reason (intermittent
connection, selfish client, malicious client, low battery,
mobility, etc.) would have a negative effect on the model
convergence time and accuracy. Therefore, proposing a
novel strategy to make the SFL system more robust to
this issue would be of great value. One solution could be
predicting the device disconnection, based on its mobility or
resource capacity. Moreover, the incorporation of incentive
mechanisms could be beneficial. For instance, in a reputation-
based incentive scheme, each client in the network would
have a reputation rank based on its participation rate. The
SFL clients performing the training in an efficient way will
be rewarded. The goal is to encourage the participation of
qualified nodes in the SFL training process [229].

Overall, addressing the open challenges of split federated
learning in 6G networks will require a combination of novel
algorithms, optimization techniques, hardware architectures,
and security and privacy mechanisms. An interdisciplinary
approach that draws on expertise from computer science,
electrical engineering, mathematics, and statistics will be
necessary to fully realize the potential of split federated
learning in 6G networks.

VII. LIMITATIONS OF THIS SURVEY AND OBSTACLES
FACED
In this section, we address the potential gaps that could
be attributed to our survey and should be considered as an
opening window for further research.

• Lack of existingworks: In fact, there are very few studies
that focus on the implementation of split federated
learning, and specifically for 6G systems. Most of
the works deal with FL or SL separately, of which
a large number are dedicated to federated learning
techniques. To identify previous works related to the
SplitFed algorithm, we conducted a literature search
on ACM Digital Library, Springer Link, IEEE Xplore,
ScienceDirect, Wiley, Taylor & Francis Online, MDPI,
and arXiv databases from 2020 (first appearance of SFL)
to 2023. To the best of our knowledge, we have found
only eight articles published in IEEE [35], [230], [231],
[232], [233], [234], [235], [236], five articles in arXiv
and MDPI [34], [237], [238], [239], [240], while no
works are published in the other databases .16 These
results confirm the few existing studies on SFL for
6G networks which was one of the main difficulties
we faced in our study. This also shows the need for
further development in this emerging scope to enrich the
literature review with relevant papers.

• Other aspects and use cases of 6G: Our research
work covers the most important and representative
technical aspects and use cases foreseen for 6G systems.
However, the list is not exhaustive and other new
technical aspects and applications can be envisioned,
driven by 6G requirements and users demands, such as
network slicing, smart-governance, unmanned mobility,
education, online advertising, sustainable development,
etc.

• Experimental studies and results: Another potential
limitation is related to the shortage of experiments and
results on the implementation of SFL either for technical
aspects or use cases. The responding argument is the
scarceness of previous research enabling the connection
between 6G systems and split federated learning.
To overcome this limitation, we encourage researchers
to combine both technologies by implementing new
models so that the results of future research can improve
on this aspect.

VIII. CONCLUSION
Distributed and collaborative deep learning have taken great
strides over recent years and have been applied to many
applications. Split federated learning, as a nascent technique,
provides a secure and faster model training strategy. The core
idea is to parallelize the training phase by dividing the global
model amongst the participating agents and performing a

16We have used the advanced search filter to find works with titles
containing the term ‘‘Split Federating Learning.’’
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local training process based on their private and local data.
This new method dramatically reduces the training time and,
in addition to data privacy, preserves model privacy. As we
have seen, works on SFL are still in their growth phase and
it is therefore necessary to explore new research avenues
about the topic. The current study takes a deep dive on the
potential of using the SplitFed Learning algorithm to improve
the reliability of the future SFL-based 6G systems. At the
beginning, we provide the reader with the existing AI ideas
for 6G networks. To the best of our knowledge, our survey is
the first to present a comprehensive view of the application
of split federated learning in the 6G networks. Afterwards,
we outline the primary contributions and organization of
the paper along with an exhaustive background on artificial
intelligence algorithms, collaborative deep learning and 6G
Mobile Networks as foundations and cornerstones. Following
that, several 6G technical aspects are thoroughly examined
with a representative realistic scenario for each aspect.
Furthermore, the applicable 6G use cases that would benefit
from split federated learning are analyzed. We believe
that the synergy between split federated learning and edge
computing would enable a significant improvement of both
6G applications and technical aspects. Moreover, a series of
datasets and development frameworks that can support the
implementation of SFL within 6G networks are summarized.
In this context, we realized that there are only a few
6G-related datasets, which explains the reason behind the
use of other non-6G inputs. Next, we draw researchers
and practitioners’ attention to the fact that SplitFed cannot
deal with all issues, through an overview of the relevant
limitations and challenges. Therefore, we discuss how to
overcome these challenges by giving new research hints.
To conclude, we expect this article to stimulate researchers to
design, test, and deploy innovative SFL-based solutions for
6G technologies.
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