IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 9 October 2023, accepted 1 January 2024, date of publication 9 January 2024,
date of current version 17 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3351945

==l RESEARCH ARTICLE

Android Authorship Attribution Using Source
Code-Based Features

EMRE AYDOGAN ™ AND SEVIL SEN

Wireless Networks and Intelligent Secure Systems (WISE) Laboratory, Department of Computer Engineering, Hacettepe University, 06800 Ankara, Turkey

Corresponding author: Emre Aydogan (emreaydogan@cs.hacettepe.edu.tr)

ABSTRACT With the widespread use of mobile devices, Android has become the most popular operating
system, and new applications being uploaded to the Android market every day. However, due to the ease of
modifying and repackaging Android binaries, Android applications can easily be modified and imitated by
other developers and released in third-party Android markets. Therefore, determining the original developers
of Android applications is a challenging problem known as authorship attribution. This study explores
the distinctive features of Android applications to identify their authors. Software developers generally
leave a footprint that reflects their writing styles in their applications. Therefore, this footprint, which can
be extracted from either the source code or the binary code, can help identify the authors of software
applications. Since obtaining the source code of applications in the wild can be impractical, especially
when dealing with malware, researchers prefer to focus on the binaries of applications. Therefore, this
study proposes an approach that identifies Android developers by deriving a wide range of features from
different parts of Android applications, such as smali files, libraries, manifest files, and metadata information.
Moreover, other features such as configuration, dex code, resource-based, and string-related features are
inherited from other studies in Android authorship attribution and fused with the proposed feature set. The
proposed approach was evaluated on benign and malware datasets and compared with those of other studies.
The results show that the proposed features increase the accuracy by showing 82.5% and 95.6% in the market
and malware datasets, respectively. The results demonstrate the positive impact of the proposed features on
Android authorship attribution.

INDEX TERMS Android, authorship attribution, mobile malware, metadata, obfuscation, source code-
based.

I. INTRODUCTION automatically identifying software theft and copyright issues.

Authorship attribution (AA) aims to identify the author of a
computer program. Although it is primarily used to detect
software theft and solve copyright issues, it is also used in
digital forensics and malware analysis. Software developers
generally leave footprints on their applications that describe
their writing style. Consequently, there is a strong correlation
between applications developed by the same developer, and
the programmer style is preserved in program binaries [1].
In the literature, these footprints were first used to identify
the software application authors. Owing to the emergence
of software variants developed by making changes to the
original software, researchers have shifted their focus to

The associate editor coordinating the review of this manuscript and

approving it for publication was Hui Liu

One of AA’s promising applications is identifying malware
authors, as there has been a significant increase in the
number of new malware and new variations of existing
malware [2]. AA can be used to identify the developers of
new malware; therefore, it can help observe the evolution
process of malware in the wild by monitoring the developers.
Similarly, it can also be used to examine new programs
developed by known attackers; hence, these programs can
be analyzed further. On Android, developers could release
their applications in the official and/or third-party markets.
Since a developer might use different names to distribute their
applications across various markets, AA becomes particularly
important in such cases.

There are two main approaches to AA: source code AA
and binary code AA. Most studies in the literature are

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

6569

https://orcid.org/0000-0003-0226-2787
https://orcid.org/0000-0001-5814-9973
https://orcid.org/0000-0002-3267-6801

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

based on the source code AA because some salient features
extracted from the source code are lost when compilation is
completed [2]. However, we may not always obtain the source
codes of applications, especially malicious ones. Therefore,
in such cases, an application’s binary code is the only
source that can be used to identify the application’s author.
Nevertheless, the binary code AA is much more challenging
than identifying authors based on the source code. Compilers
can change the structure of binary code using optimization
techniques. For example, they could remove some valuable
features from the perspective of AA, such as linguistics and
formatting. Furthermore, because various compilers are used,
most studies depend on specific compilers and compilation
settings [3]. Despite these challenges, we must rely on binary
data for the AA of malware due to the unavailability of
the source code. Moreover, the performance of the popular
techniques in author attribution, namely machine learning
and deep learning, is mainly depend on the size of the training
data. Since binaries of applications are readily available,
binary AA is a study area worth investigating.

This study investigated the distinguishing features of
Android applications for AA. New features were extracted
from the applications (smali files, libraries and manifest files)
as well as their metadata information in the market. Here,
these new features and the existing features used in previous
studies [4], [5], [6] are analyzed. Due to the availability of
smali files, which are easily extracted from Android binaries,
Android allows us to apply some source code-based features
used in the literature to Android binary applications. Smali is
an intermediate language such as Assembly, but it preserves
some insightful source code features such as variable and
function names and code organization. Moreover, it is
more human-readable than assembly code. This study also
investigated the impact of different feature groups on AA.
Since the features proposed in the literature are analyzed
with different datasets, a common experimental setting was
first established for a fair comparison. Our dataset contains
benign, malicious, and obfuscated applications from various
Android markets and studies, as presented in Section VI. The
results indicate that the source code-based features proposed
in this study increase the accuracy of AA for both benign and
malware datasets.

The contributions of this study are summarized as follows.

o New features extracted from smali files, third-party
libraries (TPL) used in applications, and metadata of
applications have been introduced for Android author-
ship attribution (AAA). To the best of our knowledge,
the features inherited from the source code AA in
smali codes were first used in Android in this study.
The results showed that, source code-based features
increase the accuracy of attributing applications to their
corresponding authors.

« Unlike traditional application distribution mechanisms,
Android applications are centrally distributed in mobile
markets. Therefore, in addition to the application
code, metadata about Android applications, such as

6570

application descriptions and user reviews, can also be
obtained. Consequently, this study explored the impact
of textual data on AAA. A positive effect of metadata-
based features was observed, especially when combined
with the source code-based features employed in this
study.

o The performance of the proposed approach was exten-
sively analyzed. In addition to analyzing the effect
of each feature set on AAA, the studies proposed in
the literature were compared. The experimental results
demonstrate the positive impact of the features proposed
in this study on the accuracy.

« Different application characteristics, including code
similarity in new versions, obfuscation, and third-
party libraries, have also been explored from an AA
viewpoint.

o We shared the source code of our study with the research
community at:
https://github.com/emreaydogan/
SourceCodeBasedAAA

The rest of this paper is organized as follows: Related

work is discussed in Section II. Background information
regarding the Android environment is provided in Section III.
The proposed model is presented in Section IV. Section V
discusses the feature sets used in our study and the literature.
The datasets used in this study are described in Section VI.
Experimental results and their discussion are presented in
Section VII. Threats to the validity of the proposed approach
are discussed in Section VIII. Finally, Section IX concludes
the paper.

Il. RELATED WORK

Authorship attribution is related to many different areas,
such as literary work analysis, code plagiarism detection,
biometric research, code authorship attribution, and malware
analysis. It has different objectives such as authorship identi-
fication, clustering, evolution, profiling, and verification [7].
However, researchers have begun to find application authors
in recent years. While studies based on the source code of
applications have previously appeared in the literature, binary
authorship attribution started to emerge due to the lack of
and difficulty in gathering source codes. One of the first
studies on binary authorship attribution was proposed by
Rosenblum et al. [1], a novel program representation and
technique that automatically detects the stylistic features of
binary code written in C or C+4-+ and can be compiled using
GCC 4.5. They extracted syntax and semantic-based features
such as idioms, n-grams, and graphlets. They claimed that
the top-ranked features are unique to each author and reflect
how the authors wrote the code. Alrabaee et al. [8] stated
that the unique features of each author are unrelated to their
programming style, in contrast to Rosenblum’s [1] findings.
They removed unrelated codes in their work and compared
their results with Rosenblum’s in terms of accuracy and false
positive rate. They stated that their results were more accurate
than Rosenblum’s. Caliskan et al. [9] extracted syntactical

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

features located in the source code of decompiled binary
code, rather than the pure source code of desktop executable
software, similar to our work on Android. They claimed
that their approach was robust against basic obfuscation
techniques and compared their results with those reported by
Rosenblum et al.

Most studies, such as those mentioned above, have
mainly used desktop and benign applications. However,
malware analysts are also keen to find the original author
of malicious applications. Kalgutkar et al. [7] summarized
various methods for code authorship attribution, mainly from
the perspective of malware domains. Attackers often employ
evasion techniques such as encryption and obfuscation to hide
their malicious intentions, which introduces new challenges
to the AA problem. Only a few studies have been published on
the identification of malicious authors. Layton and Azab [10]
analyzed the source code of the Zeus botnet to determine the
number of authors involved in developing malware and their
roles. The evolution of the Zeus botnet over time was also
analyzed in this study. In [11], Internet Relay Chat (IRC)
messages were analyzed to match them with known aliases,
which are real users hiding behind aliases. The motivation for
this study is that IRC messages are often used for cybercrime,
including online rooms selling stolen credit card details,
botnet access, and malware.

Alazab et al. [12] proposed a model based on the authorship
clustering. Initially, a set of spam emails represented by n-
grams was divided into clusters using the Unsupervised Auto-
mated Natural Cluster Ensemble (NUANCE) method. These
clusters were then examined using linguistic, structural, and
syntactic features. This information can be used to create new
forms of profiles for spam detection or to help analysts in
investigating the size and scope of the operations behind spam
attacks.

Alrabaee et al. [2] compared existing studies [1], [8],
[13] on benign binaries and conducted an experiment to
investigate the effect of their models on real malware. The
study by [13] achieved better result in terms of accuracy than
the other two studies in a benign dataset. The standard k-
means clustering algorithm was used to compare the three
studies in a malware dataset. The study given in [1] performed
the worst among them, while other studies achieved similar
results.

With mobile devices starting to affect a large area of our
lives in the late 2000s, the need to carefully examine Android
applications arose. Because our study aims to find the authors
of both malicious and benign applications within the Android
environment, we also explain related studies on Android AA.
Furthermore, we have conducted a comparison of our newly
proposed feature sets derived from the source code of the
smali files, metadata, and third-party libraries against the
feature sets used in the studies given below. These studies are
explained in detail below.

A study focusing on string analysis of apk files was
proposed by Kalgutkar et al. [4]. Three types of strings were

VOLUME 12, 2024

employed: the string identifier list in the DEX file, all string
components present in the DEX file, and strings extracted
from the strings.xml file. Subsequently, n-gram analysis was
employed on these string lists to generate a feature vector
representing an author. Finally, the authors were classified
using a Support Vector Machine (SVM). This approach
was evaluated in different datasets that consisted of benign,
malicious, and obfuscated applications, and accuracies of
98%, 96%, and 71% were obtained, respectively.

Gonzalez et al. [5] proposed an AA method based on array-
related, array-unrelated, and n-gram features by retrieving
bytecodes from the .dex file and converting them into a smali
representation. Their framework consisted of two phases:
profile construction and incremental analysis. In the first
phase, author profiles were constructed using the Random
Forest algorithm. In the second phase, incremental analysis is
applied to attribute new applications to existing profiles and
to find new possible profiles for applications that have not yet
been attributed to the existing authors. They achieved 97.5%
accuracy in a dataset with 33 authors and 1428 applications.
They also applied their approach to over 131,000 applications
collected from various sources to find applications belonging
to author profiles in the wild.

Xu et al. [6] proposed a novel approach, AppAuth, that
detects the original author of a group of given repackaged
Android applications with common properties such as label
names, icons, similar package names, and even file sizes.
Several coding style-related features were extracted from
the apk files: i) binary features from the .dex file; ii)
resource features from decompiled files; and iii) config-
uration features from the manifest file. They successfully
identified 69 original authors of 75 clone pairs (92%) in the
wild. Additionally, They analyzed the impact of third-party
libraries on their results, and stated that removing code-level
features introduced by third-party libraries slightly improved
the performance of their framework. They also evaluated the
prediction performance of independent developers and devel-
opment teams. However, main drawback of their study was
that they compared only two repackaged (clone) applications
by two different authors. If these two applications are clones
of the same original application, they find an author between
two plagiarists, even though the original author is different.

Wang et al. [14] extracted three types of string-related
features: dex-based, manifest-based, and lib-based. In the
dex files, identifier names, instruction sequences, and the
use of Android APIs are collected. They extract the names
of activities, providers, services, and broadcast receivers and
use features from the manifest file. Finally, they obtained the
names of the third-party libraries used in the applications.
They compared the CountVectorizer, TFIDFVectorizer, and
word2vec models to convert features into author profile
vectors. Because the word2vec model yielded the best result,
it was chosen for further evaluation. Subsequently, three
machine learning models (i.e., Linear SVM, Random Forest,
and Logistic Regression) were applied to these vectors to

6571

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

classify authors on different datasets containing benign,
malware, and obfuscated applications. The results showed
that their approach achieved 92.5% accuracy on average
for the entire dataset. Moreover, it outperformed AppAuth
in 2,900 non-obfuscated applications, thereby improving
authorship identification by a 3.4%.

IIl. ANDROID BACKGROUND

Android, based on the Linux kernel, is the most widely
used mobile operating system (OS), with a usage of 70.76%
in October 2023 worldwide [15] and a cornerstone in
the mobile industry. It offers an official market, Google
Play [16], for developers to easily deploy their applications.
Additionally, Android allows developers to upload their
applications to alternative markets, such as Aptoide [17] and
APKMirror [18]. Therefore, Android applications, namely
apk files, can be easily gathered from such markets.

Alternative Android marketplaces like APKMirror and
Aptoide are popular for offering a wider range of apps than
the Google Play Store, including older versions of apps not
available anywhere else. They appeal to users looking for
specific features or applications that are not available in their
region. However, while these markets expand options, they
also bring risks. Unlike the Google Play Store, which has
strict security controls, these alternative platforms may not
have the same level of inspection. This may raise concerns
about the security of some applications. Users who trust
these sites generally need to be more careful and make
sure that they download safe and trustworthy applications.
Despite these concerns, these alternative markets remain
valuable resources for those looking for unique or hard-to-
find applications.

Android applications are written in Java or Kotlin program-
ming languages. They are then compiled into Java bytecodes
for the Java virtual machine. Finally, Java bytecodes are
translated into Dalvik bytecodes and stored in .dex files.
Dalvik bytecode corresponds to hexadecimal sequences of
executables for Android; hence, it is the format that Android
understands. Howeer, Dalvik bytecode is difficult to read or
modify. Hence, the smali intermediate language is generally
used to look inside class files. Smali is a human-readable
representation of the Dalvik bytecode and can be directly
extracted from the apk files.

An Android application, an apk file, consists of several
elements including dex files, a manifest file, resource files,
and string files. All of these files can be used to gather
information regarding the application. For example, while
the manifest file contains information such as the number
of services, activities, and permissions used in applications,
we can find images, libraries, and XML files and folders
used in applications in resource folders. String resources
provide text strings for applications [19]. There are three
types of strings: String, String Array, and Quantity Strings
(Plurals). All strings were capable of applying styling
markup and formatting arguments. The dex file contains
Java/Kotlin class files. It is possible to convert class files

6572

to smali files, which are intermediate representations of
dex files. Even though some linguistic and formatting
features of the source code are lost when compilation is
carried out, Dalvik-based executables, unlike assembly-based
executables, contain some insightful information in the smali
files. Fig. 1 shows a sample Java/C++ compatible code
fragment, its corresponding smali, and assembly codes,
respectively. While the smali code preserves information
such as variable names and method signatures, the assembly
code loses such information after the compilation process.
Therefore, some features related to source code AA can be
obtained from smali files. The impact of such features were
explored for the first time in this study.

int find maximum(int a[], int n) {
int c, max, index;

(a) Java (c) Decompiled Java

k]
2
3
=

srbp

4rsp, $rbp

rdi, -0x18 (¥rbp)
51, -0x1c (3rbp)

8 ($rbp) , $rax

%), Seax

£ %8 ($rbp)

$0x0, —0xc ($rbp)

$0x1, -0x4 ($rbp)

0x400555 <find maximum+98>
0x4 (%rbp) , $eax

.method find_maximum([TI)T 2 (2o
2 .Tegisters 7
.param pl, "a" BT

4 .param p2, "n" ¥ T
5 .prologue

6 .line 261 8
7 const/4 v3, 0x0

, "max":T 12 c
. 0x0 00 (, $rax, 4) , $rdx

0x18 (3rbp) , $rax
rdx

%
($rax), $eax
-0x8 (3rbp) , Seax

, "index":T
, 0x1
;eI

seax, —0xc

ax, ~0xc ($rbp)
~0x4 (3bp) , Seax

19 aget v3, pl, v0

20 if-le v3, v2, :cond e
21 .line 265

move v1, v0

.line 266

24 aget v2, pl, v0

5 .line 263 2
26 :cond_e 30| cmp
27 add-int/1it8 v0, v0, 0x1
28 goto :goto_5 32| mov —-0xc ($rbp) , $eax
29 .line 269 33| pop $rbp

30 :cond_11 34| retq

31 return vl

0x0 (, $rax, 4) , $rdx

v
8| add1 4 (37bp)

—0x4 ($1bp) , $eax

-0x1c (3rbp) , $eax

0x400517 <find_maximum+36>

5
3
2

2| .end method

(d) Assembly
(b) Smali

FIGURE 1. Sample code fragments.

IV. ANDROID AUTHORSHIP ATTRIBUTION
There are only a few studies [4], [5], [6], [14] on AA
for Android. AppAuth [6] extracts distinguishing features
for AA from the dex file, manifest file, and resource files
of applications. In [4], they used all string information
placed in the string XML files and dex files of applications.
Unlike these studies, in this study, source code-based features
extracted from smali files were used for the first time.
In addition to the source code-based features, the effects of
other proposed features (usage of permissions, third-party
libraries, and metadata-based features) were analyzed in this
study. All of these features are given as SPL, which stands
for Source code-based features, Permissions, and third-party
Libraries.

The proposed model is illustrated in Fig. 2. Initially, apk
files were decompiled using apktool [20], and the smali files

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

Feature Extraction

smali

Decompilation

manifest

Feature Processing

<:<:

Standardizz

[N
© w w

w s w e
[N NS
w s w e
o u s

Variance Threshold

Random Forest

uond3[s 3neay ajerienun

SsVM

LightGBM

A

FIGURE 2. Overview of model.

were obtained. Subsequently, the String, AppAuth, and SPL
features of the applications are collected from these files and
the apk files themselves, and a fixed-size feature vector per
application is assigned to the classifiers. SimpleImputer from
the scikit-learn library was used to fill in the missing values
in the feature vectors. After this imputation process, these
features were standardized by removing the mean and scaling
to the unit variance using StandardScale in the scikit-learn
library.

A two-phase dimensional reduction is used before the
classification algorithms are executed. First, the features
with zero variance were eliminated from the dataset. Then,
univariate feature selection was applied, selecting the best
features based on the univariate statistical tests. The Random
Forest (RF) classification algorithm [21] was applied using
the scikit-learn library [22]. Then, stratified 10-fold cross-
validation was employed. Because stratified 10-fold cross-
validation ensures that the proportion of positive to negative
examples from the original distribution is preserved in all
folds, it is especially useful when the dataset is unbal-
anced [23]. Therefore, it was used five times, and the average
of these five runs is presented in the results.

V. FEATURE SETS

The main objective of this study is to find effective features
to solve the AA problem in Android. Therefore, new features
based on source code-based AA extracted from smali files are
presented. Furthermore, new features unique to the Android
system have been analyzed, such as the usage of permissions
and metadata-based features that have been increasingly used
in Android security in recent years [24]. In addition to these
features, the impact of third-party libraries on the problem
were explored. It has been shown that many applications use a
large number of third-party libraries [25] and on average, 60%
of the code belongs to these libraries [26], [27]. As third-party
libraries can create noise, they are shown to affect repackage

VOLUME 12, 2024

res

BB

dex

ation

Feature Sets

AppAuth String.

i)

©fo|n|>
IS

ola|r]|>
~
IS

Imputation

Classification

GHE Developer

O
=

and malware detection on Android [28]. This could also affect
AAA because source code-based features were employed in
this study. Therefore, here, the effects of extracting source
code-based features only from custom code on the AAA are
investigated. Moreover, the effects of third-party libraries as
features are explored. Our proposed features are compared
with those in the literature, which are based on binary AA [4],
[6]. We did not include Gonzalez et al.’s [5] work in the
comparison because AppAuth [6] also used the same features
used in that study [5]. All features considered in this study are
listed in Table 1, and their explanations are listed in Table 2.
Features that are being explored for the first time in this study
are highlighted in red. In the following sections, the features
used in the literature for the problem are first presented, and
the newly proposed features in this study are presented in
detail.

TABLE 1. Features proposed for AAA in the literature.

Features Abbr. Our Study AppAuth [6] StringAA [4]
Configuration conf v v
Dex Code-Based dex v v
Resource src v 4
String-Based str v 4
Source Code-Based src v
Permission perm v
Third-Party Library lib v
Metadata meta v

A. FEATURES USED IN APPAUTH

AppAuth groups its features into three sets: Configuration,
Resource, and Dex Code.

1) CONFIGURATION

Android applications consist of four components: activities,
services, broadcast receivers, and content providers. Each
component has its own purpose and life cycle, which define

6573

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

TABLE 2. Feature set descriptions.

Category (# of features) Description

of average character per line

of average character per Tocal variable

of average character per global variable

of average character per function name

of average character per function parameter name

Ratio of global variables to lines of code

Ratio of local variables to lines of code

of average lines of code per function

Ratio of variables to Tines of code

Ratio of if to all codes

of average lines of code per class or interface

of average number of functions per class or interface

Ratio of invoke to all codes

Ratio of move to all codes

Percentage of function names starting with an uppercase letter
Percentage of int function definitions to all

Percentage of void function definitions to all

Percentage of identifiers beginning with an uppercase character
Ratio of abstract classes
Ratio of classes cc
Ratio of direct methods
Ratio of virtual methods
Ratio of methods containing try and catch

Ratio of methods containing debug information

Ratio of static fields

Ratio of classes cc interfaces

Ratio of matt ical instructions to functional instructions

Ratio of aget instructions to aput instructions

Average of the length of all the arrays

Median of the length of all the arrays

Standard deviation of the length of all the arrays’

Ratio of arrays with constant length

Number of activity

Number of service

Number of receiver

Number of provider

Number of intent-filters

Number of meta-data

Number of uses-permission

Number of sensitive uses-permission

Number of uses-feature

Number of directories in the res directory

Number of directories whose name contai drawable in the res directory
Number of files in the directories whose name containing drawable
Number of directories whose name containing layout in the res directory
Number of files in the directories whose name containing layout

Number of directories whose name containing values in the res directory
Number of files in the directories whose name containing values'

Number of files in the assets directory

Number of files in the Iib directory

Number of .so files in the assets/lib directory

Number of xml files in the res directory

Source Code-Based (18)

annotations

Dex Code (14)

Configuration (9)

Resource (11)

Permission (158)
Library (500)
Metadata (50,000)

Android permissions

A whitelist of third-party libraries

Application descriptions placed in Android markets

Dex - Strings present in the DEX file
Application - Strings extracted from the strings.xml file
All strings (Dex + Application)

String/n-gram (10,000)

how it is created and destroyed. Activities define how users
interact with applications. They are used to define user
interfaces that allow users to use the system resources. Every
single application screen refers to activities on Android.
Some activities may trigger other activities. Services perform
long-term operations in the background and do not contain
a user interface. Broadcast receivers allow an application to
be linked to a system or an application event. The Android
operating system notifies the connected application when
an event is triggered. Content providers are used to access
data in the application databases. These are also used by
an application to share its database with other applications.
Thus, a single piece of content can be distributed across
multiple applications. All the components are declared in the
Android manifest file. Developers tend to reuse the same
Android manifest file when developing their applications.
Therefore, information in the manifest file, such as the
number of components, can help distinguish developers
from each other. Based on this assumption, AppAuth uses
the configuration features collected from the manifest file,
as listed in Table 2.

6574

2) RESOURCE

Android applications may contain resource files such as
images, sounds, icons, and native libraries stored in the res
directory. These files can be used for various reasons, such as
language support and the provision of images for UL. Some
files in the res directory, like dynamic libraries, database
files, and payload files, are accessible at runtime. Developers
embed some specific and critical information into these files.
Therefore, it is important to analyze the characteristics of this
folder. Therefore, AppAuth uses features related to resource
files, such as the number of files/folders in the res directory.

3) DEX CODE

The Dex file contains information about the structure of the
applications, as shown in Fig. 3. AppAuth mainly analyzes
the data section in .dex files and focuses on methods, classes,
and field structures, as well as annotation, interface, debug
information, and the like. Due to application sizes could vary
significantly, they use ratio values instead of obtaining the
numerical values of these features, such as the ratio of the
number of abstract classes to all classes.

String ID list

Type ID list

Method prototype ID list
Field ID list

Method ID list

Class definitions list

Data Section
Annotation items
Code items
Annotation directory
interfaces
Parameters
Strings
Debug items
Annotation sets.
Static values
Class data

Linked files

FIGURE 3. Format of a .dex file.

B. FEATURES USED IN STRINGAA

1) STRING ANALYSIS

In [4], features based on strings are used. The strings in
the strings.xml file are extracted line by line as app string
features. Strings in the strings.xml file contain references in
the source code or other resource files of the applications.
These are static strings shown to users, such as the
application’s name. The dex file consists of different parts,
such as the string id list, type id list, and method id list. The
string id list mainly contains the strings used in the source
code of an application. However, malware developers embed
their payloads in the string ID list to run them at runtime and
avoid analysis. Strings in the string id list part of a dex file
are extracted as dex string features.

In [4], preliminary experiments were first conducted to
determine the optimal ‘n‘ value for n-gram analysis, which
was selected to be 3. Therefore, in our study, 3-grams are
also used for string-based features. Similarly, as done in [4],

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

not lose a line that has one or two words, we insert a
tag at the beginning and end of each string, ensuring that
only empty lines are eliminated. As a result, line-bounded
3-grams were obtained for each string type. Table 3 shows
the 3-gram features for the two different types of strings.
Because of the massive amount of 3-grams extracted from our
dataset, redundant 3-gram features were eliminated using the
HashingVectorizer technique. As a result, the best 3-grams
are selected.

TABLE 3. Sample 3-gram features.

Type String 3-gram

<LB>Enable Google
Enable Google Play
Google Play services
Play services <L.B>

app Enable Google Play services

dex mContainer= <LB>mContainer= <LB>

C. PROPOSED FEATURES

In this study, the effects of the proposed features on AAA
were investigated. Four groups of feature were introduced:
source code-based, permissions, third-party libraries, and
metadata-based features. Apart from those related to the
usage of third-party libraries, the features are unique to the
Android environment.

1) SOURCE CODE-BASED

Source code-based features are extracted from smali files,
which contain Dalvik-byte/smali codes generated from the
Java bytecodes in class files. Smali codes can be considered
as assembly codes for C/C++ programs. Both are generated
from a high-level language and converted to machine code
via Android Runtime (ART) for smali. The operating system
then executes these machine codes to run the applications.
In Fig. 1, smali and assembly codes corresponding to a Java
function named find_maximum are shown. As seen in the
figure, the names of the function parameters, global and local
variables in the original source codes are not preserved in
the assembly files but in the smali files. For example, the
local variables n, max, index and function parameters a, n
are preserved in the smali code given in the figure. It is
shown that developers tend to use the same format in naming
identifiers, such as using $ character or digits in variable
names. Therefore, preserving such names in decompiled
code can help identify developers. Hence, because the smali
files are more similar to the original source codes, they
were used to extract the source code-based features in this
study.

The source code of the software can provide us with
beneficial features for identifying the author of unknown
software, one of which is the authors’ coding style. An author
can be identified by its coding style. On the one hand, some
salient features, such as the usage of comments, loops, and
braces in the source code, are lost during the transformation
from source code to assembly code. On the other hand,
VOLUME 12, 2024

as shown in [9], the coding style still remains in the binary
code. Based on this assumption, we inherit some source code-
based features listed in [29] because of the nature of the
Dalvik bytecode, which preserves some stylistic features of
AA. All 18 source code-based features used in our study are
listed in Table 2. The features listed in [29] are primarily
proposed for languages such as Java and C/C++; therefore,
features compatible with smali codes from that list are
selected. In the future, more source code-based features,
such as comments, annotations, bracket position, indentation
styles, etc., could be included using the original source code
of applications.

Decompiled Java code can also be extracted from the apk
files. To obtain Java files from apk files, dex files must first
be generated from the apk files, and Java files must then be
extracted from these dex files using decompiler tools such
as jadx [30]. The same source code-based features extracted
from smali files can also be extracted from the decompiled
Java files. However, because the Java language does not
contain some smali-specific instructions such as move and
invoke, two features related to these instructions are not
considered in Java codes. It is important to note that the
transformation process from apk files to Java files is prone to
errors, such as the inability to convert some classes, methods,
or variables correctly. Due to such errors encountered in the
conversion, we were able to extract features from Java codes
from 80% of the samples in the market dataset. Note that only
the source code-based features extracted from the decompiled
Javafiles are used in Table 13 to show and compare the effects
of the source code-based features in both the decompiled Java
files and the smali files.

2) PERMISSION

Permissions are required to use the system resources of
mobile devices. Applications can access and use device
resources, such as cameras and GPS, only through the
permissions requested in their manifest files. While normal
permissions can be granted automatically, dangerous permis-
sions require explicit user approval. Most applications request
more permissions than they use. A study that evaluated the
gap between the requested permissions and those used at
runtime found that applications, on average, request 30%
more permissions than they need [31]. Although a developer
might develop applications belonging to different categories,
they could reuse the same manifest file in these applications
because of its convenience. Moreover, because of the use of
the same third-party libraries in applications developed by
the same author, they need to use the same permissions that
these libraries require. While AppAuth [6] used the number
of permissions in the manifest file as a single feature, in our
study, the existence of each feature is considered as a separate
feature. Therefore, 158 binary features corresponding to the
158 permissions are added to the feature set.

3) LIBRARY
Developers prefer using third-party libraries to implement

certain functionalities in their applications, rather than
6575

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

implementing them from scratch. It is shown that most
applications use more than 20 third-party libraries [32]
and a large part of the application code belongs to such
libraries [26], [27]. For the same functionality, developers
tend to use the same library that they are familiar with.
Therefore, third-party libraries are included in the feature
dataset.

To extract library features, a whitelist of libraries was
constructed. Initially, we downloaded all library names from
the mvnrepository website [33]. We then try to determine
which common libraries are used in both malware and benign
datasets using the downloaded library name list. When an
apk file is decompiled using apktool, all smali codes of the
libraries used in the application are placed in the src directory
according to their package name. For example, if the jsoup
library is used, all smali codes related to jsoup are placed in
the src/org/jsoup directory because the jsoup package name
is “org.jsoup”. Hence, we can find the directories of libraries
used from their package names and exclude them. Thus,
we could only obtain custom smali codes written by the
author of the application. Some libraries may be obfuscated;
therefore their names consist of arbitrary character sequences
rather than meaningful words. We also eliminated these
libraries by using basic heuristic approaches. Libraries used
in very few applications were also not considered in this
study. For each application, the existence of each library
from our list was used as a feature. In a recently proposed
study [14], third-party libraries were used for AAA. However,
unlike our approach, the names of third-party libraries were
used as string features in [14].

4) METADATA

Android applications are distributed centrally in mobile
markets differently from traditional application distribution
mechanisms. In addition to the application itself, these
markets provide information about the application, such as
application description, application rating, and user reviews,
known as metadata. In this study, the application descriptions
generated by the developers were analyzed for the problem,
as this textual information might help solve AA. The same
method applied to extract a string of applications was
employed here. However, it is important to note that unlike
textual data used for AA in the literature, application descrip-
tions are short texts. For example, application descriptions on
Google Play are limited to 4,000 characters.

VI. DATASET

In this study, two different datasets were constructed: a
market and a malware dataset, consisting of benign and
malicious applications, respectively. To construct the market
dataset, a Web crawler was implemented using the Scrapy
framework [34] to collect benign applications from various
alternative markets. In addition, applications from other
studies [4], [5], [35], [36] were included in this dataset to
compare our approach with theirs. Each application must
be signed with a developer certificate for installation on an

6576

Android device. Therefore, applications sharing the same
signature are assigned to the same developer, and each
application is grouped according to its related signature,
as in [4]. The signatures were extracted from the apk files
using the print-apk-signature tool [37].

The benign dataset contains binaries collected from
different alternative Android markets, namely Apkpure [38],
Apkmirror [18], Onemobile [39] and Aptoide [17] between
January 2020 and August 2020. However, this dataset
includes applications written much earlier than 2020 because
of the availability of the early versions of contemporary
applications. The distribution of the datasets over the years
is presented in Table 4.

TABLE 4. Year distribution of dataset.

Year Percentage (%)
2014 4.9
2015 5.4
2016 8.6
2017 39.7
2018 41.4

Initially, 200,000 applications were downloaded for our
study. Then, developers with fewer than ten applications
were eliminated because other studies that we use to
compare our approach use developers with at least ten
applications [4], [6]. Moreover, we must have sufficient appli-
cations for each developer to generate a effective model that
can differentiate between developers. The malware dataset
contains malicious binaries belonging to various malware
families, namely Ransomware, Adware, and SMS [40],
and some binaries from datasets introduced and used in
security-related studies, namely Rmvdroid [41], Drebin [35],
Genome [5] and Koodous [4]. The number of authors
and applications collected from different repositories within
our dataset is shown in Fig. 4. Owing to the elimination
of authors with fewer than ten applications, the dataset
consists mainly of applications that are mostly written by
multiple developers or companies. Fig. 5 displays a his-
togram representing the distribution of APK sizes, measured
in megabytes (MB), for both the market and malware
datasets.

Some authors were eliminated during the feature extraction
step due to errors. If an application exists in more than one
dataset, only one of them is randomly chosen and kept in
the dataset. However, if an application had multiple versions,
they are all kept in the dataset. As a result, the dataset
given in Table 5 was used in all experiments other than the
version analysis, in which the effect of versions on AA was
analyzed, and metadata analysis, in which features extracted
from application metadata were analyzed on AA. Given that
not all applications have metadata information or multiple
versions, a subset of the original dataset was used for the
version and metadata analysis.

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

14000

12733

12000

10000

8000

6000

Number of Apps

4000

2000

4000

3500 o

3000

N
5
3
3
I

2000 o

Number of Apks

1500

1000 -

500

3000

223

2500 o

2000 o

1500 —

Number of Apks

1000

I

0.01-5.01
5.01-10.01
10.01-15.01
16.01-20.01

5 5
3 3
& 8
5 5
2

8 S

30.01-35.01
35.01-40.01
40.01-45.01
45.01-50.01

Apk Size (Mb)

FIGURE 5. APK size distribution (market at the top, malware at the
bottom).

TABLE 5. Dataset information.

Dataset #ofapp # of author
Market 10,385 488
Malware 3,268 153
Genome 1,530 39

VII. EVALUATION

In this study, we conducted a series of experiments to
evaluate our framework and investigate the impact of the
newly introduced features. The performance of our proposed
approach is also explored for different types of applications,

VOLUME 12, 2024

1200 4156

1000

800

600

Number of Authors

400

200

such as malicious, benign, and obfuscated ones. Various
experiments were performed to evaluate the performance of
the proposed approach. For each experiment, 10-fold cross-
validation and five epochs were employed, and an average
of 50 results were obtained. All experiments were run on a
CentOS 7.7 server equipped with 128 GB RAM and Intel(R)
Xeon(R) Gold 6138 CPU @ 2.00GHz.

A. RESEARCH QUESTIONS

We aim to find answers to the following research questions
(RQs) on how our model identifies the author of Android
applications, including both benign and malicious ones:

o RQ1 - What is the performance of classification algo-
rithms in solving the authorship attribution problem?

o RQ2 - What is the ideal set size for n-gram features?

e RQ3 - Does the use of TPLs by applications bring
improvements in solving the authorship problem?

e RQ4 - How effective is the proposed approach in
identifying the authors of applications?

e RQS - Does the metadata of applications help to
attribute the developers of applications?

e RQ6 - What are the most important features for
attributing applications to their developers?

e RQ7 - Can we reduce the number of features without
decreasing the performance of the model?

o RQ8 - Does the number of applications per developer
affect classification performance?

e RQY - Does the proposed model successfully identify
different versions of applications developed by the same
author?

o RQ10 - What is the effect of obfuscation on AAA?

o RQ11 - Are there any clone applications in the datasets?
How do they affect the performance on AAA?

1) RQ1 - PERFORMANCE OF CLASSIFICATION ALGORITHMS
ON AAA

a: MOTIVATION

Machine learning algorithms may exhibit different per-
formances for different problems. With this motivation,

6577

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

we aim to compare the performance of machine learning
algorithms on the problem at hand so that the algorithm
that shows the best performance can be used in subsequent
experiments.

b: METHOD

The following classification algorithms were used in the
experiments: Random Forest, K-Nearest Neighbors, Support
Vector Machines, Gaussian Naive Bayes, and LightGBM.
These supervised machine learning techniques are among the
popular methods used for code authorship attribution in the
literature [7]. To tune the hyperparameters of these algorithms
in the market and malware datasets, the GridSearchCV
function in scikit-learn is used. GridSearchCV performs an
exhaustive search of the specified parameter values for an
estimator. In this experiment, all the feature groups were
used, including the features used in AppAuth [6] and String
Analysis [4]. Only metadata features were excluded because
some applications did not have descriptions. The algorithms
were run on both the benign and malware datasets. Accuracy
and fl-score were used as performance metrics because
an efficient model should have good precision and high
recall. We also calculated the classification time for each
algorithm.

¢: RESULT

The comparison results are shown in Table 6. In addition
to the high accuracy and fl-scores, the Random Forest
classification time is also more reasonable than that of
other algorithms; therefore, the Random Forest algorithm
was used in the subsequent experiments. In addition, the
default parameters of RF produced a performance very
similar to the results obtained by its optimal parameters.
Although LightGBM performs better than Random Forest, its
classification time is high. Moreover, the results were highly
variable for the different parameters. However, owing to its
high accuracy, the use of LightGBM is worth investigating in
the future.

TABLE 6. Comparison of classification algorithms.

Market Malware

acce f1 time(s) | ace f1 time(s)

Random Forest 82.4% 80.3% 124.46 I 95.4% 94.5% 14.18
KNeighbors 64.8% 62.0% 76.30 I 82.6% 79.1% 9.40
Support Vector 51.3% 50.5% 549.83 I 79.7% 76.6% 26.09
Gaussian Naive Bayes 49.5% 47.6% 45.97 I 60.3% 59.0% 8.23

LightGBM 86.4% 85.1% 156335 | 97.5% 97.0% 370.81

Findings #1: The results indicate that the Random
Forest algorithm performs considerably better than other
algorithms in terms of accuracy and time.

2) RQ2 - THE IDEAL SET SIZE FOR N-GRAM

a: MOTIVATION

As the number of applications increases, the number of
3-grams to be processed will also increase; in our case, tens
of millions of 3-grams in the market dataset, could create

6578

computational and storage problems. Therefore, finding the
maximum number of n-grams we can obtain results will
improve our model’s performance.

b: METHOD

As suggested in [4], 3-grams were used here. A preliminary
analysis was performed to determine the optimal value of
n. They observed that their system performed better with an
increase in the n-gram size from 1 to 3. They also found that
the system performance degraded with a further increase in
the size of the n-grams. Because we compared our approach
with that in [4], we decided to use the same n value for
n-grams. We then used a HashingVectorizer to restrict the
number of n-grams used in the experiments to reduce the
memory consumption.

c: RESULT

The effects of the number of 3-grams on the classification
accuracy and training time are shown in Fig. 6a and 6b,
respectively. As clearly shown in the figure, the training
time increased exponentially when more than 10,000 3-grams
are used in the classification. However, this does not result
in a significant improvement from an accuracy point of
perspective. Please note that owing to its size and generation
of a massive amount of 3-grams, the market dataset could be
run with 50,000 3-grams at most.

Finding #2: The best 10,000 3-grams yield sufficiently
good accuracy in a reasonable training time and hence
were employed in the subsequent experiments.

3) RQ3 - CUSTOM CODE VS ALL CODE INCLUDING TPLS

a: MOTIVATION

Developers have certain coding habits and tend to use
the same coding style in their codes, such as using while
loop over for loop, using object-oriented modularization
over procedural programming [42]. These characteristics
are preserved in the custom code. Third-party libraries are
also widely used when developing applications. Therefore,
although the custom code shows the characteristics of
the developer, the TPL code might create noise in the
AA. However, developers tend to use the same TPLs in
their applications, which may positively affect AA. They
usually do not update the version of TPLs, even in the
case of security vulnerabilities in the older versions they
used [43]. Therefore, the impact of the TPL code should be
investigated.

b: METHOD

two settings were used to demonstrate the effect of TPLs on
AA. In the first setting, the source code-based features were
extracted only from the custom code implemented by the
developers. In the second setting, the features are extracted
from the same applications, but the TPLs are included (all
codes).

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

‘—B—market —&—malware ‘

0.95

0.9 ;&

0.85

0.8

0.75

0.7 ¢

0.65

100 1000 5000 10000 50000 100000

(a) Accuracy
‘—B—market —&—malware ‘

4
25 x10

15

05 r

0
100 1000 5000 10000 50000 100000

(b) Classification time (s)

FIGURE 6. Effect of the number of 3-grams.

c: RESULT #1

As shown in the results in Table 7, including TPLs when
extracting source code-based features yields a much better
performance (custom src vs. all src). Then, the custom code
was enriched with other features presented in Table 1 and
compared with all code in Table 7. The results clearly show
that, rather than extracting source code-based features from
TPLs, the existence of TPLs is sufficient for AA and produces
much better results than when including the TPLs’ code.
Therefore, in the subsequent experiments given below, the
source code-based features were only extracted from the
custom code and were used with the library features (custom
src+lib).

d: RESULT #2

The confusion matrix for the developers is shown in Fig. 7.
Authors with at least 40 applications in the market dataset
were shown to fit the matrix. As seen in the figure, some
applications of developer auth9 are wrongly matched to
developer authll. We further analyzed these authors using
SimiDroid [44], which reveals the similarity between mis-
matched applications of developer auth9 and all applications
of developer auth11. Third-party libraries were removed first.
The results show a high similarity between such applications
owing to the SmaliHook library, which is not eliminated

VOLUME 12, 2024

because it is not on our TPL list. When the feature vectors
of such applications were analyzed using cosine similarity,
very high similarities (98%) were observed. Because these
overlooked third-party libraries affect the source code-based
features, they severely affect the results. This inference
shows that we must expand the third-party libraries used in
the library feature set to improve the performance of our
model. As stated above, in addition to the whitelist approach,
machine learning-based approaches could be employed to
detect more libraries, including obfuscated ones, in the future.

Findings #3: TPLs in applications increase the accuracy
of authorship attribution. However, source code-based
features do not need to be extracted from TPLs, which
decreases the time required for feature extraction. Only
the existence of TPLs, together with the source code-based
features extracted from custom code, produces sufficiently
good results.

4) RQ4 - EFFECTIVENESS OF THE PROPOSED APPROACH

a: MOTIVATION

One of the main objectives of this study was to identify
effective features of AAA. Therefore, the proposed features
were compared with those of other proposed feature sets [4],
[6] in the literature. Therefore, the effectiveness of the
proposed approach in identifying the authors of applications
is given comparatively.

b: METHOD

After determining the experimental settings in the previous
research questions, the newly proposed feature sets, except
metadata (src+perm+-lib, or SPL), were compared with other
feature sets used for AAA in the literature [4], [6]. For this
purpose, we re-implemented the code to extract the string-
related features given in [4]. However, thanks to the authors
of AppAuth [6], they share their source code to extract the
features listed in AppAuth [6]. Therefore, the same code was
applied to extract AppAuth features.

C: RESULT #1

The comparison results are presented in Table 8. As shown
in the results, the newly proposed features perform better
than AppAuth, whereas the proposed features produce less
accuracy than string analysis [4]. However, as stated above,
extracting all 3-gram features may not be applicable from
a classification time point of view. Therefore, only 10,000
3-grams are employed here. However, as a relatively small
dataset, all 3-grams were extracted from the Genome dataset.
Moreover, it is the dataset used for evaluation in [4].
In the Genome dataset, the proposed features showed slightly
better performance than string-related features. When all
the features are included, the best performance is obtained
in the market and malware datasets. We also calculated
the time required to extract each set of features. Table 9
shows that n-gram features require at least one and a half

6579

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

TABLE 7. Accuracy results of custom source code enriched with other feature groups.

Dataset Custom Custom All Custom All Sre Custom SPL All Src+Perm
Sre Src+Lib Src SPL +Perm +AppAuth +AppAuth
Market 42.3% 70.9% 66.8% 75.1% 71.8% 78.7% 76.1%
Malware 80.5% 87.1% 87.5% 91.5% 91.1% 93.4% 93.3%
Genome 80.7% 97.1% 95.0% 97.9% 96.4% 98.0% 97.4%
auth1 [& [o]
auth2 [0 J@8I 0 [0 [0 [0 [0 o [1 [0 o oo o ofofofof[olofofo]o][o[o] [0 [0 o ofofofofo o o[t[ofo[o[ofofof2]o0]ofo[o]o]o[0]
auth3 [0]
authd 52
auths 1 80
authé 2
auth?
authd
auth9 2 26
auth10 3
auth11 ﬂm 70
auth12
auth13 1
auth14 4
auth15 3
auth16
auth17 2 60
auth18
authi9 [14 4
auth20 4
auth21 1 1
auth22 3
auth23 50
auth24
auth2s
auth26
auth27
auth2s
auth29 =40
auth30 2
auth31 84 |
auth32)
authd3 a7
auth34 65 |
authds 7 30
auth3e %
auth3? 5
auth3s
auth3g 5
auth40
authd1 54 B
auth42
autha3 5
authd4 a7
auth45 52 |1
auth4s 84 |
authd7 21 e
authas 73
authdg 4
auth50 3
auth51 o
auths2 0 ol ||,
N QPP EL RO N D DXL 00 0O DD DD O DD D N) D ok D O A D D O N D Wk 0 0 A @ O S N
ST LPEFLFLELIN T OO NP PP PP RPN PP PR RRLSSS
i O I SO I S S

FIGURE 7. Confusion Matrix for the 52 developers who have at least 40 applications.

times more time than other feature sets. The extraction
times of SPL and AppAuth features were relatively close.
Although a feature extractor should be performed only
once, the feature extraction process, when generating a
considerable volume of n-grams, can be notably memory-
intensive. This can result in memory-related challenges,
particularly for systems with limited RAM availability.
In [45], it was highlighted that a primary limitation of the n-
gram approach is its tendency for exponential n-gram growth
as the text size increases. This complexity often renders
the method unviable for systems with limited computational
capabilities.

d: RESULT #2

In this study, the effect of each feature group on AAA
was also explored. The results are presented in Table 10.
In addition to the n-grams in the code, the source code-
based and resource features showed the highest accuracy.
Because n-grams are extracted from strings, such as the
names of variables/methods in the application code, they
can include unique identifiers that distinguish developers.
However, as shown in Table 9, the time required to extract
and process such features was considerably high. Moreover,

6580

such features might not be resilient to obfuscation techniques
such as renaming and encryption.

In general, all feature sets other than library features
produce higher accuracy on the malware dataset, which
is a smaller dataset. The average number of libraries per
application varied significantly between the two datasets,
as shown in Table 11. While applications collected from
the market include 9.37 third-party libraries on average, this
number is only 2.72 for malware applications. This may be
the result of the use of obfuscation in malicious applications.
In this study, a whitelist approach was used to extract TPLs
used in the Apk package. Common libraries used in the
market and malware datasets were selected and used as
features. However, because of obfuscation, the names of some
libraries are simply random words, and such libraries are
eliminated in the whitelist approach. In the future, recent
studies such as LibID [46] and LibRadar [32] can be used to
find obfuscated libraries in the code. Then, the effect of the
library features can be re-evaluated on the malware dataset.

The effects of permissions on the two datasets were
also significantly different. When the average number of
all 158 permissions was analyzed in both datasets, it was
found that the use of different permissions was higher

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

TABLE 8. Comparison with AppAuth and stringAA - random forest.

SPL+AppAuth+ .
Dataset StringAA SPL+AppAuth SPL AppAuth StringAA
acc f1 acc f1 acc f1 acc f1 acc f1
Market 82.5% 80.4% 79.0% 76.6% 15.0% 724% 139% T1.2% 81.7% 79.9%
Malware 95.6% 94.5% 93.9% 92.5% 92.1% 90.7% 90.6% 89.4% 95.1% 94.2%
Genome 97.0% 96.7% 982% 980% 98.1% 97.9% 97.0% 969% 969% 96.7%

TABLE 9. Feature extraction time in minutes.

SPL AppAuth StringA A (10,000)
Market 125.02 95.93 219.87
Malware 11.02 11.61 13.45
Genome 30.04 27.30 40.47

in the malware dataset (all permissions: 9.99, dangerous
permissions: 4.5) than in the market dataset (all permissions:
8.05, dangerous permissions: 3).

e: RESULT #3

To show the statistical significance of the improvements, each
approach (namely SPL+AppAuth+StringAA and StringAA)
was run five times using 10-fold cross-validation. Thus,
50 results were obtained for each dataset. Note that the same
folds were used for each approach in the experiment. A t-test,
with an alpha value of 0.05, was then applied, and the results
are shown in Table 12. o value represents the significance
level, which is the probability of rejecting the null hypothesis
when it is true. Table 12 shows that the p-values for the market
and malware datasets are lower than « value of 0.05, which
implies that the difference is statistically significant.

f: RESULT #4

To our knowledge, this is the first study to explore the use
of source code-based features on smali codes for AAA.
As shown in Table 10, such features performed much better
than the other features proposed in the literature, except for
n-grams. Such features can also be obtained from Java files.
In the literature, it has been shown that more than 94% of
Java classes can be successfully decompiled [47]. Therefore,
the same source code-based features listed in Table 2 were
collected from Java files and are compared in Table 13.
However, only 80% of the applications were successfully
decompiled. Please note that the following features specific
to smali code are not available in Java files: the ratio of
invoke to all code (the ratio of the number of invoking
instructions to the number of all other instructions) and the
ratio of move to all code. The comparison results show that
the source code-based features collected from the smali files
are more effective. However, it is worth mentioning that the
decompilation of apk files into Java files could be erroneous.
Here, the jadx decompiler [30] is used to convert apk files
to Java files; however, we encountered some unsuccessful
decompilations. In future, different decompilers should be
evaluated.

VOLUME 12, 2024

Findings #4: The experiments above show that the newly
proposed features are highly effective for authorship
attribution. Although string features [4] usually achieve
better results than other features, it may not be practical
to extract such features, particularly in large datasets.
However, if possible, a combination of all features is
recommended.

5) RQ5 - METADATA FEATURES

a: MOTIVATION

As humans have different writing styles, text data are used
largely for AA in different domains, such as social media,
e-mail, and literature [48], [49], [50]. Android markets
provide metadata such as descriptions, version numbers, and
download counts. This information can also shed light on new
findings. Therefore, the effect of metadata is first investigated
for AAA in this study.

b: METHOD

Two different experiments were conducted in this RQ. First,
we investigated the optimal n value and the number of
n-grams. To extract n-grams, each n consecutive words
in the descriptions are extracted, each time shifting one
word to the right. Preliminary experiments were carried out
with different n-gram sizes (from 1 to 5) to obtain the
optimal value of n. Subsequently, the number of n-grams
required to obtain the best results was determined. Second,
we combined the metadata features with other feature
sets to determine whether the metadata features improved
accuracy.

C: RESULT #1

We first investigated the n value for the n-gram. The entire
market dataset and only Rmvdroid [41] among the malware
datasets were used because these datasets contain application
descriptions. Fig. 8a shows the accuracy results for different
n values. We set the number of n-grams to 10,000. It can be
observed that 1-grams produce better results than the other n-
grams. After determining the value of n, we investigated the
optimal number of 1-gram features in further experiments.
Fig. 8b shows the accuracy results obtained using only meta-
data features under different number of 1-grams. As shown
in Fig. 8b, the number of 1-grams shows an important effect
on the results. Because n-gram analysis requires a significant
amount of system resources, we could not obtain results
after 100,000 1-grams. If 100,000 1-grams are included,
accuracies of approximately 84% and 74% are obtained for

6581

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

TABLE 10. Effect of feature sets on AAA.

SPL AppAuth StringAA
Dataset Src Perm Lib Conf Dex Rsc Str
acc f1l acc f1 acc f1 f1 acc f1l acc f1 acc fl
Market 66.8% 63.5% 47.6% 424% 60.5% 57.6% 59.6% 55.8% 63.6% 60.0% 66.7% 63.4% 81.7% 79.7%
Malware 87.3% 859% 80.6% 765% 512% 46.2% 823% 793% 851% 823% 83.7% 80.7% 95.1% 94.2%
Genome 95.0% 94.7% 83.0% 80.6% 88.1% 86.8% 95.0% 94.6% 882% 87.7% 96.2% 95.8% 96.8% 96.4%

TABLE 11. Avg # of library and permission per applications.

Market Malware
Library 9.37 2.72
Permissions (158) 8.05 9.99
Dangerous Permissions (26) 3 4.5
TABLE 12. Results of t-test.
p Value

Market 3.54622E-14

Malware 0.000562331

Genome 0.09986412

TABLE 13. Accuracy results of Smali vs. java: source code-based features.

Smali Java
Market 66.2% 52.9%
Malware 87.0% 86.8%

the market and malware datasets, respectively. This clearly
shows that the application descriptions are beneficial to
AAA. However, it can be seen that the results of 10,000
l-grams are also quite sufficient, and the time required
is much less than 100,000 1-grams. Therefore, we chose
10,000 1-grams for further experiments in the metadata
analysis.

d: RESULT #2

Table 14 shows the effects of metadata features in the
market and malware datasets, respectively. Because not
all applications have descriptions, the dataset used in this
experiment was smaller than the original dataset. Application
descriptions can be written in any language. Our datasets also
include different languages in the application descriptions,
such as English, Chinese, and French. It is observed that
accuracy increases significantly when we use descriptions
in English only. Therefore, descriptions other than English
were eliminated from both the datasets. In the market dataset,
metadata features produce approximately 6% better accuracy
when combined with the proposed SPL features, whereas an
increase of approximately 3% is observed for other feature
sets. In the malware dataset, metadata features showed a clear

6582

—s—market —s—malware

06 1 1 1
1 2 3 4 5

(a) Accuracy under different number of n values

‘—-— market —=—malware ‘

0.9

0.85

0.8

0.75

0.65 r 1

06 1 1 1 1
100 1000 5000 10000 50000

100000

(b) Accuracy under different number of 1-grams

FIGURE 8. Effect of n-grams on metadata features.

positive effect, with an increase of 3% in the proposed SPL
features. In contrast, the increase was not significant for the
other feature sets.

Findings #5: Because humans have different writing styles,
application descriptions could help attribute the developers
of applications. This is proved by the experimental results
presented herein. However, having multiple language
descriptions in the dataset severely affects the classification
performance.

6) RQ6 - MOST EFFECTIVE FEATURES ON AAA

a: MOTIVATION

In addition, to know why our prediction is high or low, we also
want to know which features contribute more and which
are irrelevant in improving our prediction. Therefore, in this
experiment, we investigated the features that had the greatest
influence on the results.

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

TABLE 14. Metadata analysis.

Dataset SPL SPL+Meta StringAA StringAA+Meta AppAuth AppAuth+Meta
acc f1 acc f1 ace f1 ace f1 ace f1 ace f1
Market 81.4% 78.4% 87.0% 85.0% 86.6% 84.5% 89.0% 87.0% 82.6% 80.1% 85.6% 83.3%
Malware 89.1% 87.1% 92.0% 90.3% 94.7% 93.5% 95.0% 93.8% 89.0% 86.7% 89.1% 87.0%
SPL+AppAuth SPI.4+AppAuth+ SPL+AppAuth SPL+AppAuth
Dataset +StringAA StringAA+Meta +Meta
acc f1 acc f1 acc f1 acc f1
Market 86.8% 84.7% 89.0% 87.1% 84.5% 82.3% 88.4% 86.6%
Malware 949% 93.7% 954% 94.3% 91.9% 90.5% 93.6% 92.3%
b: METHOD 5 x10°
The results were obtained using all features except metadata °
and the Random Forest algorithm. Then the importance 25 |
values of all the features are extracted from scikit-learn
library and shown in Fig. 9a and 9b, for the market and ol
malware datasets, respectively.
15
c: RESULT
It is shown that the source code-based and string/n- 16
gram features have a greater influence than the other é
features on both datasets. The features used in AppAuth 05 I g 5 g
(conf, dex, rsrc) have a positive effect, particularly on the a . g -
malware dataset. Table 15 shows the number of features 0 | Q ‘ ‘ J
per dataset placed in the top 50 features in terms of src perm b conf dex rsrc ngram
importance. The order of the 50 most important features (a) Market
is listed in Table 22 in the Appendix. These results also 2.5 %107
show that source code-based features have much more
impact than other features, especially in the malware o1 o
dataset, whereas n-gram features dominate the market
dataset. é
15 o 8
8 8 <
TABLE 15. Distribution of top 50 features per feature sets. 1l 8 .
O
Dataset Src Perm Lib Conf Dex Rsrc Str °
Market 8 I 2 0 o0 1 38 e é o
Malware 14 1 0 2 6 0o 27 8
0 i . ‘
— - src perm lib conf dex rsrc ngram
Findings #6: The proposed source code and string/ngram (b) Malware

features are much more effective than the other features of
AAA.

7) RQ7 - THE EFFECT OF THE NUMBER OF FEATURES

a: MOTIVATION

As we use over 10,000 different attributes, some features
may be redundant and have nan values, or certain features
may have the same value within themselves, meaning that
they have zero variance. Such features must be removed
from the feature vectors to positively affect the classifier.
Therefore, the effect of the number of features was also
explored.

VOLUME 12, 2024

FIGURE 9. Importance values of each features.

b: METHOD

The best 20%, 40%, 60%, 80%, and 100% of all features
were extracted by computing the ANOVA F-values using
f_classif() in scikit-learn. ANOVA is a parametric statistical
hypothesis test that is used for feature selection. The means
of two or more samples of data are calculated first, and then
if these data samples come from the same distribution is
determined.

6583

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

c: RESULT

The performance of each feature group is shown in Fig. 10.
Please note that zero-impact features are also present.
Becuase the malware dataset has more zero-impact features
(435) than the market dataset (174), there was not much
improvement in the last percentile. This figure also shows
that if time and resources matter, fewer features (for example,
60%) can be used as replacements for all features.

—@—market =#—malware

0.95
09 -
0.85 -
/
0.8
0.75 - - - !
20 40 60 80 100

Percentile of Features

FIGURE 10. Impact of different percentiles of features.

Findings #7: Good enough results can be obtained by
using fewer features (e.g. 60% of all features). This reduces
the time and resources required for classification.

8) RQ 8 - THE EFFECT OF THE NUMBER OF APPLICATIONS
PER DEVELOPER

a: MOTIVATION

As we use supervised machine learning to get results, we need
prior information on developers. Therefore, the number of
applications per developer may affect our prediction model.
Here, we conduct an experiment to show how the number of
applications per developer affects our prediction model.

b: METHOD

We would like to emphasize that our dataset includes mainly
company applications written by multiple developers since
it is difficult to obtain individual developers with more than
ten applications in the market. Moreover, our dataset is
imbalanced since developers have different numbers of appli-
cations. Therefore, developers with at least 40 applications in
both datasets are first extracted, and 37 and 19 authors are
obtained for the market and malware datasets, respectively.
Then 10, 20, 30, and 40 applications are randomly selected
per developer ten times. Therefore, each time, different
groups of applications are selected.

c: RESULT

Fig. 11 shows that when the number of applications per
developer is increased, the accuracy of AAA is also increased.
Due to being a smaller dataset with fewer authors, the results
on the malware dataset are very high, even when trained

6584

with 20 applications per developer. Therefore, the differences
among the models trained using 20, 30, and 40 applications
per developer in the malware dataset are similar.

== market === malware

0.95

0.9

0.85

0.8

0.75

0.7

10 20 30 40
of Apps per Author

FIGURE 11. Impact of different # of applications per developer.

Findings #8: If a more balanced dataset with enough
samples per developer is employed, the performance of the
model gets even higher.

9) RQ 9 - EFFECT OF APPLICATION VERSIONS

a: MOTIVATION

Developers often update their applications due to bug fixes,
security patches, adding new functionalities, and the like.
Therefore, there can be multiple versions of an application
on the developer’s market page. As our market dataset also
consists of different versions of some applications, it is
worth investigating whether the versions of the applications
developed by the same author can be identified by the
proposed method.

b: METHOD

Therefore, two datasets were constructed in this study. First,
if applications have more than one version in the market
dataset, duplicate applications are eliminated, and only the
first available version of the application is left in the market
dataset. This training dataset is called the no-version dataset;
their versions are put into another dataset called the testing
set. Therefore, 1,193 training and 1,183 testing applications
implemented by 42 developers were used. All developers in
the no-version dataset had at least ten applications, as in the
previous experiments.

¢: RESULT

We first obtained the result by applying 10-fold cross-
validation on the no-version set and achieved 80.7% accuracy.
As shown in Table 8, if all versions were included, the
accuracy is slightly higher (82.6%). Then, to answer the
question “if a version of an application is included in the
training, could new versions of this application be detected
with the proposed approach?”’, the model was trained using a
no-version dataset and evaluated on the testing dataset. Here,

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

high accuracy (91.7%) was obtained. Similarities between
the different versions of the applications were obtained
using SimiDroid [44]. However, there was no significant
correlation between the unidentified versions of applications
and their similarities to the first available versions in training.
Although similarities to the first available version generally
decreased proportionally to the version numbers, there were
exceptional cases in the testing set. Although the similarity
between a version of the application and the first available
version in the training set is low, the proposed approach
can successfully identify the authors of such versions. These
results show that the developer’s signature is preserved,
even if the similarity between different versions of the same
application is low.

Finding #9: The proposed model can detect applications
and their different versions that preserve the developer’s
signature.

10) RQ 10 - EFFECT OF OBFUSCATION

a: MOTIVATION

Because both benign and malicious applications apply obfus-
cation techniques, AAA has been evaluated in obfuscated
applications in the literature [4], [14]. In [14], obfuscated
applications were obtained using ProGuard [51], which
provides simple obfuscation techniques, such as method,
class, and identifier renaming, along with code shrinking
and code optimization. It is shown that the authors of some
applications (7%) could not be identified when they were
obfuscated. AppAuth [6] also claims that its features are
not robust against encryption and shell package obfuscation.
Kalgutkar et al. [4] analyzed obfuscated applications using
three different obfuscation tools: ProGuard, Allatori [52], and
Dasho [53]. They employed different types of obfuscation
techniques, such as string obfuscation, string encryption, and
control flow obfuscation to the source code of applications.
However, they worked on a very small dataset with 96 appli-
cations from nine different authors. Their results showed
that the accuracy results of AA in applications obfuscated
by ProGuard are unexpectedly 6% better than those of the
original applications. String features are expected to be less
robust against string obfuscation and encryption techniques;
however, it is shown that there is no significant change in the
results when applications are obfuscated using the other two
obfuscation tools.

b: METHOD

In this study, to better understand the performance of
AAA in obfuscated applications, the Obfuscapk [54] tool
was used in applications (smali files) in the market and
Genome datasets. Obfuscapk [54] works in a black-box
fashion and supports advanced obfuscation features, and has
a modular architecture that is easily extensible with new
techniques. Note that because of some errors encountered
during the application of obfuscation techniques, the number
of applications used in this experiment was much lower than

VOLUME 12, 2024

that of the original dataset (*40%). However, it is a much
larger dataset (6055 applications from 320 authors) than [4].
The six different obfuscation techniques listed in Table 16
were used. These obfuscation techniques can be grouped into
two categories: encryption and renaming.

c: RESULT

The effects of different obfuscation techniques are shown
in Table 17. Although encryption obfuscation techniques
do not affect the results, the newly proposed source code-
based feature sets are susceptible to renaming obfuscation
techniques, as shown in Table 17, because they are extracted
from the variable, method, and class names of applications.
String features [4] are also affected by renaming techniques,
but less than the newly proposed feature sets, because string
features use all strings placed in the apk files, not only strings
extracted from the source codes.

TABLE 16. Obfuscation abbreviations.

Techniques Abbrv. Description

ConstStringEncryption CSE Encrypt constant strings in code

LibEncryption LE Encrypt native libs
ResStringEncryption RSE Encrypt strings in resources (only those called inside code)
ClassRename CR Change the package name and rename classes (even in the manifest file)
MethodRename MR Rename methods
FieldRename FR Rename fields

Findings #10: All features, especially those extracted from
strings in the source code, such as variable names, are
affected by obfuscation techniques, particularly renaming
techniques.

11) RQ 11 - ANALYSIS OF CLONE APPLICATIONS

a: MOTIVATION

To ensure data quality, we checked whether our dataset
contained application clones and identical descriptions.

b: METHOD

The Romadroid tool [55] was used to detect application
clones in the dataset. Romadroid creates a string from
each manifest file of two applications to be compared and
measures the similarity between the two strings using the
longest common subsequence (LCS) algorithm. The authors
of Romadroid compared their tool with SimiDroid [44] and
claimed that Romadroid performed better than SimiDroid
over a 60% threshold. Their results showed that Simidroid
produced a much lower recall value at their best threshold
values than did Romadroid (60.64% vs. 98.38%) in the same
dataset.

We used the 70% and 90% threshold values in our
experiments, so we calculated the similarity scores of
applications of 488, 153, and 39 developers in the market,
malware, and Genome datasets using Romadroid. As a result,
n % (n — 1)/2 similarity results were obtained by pairwise
comparison of applications. Here, n denotes the total number
of applications. Because we encountered errors in some
applications, we could not obtain similarity scores for each

6585

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

TABLE 17. Obfuscation results.

Dataset Technique SPL+AppAuth+StringAA SPL+AppAuth SPL AppAuth StringAA
Original 97.0% 97.9% 97.7% 97.2% 96.8%
Genome CR+MR+FR 95.9% 97.6% 96.5% 97.0% 96.0%
CSE+LE+RSE 96.9% 98.1% 97.8% 97.3% 96.7%
(1332 applications) CSE+LE+RSE+CR+MR+FR 96.3% 97.7% 96.5% 97.4% 95.9%
Original 82.8% 78.4% 75.3% 73.7% 82.3%
Market CR+MR+FR 81.4% 75.3% 66.2% 73.5% 80.9%
arke CSE+LE+RSE 82.3% 78.5% 752% 73.9% 81.6%
(6055 applications) CSE+LE+RSE+CR+MR+FR 81.5% 75.4% 66.4% 73.6% 80.8%

pair. Many studies typically consider an application pair as
an application clone if their similarity scores exceed either
%70 or %90 [44], [55], [56]. In our approach, we excluded
all applications that exhibited a similarity score above %70
with another.

c: RESULT

As shown in Table 18, 20.6% of the market and 22.3%
of the malware datasets had similar applications above the
70% similarity rate. The effects of clone apps on the results
are given in Tables 20 and 19 for the malware and market
datasets, respectively. The results indicate that removing
similar applications improves the accuracy and F1 scores,
especially for the market dataset. As similar applications from
different developers can mislead the model during training,
removing app clones has a positive effect on the results.

TABLE 18. Ratio of clone applications in the datasets.

similarity threshold >%70 >%80 >%90
Market 20.6% 14.0% 8.5%
Malware 223% 13.0% 9.0%
Genome 10.6% 11.0% 0.3%

TABLE 19. Differences (%) on accuracy and f1 score when clone apps are
removed from the market dataset.

SPL AppAuth StringAA
acc +3.211 +1.608 +2.729
fl +3.608 +1.860 +3.161

TABLE 20. Differences(%) on accuracy and f1 score when clone apps are
removed from the malware dataset.

SPL AppAuth StringAA
acc +0.246 +0.337 +0.477
f1 +0.207 +0.322 +0.476

Findings #11: App clones that are distributed to multiple
users may mislead training the model.

6586

VIIl. THREATS TO VALIDITY

In this study, we explore the use of source code-based features
and compare different feature sets in the literature on AAA.
However, this study has a few limitations, detailed in below:

A. USAGE OF NATIVE CODE

Today, developers are increasingly using native code within
Android application packages, where they co-exist and
interact with Dex bytecode through the Java Native Inter-
face [57]. However, analyzing native code requires high-
fidelity execution traces and memory data with a low
overhead. This resulted in incomplete and biased results [58].
Our approach requires a complete view of the executable
code in applications. Only the non-native code parts of
applications are used to extract features, as in [6]. On the
other hand, developers can use Android NDK, which can
help them to reuse code libraries to embed in Android
apps; therefore, native code written in C/C++ could carry
developers’ fingerprints. Because our focus is on the use of
source code-based features for AAA in this study, the features
that could be extracted from .smali files are used. However,
native codes could be included in the AAA in the future.

B. OBFUSCATION

As indicated in Table 17, our proposed source code-based
features are susceptible to renaming obfuscation techniques.
Therefore, different groups of features, such as metadata and
string features, can be combined to identify authors.

A whitelist approach was adapted to find third-party
libraries used in an application. However, this approach
cannot detect obfuscated third-party libraries. When such
libraries cannot be identified correctly, they are considered a
developer’s custom code, which causes an increase in the sim-
ilarities between applications developed by different authors
that use the same libraries. Additionally, such libraries cannot
be used as features to distinguish developers. Therefore,
recent studies such as LibID [46] and LibRadar [32] can be
used to find obfuscated libraries in the future.

C. DATASET

The size of the dataset is important factor in any machine
learning-based approach. Even though the dataset in this
study is larger and more comprehensive than those in other

VOLUME 12, 2024

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

studies in the literature as shown in Table 21, further studies
could extend it. One limitation is finding developers with
sufficient applications so that the model can learn their styles.
Another limitation is the need to find applications with proper
descriptions. In this study, we considered only applications
that have descriptions written in English. The size of the
dataset can be increased by including other languages.

TABLE 21. Dataset information.

Dataset #of app # of author
Our paper 15,183 680
AppAuth [6] 3,871 273
String Analysis [4] 1,917 59

D. CLONE/REPACKAGED APPLICATIONS

Our study assumes that if an application is signed by
a developer, it is written by that developer. This is the
same approach taken in previous studies [4], [6]. However,
as indicated earlier, there might be clone applications in the
market stores; hence, in our dataset, their existence might
have affected our results. However, in this study, a simple
approach based on code similarity was employed to detect
app clones. However, further research is necessary, which is
beyond the scope of this study.

Many researchers have been working on detecting app
clones or repackaged applications effectively [56]. It is stated
that [56] while there is widespread recognition of the app
repackaging issue in both academic and industrial circles,
there’s a notable lack of datasets to aid research. Creating a
comprehensive set of repackaging pairs, serving as ground
truth, requires significant effort. With the introduction of
a new, large dataset in [56], we expect such studies to
accelerate. For these reasons, the investigation of the effects
of app clones on AAA is left for future work.

E. APPLICATIONS DEVELOPED BY MULTIPLE AUTHORS
Kalgutkar et al. [7] highlighted that many studies operate
under the assumption that individual applications in their
dataset are authored by a singular developer. This is in
contrast to real-world scenarios where software applica-
tions often involve contributions from multiple developers.
Gong et al. further expressed this point, indicating that
between 10% and 60% of source files can contain contri-
butions from unattributed authors and as many as 75.4% of
source files exhibit multiple authorships [59].

For this study, we assume that a single developer is
responsible for a given application. However, it is imperative
to acknowledge that many applications, particularly large-
scale commercial software, are collective efforts of multiple
developers. This multiplicity adds layers of complexity to
the issue at hand. Notably, when developers adhere to
institutionalized guidelines for software development, the
overarching organization can be treated as a singular entity

VOLUME 12, 2024

TABLE 22. The most important 50 features per dataset.

Market Malware
Name Type Name Type
interstitial is already ngram avgCharPerGlobal Var SIC
1s kjrer ikk ngram avgLinePerClass src
Ibitt Ib ngram avgFuncPerClass SIC
saved state of ngram ratiolnvokeToAllCodes src
elle sera bient ngram ratioVoidToAllFunc SIC
metadata tag in ngram ratioVarToAllCodes src
1b samplerate 1b ngram 1b getruntime Ib ngram
Ib cannot find ngram or zero length ngram
invalid ad size ngram 1b replace Ib ngram
1b rgb Ib ngram ratiolfToAllCodes sIc
1b isinterface Ib ngram avgLinePerFunc SIC
freeing fragment index ngram dapatkan perkhidmatan google ngram
change.component.enabled.state perm susesPermissionNum conf
container view with ngram ratioGlobal VarToAllCodes src
1b krko Ib ngram usesPermissionNum conf
1b score Ib ngram vtIMethodRatio dex
1b readbyte Ib ngram 1b plusclient must ngram
1b pair Ib ngram receive.mms perm
1b aan Ib ngram | b marketsearchqpnamecomgoogle Ib | ngram
be null instead ngram this message Ib ngram
1b zzafm 1b ngram 1b initializing adview ngram
Ib onanimationend Ib ngram permissions are not ngram
1b zc b ngram Ib settextalign 1b ngram
Ib landroidviewsurface Ib ngram antClassRatio dex
1b zzti 1b ngram 1b ljavalangcharsequence 1b ngram
cannot call this ngram Ib lapp non ngram
resDrawableFileNum TSIC statFieldRatio dex
como Is Ib ngram ratioMoveToAllCodes SIC
share via Ib ngram ratioLocal VarToAllCodes src
avgCharPerLocal Var sIc Ib writedouble Ib ngram
com/appyet lib 1biil Ib ngram
1b failure Ib ngram 1b row Ib ngram
ratiolnvokeToAllCodes src avgCharPerLocal Var src
vi cc dch ngram avgCharPerFuncName src
avgCharPerFuncName src ratiolntToAllFunc src
avgLinePerClass sIc 1b getconfig b ngram
key cannot be ngram 1b landroidgraphicsbitmapconfig Ib ngram
Ib multiply Ib ngram 1b stopplayback Ib ngram
not forward oncreate ngram dbiMethodRatio dex
ratioVarToAllCodes src 1b zIlil Ib ngram
giving up on ngram agetRatio dex
ratioGlobal VarToAllCodes src the main ui ngram
avgCharPerGlobal Var src 1b 15088591 Ib ngram
com/doapps lib 1b packagename 1b ngram
or out of ngram 1b getsnippet 1b ngram
Ib case_insensitive_order Ib ngram 1b module without ngram
at least one ngram Ib zu Ib ngram
Ibce Ib ngram drtMethodRatio dex
Ib landroidappalarmmanager Ib | ngram 1b getlastpathsegment 1b ngram
ratioMoveToAllCodes src lipsesc de pe ngram

or developer within the scope of this study. For instance,
even on Github, some developers specify a set of rules
or guidelines that contributors need to follow to contribute
to a project, this is typically called a CONTRIBUTING
guide or CONTRIBUTING.md file. Additionally, companies
may implement regular code review processes. This ensures
that all codes are checked for quality and adherence to the
standards before they are merged into the main codebase. The
unified coding standards establish a set of coding standards
that all developers in the company must follow. Therefore,
if some of the codes are written by multiple developers, the
total code of the application can be seen as the work of a
single developer. This ensures consistency in the codebase,
thus making it easier to read, maintain, and debug.

IX. CONCLUSION

The present study investigates the use of various features
for Android Authorship Attribution (AAA). Specifically,
the features explored in this research include source code-
based attributes extracted from smali files, as well as meta-
data, libraries, and permission-based features. The source

6587

IEEE Access

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

code-based attributes are extracted from the intermediate
representation of Android applications, which retain the
source code-based information. To evaluate the effectiveness
of these features, extensive experiments were conducted on
large datasets containing benign, malicious, and obfuscated
applications sourced from various platforms. The results
demonstrate that the newly proposed feature sets exhibit high
accuracy in AAA, comparable to string-based features that
utilize greater computational resources to extract information
from application strings. Notably, it is observed that metadata
features contribute to improve accuracy, particularly when
combined with source code-based features. Additionally,
this study examines the impact of application versions,
obfuscation, and third-party libraries on AAA. Of particular
significance, this is the first study to explore the impact
of metadata information, which describes applications,
on AAA. Overall, the present work provides a rigorous
analysis of AAA and is compared with the state-of-the-art
techniques. Future research should investigate the use of
this approach for clone applications, particularly those with
malicious intent.

APPENDIX
MOST IMPORTANT FEATURES
See Table 22.

REFERENCES

[1] N.Rosenblum, X. Zhu, and B. P. Miller, “Who wrote this code? Identifying
the authors of program binaries,” in Computer Security—ESORICS 2011,
V. Atluri and C. Diaz, Eds. Berlin, Germany: Springer, 2011, pp. 172-189.
[2] S. Alrabaee, P. Shirani, M. Debbabi, and L. Wang, “On the feasibility

of malware authorship attribution,” in Foundations and Practice of

Security, F. Cuppens, L. Wang, N. Cuppens-Boulahia, N. Tawbi, and
J. Garcia-Alfaro, Eds. Cham, Switzerland: Springer, 2017, pp. 256-272.

[3] S. Alrabaee, L. Wang, and M. Debbabi, “BinGold: Towards robust
binary analysis by extracting the semantics of binary code as
semantic flow graphs (SFGs),” Digit. Invest., vol. 18, pp. S11-S22,
Aug. 2016. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1742287616300330

[4] V. Kalgutkar, N. Stakhanova, P. Cook, and A. Matyukhina, ‘“Android
authorship attribution through string analysis,” in Proc. 13th Int.
Conf. Availability, Rel. Secur. (ARES). New York, NY, USA:
Association for Computing Machinery, Aug. 2018, pp. 1-10, doi:
10.1145/3230833.3230849.

[5] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Authorship attribution
of Android apps,” in Proc. 8th ACM Conf. Data Appl. Secur. Privacy
(CODASPY). New York, NY, USA: Association for Computing Machinery,
Mar. 2018, pp. 277-286, doi: 10.1145/3176258.3176322.

[6] G.Xu, C.Zhang, B. Sun, X. Yang, Y. Guo, C. Li, and H. Wang, “AppAuth:
Authorship attribution for Android app clones,” IEEE Access, vol. 7,
pp. 141850-141867, 2019.

[7] V. Kalgutkar, R. Kaur, H. Gonzalez, N. Stakhanova, and A. Matyukhina,
“Code authorship attribution: Methods and challenges,” ACM Comput.
Surv., vol. 52, no. 1, pp. 1-36, Feb. 2019, doi: 10.1145/3292577.

[8] S. Alrabaee, N. Saleem, S. Preda, L. Wang, and M. Debbabi,
“OBA2: An onion approach to binary code authorship attribution,”
Digit. Invest., vol. 11, pp. S94-S103, May 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1742287614000176

[9] A.Caliskan, F. Yamaguchi, E. Dauber, R. Harang, K. Rieck, R. Greenstadt,
and A. Narayanan, “When coding style survives compilation: De-
anonymizing programmers from executable binaries,” in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), 2018, doi: 10.14722/ndss.2018.23304.

[10] R. Layton and A. Azab, “Authorship analysis of the Zeus botnet source
code,” in Proc. 5th Cybercrime Trustworthy Comput. Conf., Nov. 2014,
pp. 38-43.

6588

(11]

[12]

[13]

[14]

(15]

[16]
(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

R. Layton, S. McCombie, and P. Watters, “Authorship attribution of
IRC messages using inverse author frequency,” in Proc. 3rd Cybercrime
Trustworthy Comput. Workshop, Oct. 2012, pp. 7-13.

M. Alazab, R. Layton, R. Broadhurst, and B. Bouhours, “Malicious spam
emails developments and authorship attribution,” in Proc. 4th Cybercrime
Trustworthy Comput. Workshop, Nov. 2013, pp. 58—68.

A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss,
F. Yamaguchi, and R. Greenstadt, ‘“De-anonymizing programmers via
code stylometry,” in Proc. 24th USENIX Conf. Secur. Symp. (SEC).
Berkeley, CA, USA: USENIX Association, 2015, pp. 255-270.

W. Wang, G. Meng, H. Wang, K. Chen, W. Ge, and X. Li, “A3Ident: A two-
phased approach to identify the leading authors of Android apps,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2020,
pp. 617-628.

StatCounter. (2023). Mobile Operating System Market Share Worldwide.
Accessed: Dec. 12, 2023. [Online]. Available: https://gs.statcounter.
com/os-market-share/mobile/worldwide

Google. (2023). Android Apps on Google Play. Accessed: Dec. 12, 2023.
[Online]. Available: https://play.google.com/store/apps

Aptoide. (2023). Aptoide—The Alternative Android App Store. Accessed:
Dec. 12, 2023. [Online]. Available: https://en.aptoide.com

APKMirror. (2023). APKMirror—Free APK Downloads—Free and Safe
Android APK Downloads. Accessed: Dec. 12, 2023. [Online]. Available:
https://www.apkmirror.com

Android Developers. (2023). String Resources | Android
Developers. Accessed: Dec. 12, 2023. [Online]. Available:
https://developer.android.com/guide/topics/resources/string-resource
Connor Tumbleson. (2023). Apktool—A Tool for Reverse Engineering
Android APK Files. Accessed: Dec. 12, 2023. [Online]. Available:
https://ibotpeaches.github.io/ Apktool/

T. K. Ho, ““Random decision forests,” in Proc. 3rd Int. Conf. Document
Anal. Recognit., vol. 1, 1995, pp. 278-282.

Scikit-Learn Developers. (2023). Scikit-Learn: Machine Learning in
Python—Scikit-Learn 1.3.2 Documentation. Accessed: Dec. 12, 2023.
[Online]. Available: https:/scikit-learn.org/stable/index.html

H. He and Y. Ma. Imbalanced Learning: Foundations, Algorithms, and
Applications. Hoboken, NJ, USA: Wiley, 2013, pp. 1-11. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118646106

S. Sen and B. Can, “Android security using NLP techniques: A review,”
2021, arXiv:2107.03072.

PrivacyGrade. (2021). Privacygrade: Grading the Privacy of Smartphone
Apps. Accessed: 2021. [Online]. Available: http://privacygrade.org

H. Wang, Y. Guo, Z. Ma, and X. Chen, “WuKong: A scalable and accurate
two-phase approach to Android app clone detection,” in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA). New York, NY, USA: Association for Comput-
ing Machinery, Jul. 2015, pp. 71-82, doi: 10.1145/2771783.2771795.

H. Wang and Y. Guo, “Understanding third-party libraries in mobile app
analysis,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. Companion
(ICSE-C), May 2017, pp. 515-516.

L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon, “An investigation into the
use of common libraries in Android apps,” in Proc. IEEE 23rd Int. Conf.
Softw. Anal., Evol., Reeng. (SANER), vol. 1, Mar. 2016, pp. 403-414.

S. Burrows, A. L. Uitdenbogerd, and A. Turpin, “Comparing techniques
for authorship attribution of source code,” Softw., Pract. Exper., vol. 44,
no. 1, pp. 1-32, Jan. 2014. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.2146

Skylot. (2023). GitHub—Skylot/JADX: Dex to Java Decompiler. Accessed:
Dec. 12, 2023. [Online]. Available: https://github.com/skylot/jadx

H. Wang, Y. Guo, Z. Tang, G. Bai, and X. Chen, ‘“‘Reevaluating Android
permission gaps with static and dynamic analysis,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1-6.

Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and accurate
detection of third-party libraries in Android apps,” in Proc. IEEE/ACM
38th Int. Conf. Softw. Eng. Companion (ICSE-C), May 2016, pp. 653-656.
MVNRepository. (2023). Maven repository: Central. Accessed:
Dec. 12, 2023. [Online]. Available: https://mvnrepository.com/repos/
central

Scrapy. (2023). Scrapy | A Fast and Powerful Scraping and Web
Crawling Framework. Accessed: Dec. 12, 2023. [Online]. Available:
https://scrapy.org

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware in
your pocket,” in Proc. NDSS, Feb. 2014.

VOLUME 12, 2024

http://dx.doi.org/10.1145/3230833.3230849
http://dx.doi.org/10.1145/3176258.3176322
http://dx.doi.org/10.1145/3292577
http://dx.doi.org/10.14722/ndss.2018.23304
http://dx.doi.org/10.1145/2771783.2771795

E. Aydogan, S. Sen: Android Authorship Attribution Using Source Code-Based Features

IEEE Access

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

PRALab. (2021). Android Praguard Dataset. Accessed: 2021. [Online].
Available: http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
Warren-Bank. (2023). GitHub—Warren-Bank/Print-APK-Signature: Print
Information About the Certificate Used to Sign an Android APK File.
Accessed: Dec. 12, 2023. [Online]. Available: https://github.com/warren-
bank/print-apk-signature

APKPure. (2023). Download APK on Android With Free Online APK
Downloader—APKPure. Accessed: Dec. 12, 2023. [Online]. Available:
https://apkpure.com

1Mobile-Market. (2018). 1Mobile Market—Best Google Android Apps
Market. Accessed: 2018. [Online]. Available: http://market.1mobile.com
Canadian Institute for Cybersecurity. (2023). Datasets | Research |
Canadian Institute for Cybersecurity | UNB. Accessed: Dec. 12, 2023.
[Online]. Available: https://www.unb.ca/cic/datasets/index.html

H. Wang, J. Si, H. Li, and Y. Guo, “RmvDroid: Towards a reliable Android
malware dataset with app metadata,” in Proc. IEEE/ACM 16th Int. Conf.
Mining Softw. Repositories (MSR), May 2019, pp. 404-408.

S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, and A. Hanna, ‘“‘Decoupling
coding habits from functionality for effective binary authorship attribu-
tion,” J. Comput. Secur., vol. 27, no. 6, pp. 613-648, Oct. 2019.

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in Android and its security applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS). New York, NY, USA:
Association for Computing Machinery, Oct. 2016, pp. 356-367, doi:
10.1145/2976749.2978333.

L.Li, T. F. Bissyandé, and J. Klein, ““SimiDroid: Identifying and explaining
similarities in Android apps,” in Proc. IEEE Trustcom/BigDataSE/ICESS,
Aug. 2017, pp. 136-143.

G. Goel, H. Bhardwaj, I. Hooda, and S. Kumar, “Optimal N-gram subset
extraction for accelerating evaluation using genetic algorithm,” in Proc.
Int. Conf. Emerg. Technol. (INCET), Jun. 2020, pp. 1-5.

J. Zhang, A. R. Beresford, and S. A. Kollmann, “LibID: Reliable
identification of obfuscated third-party Android libraries,” in Proc. 28th
ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA). New York, NY,
USA: Association for Computing Machinery, Jul. 2019, pp. 55-65, doi:
10.1145/3293882.3330563.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of Android
application security,” in Proc. 20th USENIX Conf. Secur. (SEC). Berkeley,
CA, USA: USENIX Association, 2011, p. 21.

D. Boyd, S. Golder, and G. Lotan, “Tweet, tweet, retweet: Conversational
aspects of retweeting on Twitter,” in Proc. 43rd Hawaii Int. Conf. Syst.
Sci., Jan. 2010, pp. 1-10.

N. Cheng, R. Chandramouli, and K. Subbalakshmi, ‘“‘Author
gender identification from text,” Digit. Invest., vol. 8, no. 1,
pp- 78-88, 2011. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1742287611000247

Y. Zhao and J. Zobel, “Searching with style: Authorship attribution in
classic literature,” in Proc. 13th Australas. Conf. Comput. Sci. (ACSC),
vol. 62. Docklands, VIC, Australia: Australian Computer Society, 2007,
pp. 59-68.

Android Developers. (2023). Shrink, Obfuscate, and Optimize Your App |
Android Studio | Android Developers. Accessed: Dec. 12, 2023. [Online].
Available: https://developer.android.com/studio/build/shrink-code
Smardec Inc. (2023). Allatori Java Obfuscator—Professional
Java Obfuscation. Accessed: Dec. 12, 2023. [Online]. Available:
http://www.allatori.com

VOLUME 12, 2024

(53]

(54]

[55]

[56]

(571

(58]

(591

PreEmptive Solutions. (2023). Dasho | Preemptive.
Accessed: Dec. 12, 2023. [Online]. Available: https://www.preemptive.
com/products/dasho

C. Georgiu. (2023). GitHub—Claudiugeorgiu/Obfuscapk: An Automatic
Obfuscation Tool for Android Apps That Works in a Black-Box Fashion,
Supports Advanced Obfuscation Features and has a Modular Architecture
Easily Extensible With New Techniques. Accessed: Dec. 12, 2023.
[Online]. Available: https://github.com/ClaudiuGeorgiu/Obfuscapk

B. Kim, K. Lim, S.-J. Cho, and M. Park, “RomaDroid: A robust and
efficient technique for detecting Android app clones using a tree structure
and components of each app’s manifest file,” IEEE Access, vol. 7,
pp. 72182-72196, 2019.

L. Li, T. F. Bissyandé, and J. Klein, “Rebooting research on detecting
repackaged Android apps: Literature review and benchmark,” IEEE Trans.
Softw. Eng., vol. 47, no. 4, pp. 676-693, Apr. 2021.

J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix,
T. F. Bissyandé, and J. Klein, “JuCify: A step towards Android code
unification for enhanced static analysis,” in Proc. IEEE/ACM 44th Int.
Conf. Softw. Eng. (ICSE). New York, NY, USA: Association for Computing
Machinery, May 2022, pp. 1232-1244, doi: 10.1145/3510003.3512766.
H. Zhou, S. Wu, X. Luo, T. Wang, Y. Zhou, C. Zhang, and H. Cai,
“NCScope: Hardware-assisted analyzer for native code in Android apps,”
in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA).
New York, NY, USA: Association for Computing Machinery, Jul. 2022,
pp. 629-641, doi: 10.1145/3533767.3534410.

S. Gong and H. Zhong, “Code authors hidden in file revision histo-
ries: An empirical study,” in Proc. IEEE/ACM 29th Int. Conf. Program
Comprehension (ICPC), May 2021, pp. 71-82.

EMRE AYDOGAN received the B.S. degree in computer engineering from
Erciyes University and the M.S. degree in computer engineering from
Hacettepe University, Turkey, where he is currently pursuing the Ph.D.
degree in computer engineering, under the supervision of Dr. Sevil Sen.
He was a Research Assistant with the Department of Computer Engineering,
Hacettepe University, from 2014 to 2018, and Akdeniz University, Turkey,
from 2018 to 2022. He is a member of the Wireless Networks and Intelligent
Secure Systems (WISE) Laboratory, Hacettepe University. His main research
interests include the Internet of Things (IoT) security and malware analysis.

SEVIL SEN is currently a Professor with the
Department of Computer Engineering, Hacettepe
University, and leads the Wireless Networks and
Intelligent Secure Systems (WISE) Laboratory.
Her research interests include computer networks
and networks and systems security. Her focus
is mainly in the area of mobile systems and
wireless networks. She is currently serving as an
Area Editor for Ad Hoc Networks and Genetic
Programming and Evolvable Machines.

6589

http://dx.doi.org/10.1145/2976749.2978333
http://dx.doi.org/10.1145/3293882.3330563
http://dx.doi.org/10.1145/3510003.3512766
http://dx.doi.org/10.1145/3533767.3534410

