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ABSTRACT Cervical cancer (CC), the most common cancer among women, is most commonly diagnosed
through Pap smears, a crucial screening process that includes collecting cervical cells for examination.
Artificial intelligence (Al)-powered computer-aided diagnoses (CAD) system becomes a promising tool
for improving CC diagnosis. Deep learning (DL), a branch of Al, holds particular potential in CAD
systems for early detection and accurate diagnosis. DL algorithm is trained to identify abnormalities and
patterns in Pap smear images, such as dysplasia, cellular changes, and other markers of CC. So, this study
presents a Computer Aided Cervical Cancer Diagnosis utilizing the Gazelle Optimizer Algorithm with Deep
Learning (CACCD-GOADL) model on Pap smear images. The foremost objective of the CACCD-GOADL
approach is to examine the image detection of CC. To accomplish this, the CACCD-GOADL method-
ology uses an improved MobileNetv3 model for extracting complex patterns in Pap smear images.
In addition, the CACCD-GOADL technique designs a new GOA for the hyperparameter tuning of the
improved MobileNetv3 system. For the classification and identification of cancer, the CACCD-GOADL
technique uses a stacked extreme learning machine (SELM) methodology. The simulation validation of the
CACCD-GOADL approach is verified on a benchmark dataset of Herlev. Experimental results highlighted
that the CACCD-GOADL algorithm reaches superior outcomes over other methods.

INDEX TERMS Cervical cancer, gazelle optimization algorithm, computer-aided diagnosis, deep learning,
machine learning.

I. INTRODUCTION

Cervical cancer (CC) is a common cancer for females
globally. Owing to the combination of high human papillo-
maviruses (HPV) in the host genome, CC occurs [1]. Nearly
99 % of CC cases are infected with a high risk of HPV
that is transferred via sexual content. That is why an early
recognition of CC has become vital for the well-organized
management of patients clinically [2]. The highest challenge
is changing biological information into valued knowledge.
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Normally, the improvement of CC is very slow as well as pre-
ceded by anomalies in the cervix (dysplasia). Moreover, the
early-stage symptoms absence may cause a lack of attention
to prevention [3], [4]. In addition to that, in many develop-
ing countries resources are absent so that the patients have
poor obedience to routine screening due to low difficulty
awareness. Even though there are severe medical and sci-
entific developments, CC disease is not curable completely
particularly if identified in a progressing stage. Prevention
as well as screening services, plays an important role in
the battle besides CC [5]. The CC screening comes with a
common workflow such as cytology or PAP smear testing,
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biopsy, HPV testing, and colposcopy. Many tools have sus-
tained the workflow that is mainly produced to make it more
low-cost, practical, and effectual [2], [6]. The PAP smear
image screening is highly utilized for CC but it requires huge
numbers of tiny analyses to identify cancer and non-cancer
patients. The main goal of an automated PAP-smear study is
to divide and then categorize CC in the pap-smear images
as normal or abnormal [1]. The growth of such methods as
Machine Learning (ML) and Medical Imaging (MI), in these
studies, is a realism that aids in decreasing the time con-
sumed as well as enhancing the exactness of cytologists’
execution slide examination at the time of pap screening
procedure.

The medical image investigation contains both methods as
well as procedures to get full detailed data from the med-
ical images for medical examination and involvement [7].
The ML method is the main branch of AI which shares the
learning problems from data samples. ML uses a variety
of optimization, probabilistic, and statistical approaches that
permit computer networks to “learn” from previous samples
as well as to identify hard-to-discern forms from complex,
noisy, or large difficult databases [8]. ML and MI methods
spontaneously analyze pap-smear images and then create
the screening procedure quicker and more trustworthy [8].
Deep Learning (DL) techniques have become one of the
popular tools for cancer study recently [9]. These models
are capable of recognizing designs and difficult relationships
from obtainable multimodal datasets for effective prediction
of CC [10]. By considering the most important growth in
demand for personalized treatment and then developments in
DL models, hereby we analyze improvements in modern DL
approaches for CC prediction and diagnosis [11].

This study presents a Computer Aided Cervical Cancer
Diagnosis using the Gazelle Optimizer Algorithm with DL
(CACCD-GOADL) approach on pap smear images. The main
goal of the CACCD-GOADL approach is to examine the
images for the detection of CC. To accomplish this, the
CACCD-GOADL technique uses an improved MobileNetv3
model for extracting complex patterns in the pap smear
images. In addition, the CACCD-GOADL technique designs
a new GOA for the hyperparameter tuning of the improved
MobileNetv3 methodology. For the classification and iden-
tification of cancer, the CACCD-GOADL technique uses a
stacked extreme learning machine (SELM) method. The sim-
ulation validation of the CACCD-GOADL approach is tested
on a benchmark dataset of Herlev. The major contribution of
the study is listed as follows.

e Develops a new CACCD-GODL method for CC diag-
nosis, which is a cutting-edge fusion of nature-inspired
optimization technique to improve the performance of
the DL algorithm.

e Employs an enhanced MobileNetv3 model to extract
complicated patterns in Pap smear images. This illus-
trates a strategic choice for the effective extraction
of deep features, crucial to capture complex features
related to CC diagnoses.
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e Introduces a new GOA variant particularly devel-
oped for tuning hyperparameters in the enhanced
MobileNetv3 architecture. This contribution highlights
the framework’s commitment to optimizing model
parameters for better generalization and accuracy.

e To further improve diagnostic abilities, CACCD-
GOADL exploits the SELM method for the classifica-
tion and detection of cancer. This stacking technique
aims to enhance the reliability and robustness of the
model’s predictions.

Il. RELATED WORKS

Waly et al. [12] presented an intelligent deep CNN for
CC identification and detection (IDCNN-CDC) technique
employing bio-medical pap smear images. The Tsallis
entropy approach with the dragonfly optimizer (TE-DFO)
model defines the image segmentation for appropriately rec-
ognizing the diseased regions. Then, the features extracted
from SqueezeNet have been implemented into the weighted
ELM classification method for diagnosing and classifying
cervical tissues. In [13], an approach was developed that
supports in identification and classification of the cancer
employing the HOG extraction feature as well as categorizing
it through ANN, KNN, and SVM. Sentiirk and Stileyman [14]
introduced a transfer learning (TL) based CC identification
technique for earlier analysis. Pap smear images could be
pre-processed with the help of a median filter (MF) before
training the DL method to eliminate noise in the images for
improving classification.

Suguna and Balamurugan [15] implemented a CAD for
CC Screening utilizing Monarch Butterfly optimization with
the DL (CADCCSMBODL) method. To remove features, this
developed CADCCS-MBODL method exploits the Efficient-
Net framework with the MBO technique as a hyperparameter
optimization. Then, the XGBoost algorithm was utilized to
classify and identify the CC. In [16], an efficient hybrid
DL approach employing Small Object Detection-GAN
(SOD-GAN) with fine-tuned SAE (F-SAE) was designed
to overcome the limitations aforementioned. The technique
parameters could be utilizing F-SAE, and SOD-GAN hyper-
parameters must be enhanced and normalized for quickly
diagnosing cancers. Al Masri and Mokayed [17] developed
an intelligent ML-based CAD (IML-CAD) method for clas-
sifying CC. The IML-CAD algorithm includes various phases
of processes for identifying and categorizing the malig-
nant cervix cells. Besides, the least squares-SVM (LS-SVM)
method and local binary patterns (LBP) based feature extrac-
tor are devised for classifying CC.

In [18], the authors presented a TL method of the
InceptionV3 network for classifying moderately, good, and
poorly distinguished cervical HI that can be marked by
employing immunohistochemistry techniques. In this model,
an InceptionV3-based TL algorithm was initially designed.
Next, a fine-tuning method was implemented for extracting
efficient DL features from the model. In [19], the authors
designed a fully automatic pipeline for CC identification and
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recognition from cervigram images. This introduced pipeline
comprises 2 pre-trained DL methods for automatic CC clas-
sification and cervix identification. These features could be
learned by applying 2 lightweight frameworks depending on
CNN.

In [20], a medical image augmentation model such
as texture-constrained multichannel progressive generative
adversarial network (TMP-GAN) has been developed in
this paper. TMP-GAN utilizes combined training of mani-
fold networks to efficiently evade the classic defects of the
present generation models. Zhou et al. [21] developed a dual-
branch shape-aware network (DSANet) to divide the left
ventricle, left atrium, and myocardium from the echocardio-
graphy. Wang et al. [22] main goal is to challenge the edema
and scar segmentation from multiple-sequence CMR with
an innovative auto-weighted supervision structure, where
the connections between dissimilar supervised layers are
discovered below a specific task objective by employing
reinforcement learning.

lll. THE PROPOSED MODEL

In this work, we have mainly concentrated on the design
and growth of an automated CACCD-GOADL methodol-
ogy for the identification and recognition of CC. The main
intention of the CACCD-GOADL approach is to analyze
the images for the detection of CC. To accomplish this,
the CACCD-GOADL technique incorporates an improved
MobileNetv3 model, GOA-based hyperparameter tuning, and
SELM detection. Fig. 1 defines the workflow of the CACCD-
GOADL method.

A. FEATURE EXTRACTION: IMPROVED MOBILENETV3
MODEL

For deriving feature vectors, the improved MobileNetv3
model can be used. MobileNet has lower latency and power,
which is a small CV method design aimed to enhance accu-
racy but sufficiently the resource limitations of on-device or
embedding apps [23]. Detection, segmentation, and classifi-
cation tasks are executed utilizing these approaches, as with
other large-scale methods. MobileNetV1 combined a novel
feature named depth-wise discrete convolutional that radi-
cally decreases the count of essential parameters related to
other designs that utilize even convolutions. The design of the
MobileNetV1 technique comprises many depth-wise separa-
ble convolutional to reduce the operation counts needed by
the model for backward and forward propagations. Standard
convolution layers in CNNs treat all the channels similarly;
but, SE blocks calculate the outcome by assuming the signif-
icance of all the channels.

Fig. 2 depicts the architecture of MobileNetV3. All the
channels can initially compressed as one numeric value by SE
block; then it is provided as a 2-layer feedforward network to
measure the weight for all the channels. SE blocks can be exe-
cuted similarly to the remaining layers for assigning distinct
weights for many networks from the input once generating
the resultant mapping feature, because it leads to enhanced
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accuracy. MobileNetV3 also establishes 2 developments with
MobileNetV2 such as layer removal and employment of
swish nonlinearity.

Layer removal: The 1 x 1 development layer, gained from
the inverted remaining unit and conveyed beside the pooling
layer from the final block of MobileNetV 2, utilizes 1 x 1 map-
ping features instead of 7 x 7 mapping features, making it
effectual for latency and computation. Therefore, the filtering
and projection layers of the preceding bottleneck layer can
removed.

Use of swish nonlinearity: Swish non-linearity can deter-
mined as:

swishx = x*o (x) )

Swish non-linearity is established to improve accuracy.
However, the MobileNetV3 creators exchanged the sigmoid
function with hard swish for the sigmoid which is computa-
tional cost, and computational cost is decreased.

h— swish[x] = x* (ReLU66 (x+3)) @

B. PARAMETER TUNING: GOA

To adjust the hyperparameter values of the enhanced
MobileNetv3 model, the GOA is applied. The GOA is
a population-based optimizer approach that uses modified
gazelles (X) randomly as searching agents [24]. The search-
ing agent is indicated as a n x d matrix of the candidate
solution. This method joins the lower bound (LB) and upper
bound (UB) to describe the range of values for the population
vector.

X1,1 X1,2 X1,d—1 X1,d
X2.1 X2.2 X2,d—1 X2.d
X=]. . ) . 3)
: : Xi, : :
Xn,1 Xn,2 Xn,d—1 Xn,d

In Eq. (3), the matrix of the candidate population’s location
vector is X. The location vector (X) is randomly generated
based on Eq. (4), where rand indicates the random integer,
the upper and lower boundaries for the problems are UB; and
LB;, correspondingly. n and d variables signify the number of
gazelles and the dimension of search range, correspondingly.

xij = rand x (UBj — LB;) + LB, 4

In all the iterations, x; ; create a solution candidate and the
optimum solution attained is known as the minimal solution.
The fittest or strongest gazelles have extraordinary capa-
bilities in evading predators, spotting threats, and alerting
others. Therefore, the optimal performance is nominated as
a top gazelle and creates an Elite n x d matrix. This aids
as a reference for the gazelles to define the next step at the
searching stage.

! / / !/
1 X2 Xd-1 14
/ / / /
) X1 *2 o Xa-1 X4
Elite = | . . ) . (5)
. . x/ . .
ij
/ / / !
Xn,1 xn,Z e xn,d—] xn,d
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FIGURE 1. Workflow of the CACCD-GOADL approach.
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FIGURE 2. Structure of MobileNetV3.

In Eq. (5), the location vector of top gazelle is xlf’j. GOA
consider the predator and gazelle as searching agent as when
the predator is identified, both parties flee in a similar way
nearby safety. The predator discovers the search space as the
gazelles escape. If the best gazelle replaces the top gazelle,
the Elite matrix is updated at the iteration end.

The GOA stimulates the existence behaviors of gazelles,
including browsing in the lack of hunters and flying to safer
regions when a predator is spotted. Consequently, the opti-
mizer method of the GOA is split into two different stages.

1) EXPLOITATION

The gazelles peaceably forage in the occurrence of a stalking
predator or without a predator in the exploitation stage. The
controlled Brownian movement with controlled and uniform
steps is used for effectively exploring the neighboring area
of the domain. During grazing, they move in a Brownian
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movement pattern. This behavior is expressed as follows.

gazelleiy| = gazellej+s - R x -Rp * - Elite;—Rp * -gazelle)
(6)

In Eq. (6), the solution at next and existing iterations are
gazelle; 1 and gazelle;. The foraging rapidity of the gazelles
is the parameter s. R is a vector including uniformly dis-
tributed arbitrary number ranges within [0, 1]. Rp denotes
the vector of arbitrary integers that simulates the Brownian
movement.

2) EXPLORATION

When a predator is detected, the exploration stage begins.
In responding to danger, gazelles show different behaviors
namely foot stomping, tail flicking, or stotting up to the height
of 2 m that ranges within [0,1]. Employing the Le’vy fight, the
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gazelle responds primarily for its escape, but the hunter first
utilizes the Brownian movement beforehand transitioning to
the Le’vy fight. This behavior is expressed as follows:

- = —_— =
gazellej+1 = gazelle; +S - (1 - R * -Rp * - (Ellte,- — Rp*

-gazelle,') @)

where the top speed that gazelle could accomplish is S,
a vector of arbitrary amounts according to Lévy distributions
is =& The chasing behaviors of predators can be mathe-
matically modelled as follows:

— e T
gazelleir1 = gazelle;+ S - ;1 - CF % -Rp * - (Elttei — Rp %

—_
. gazellei) ®)

In Eq. (8) the cumulative outcome of the predator is CF,
evaluated by CF= (1—iter /iterMax). The effect of PSRs is
modeled in Eq. (9).

——
gazelle;jy
—_— - = - = —
gazelle; + CF [LB F R« (UB . LB)] «U:

ifr < PSRs
= E
gazelle; + [PSRs (1 —r) + 1] (gazellerl — gazellerz)
selse

©))

where aginary Vigtor created an arbitrary nﬂ)mber r within
[0,1]is U, thus U= 0forr< 0.34;orelse U = 1. random
indexes of the gazelle matrix are r1 and r2.

The GOA approach improves an FF to achieve a better
classifier result. It clarifies an optimistic integer for implying
a good solution. In this case, the decreasing classifier rate of
errors can be supposed to be the FF, as stated in Eq. (10).

fitness (x;) = ClassifierErrorRate (x;)
No.ofmisclassifiedinstances

100 10
Totalno.ofinstances ¥ (10)

C. IMAGE CLASSIFICATION: SELM MODEL

For CC classification, the SELM model can be exploited. The
ELM technique has been employed for resolving the single
hidden-layer (HL) NN approach [25]. Typical NN learning
approaches (like the BP technique) require obtaining a huge
count of network-trained parameters and easily performing
local optimum results. Accordingly, the ELM approach gets
the benefits of quick learning speeds and optimum gener-
alized ability. An FFNN with L hidden layer nodes can
expressed as:

L
fo@ =D BG(WXj+b)=hx)B. j=1,.N
i=1

(1)

whereas G(-) denotes the activation function, X; signifies the
j™ instance, W; represents the input weight, f; stands for the
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resultant weight, b; represents the bias, and A(x) indicates the
resultant of HL.

This methodology is utilized for calculating H T (the
Moore-Penrose matrix of HL resultant matrix H) is ortho-
graphic projection: i.e., once H' H is non-singular, H t =
(HTH)'HT, once HHT is singular, HT = HT(HHT)!.
Based on the rule of ridge regression, in the computation of
HY, alesser positive number % is established on the diagonal
of HHT or HTH as a regularized item that enhances the
generalized outcome of ELM. So, during the regularized
based ELM:

Once the count of trained instances is superior to the count
of HL nodes, the resultant weighted matrix ,3 is measured by
the subsequent formula:

. 1 -1
g = (X +HHT> H'T,N > n, (12)

Or else, once the trained instances counts are lesser than
the amount of HL nodes, the resultant weighted matrix S
computation equation as:

A 1 HyT
= ()
Disassembling the SELM approach is also into sev-
eral ELM approaches, but all the HL are assumed to be
an independent ELM for extracting features. Additionally,
to comprehensively reform the input, the ELM gives input as
the model target outcome (i.e.,T = X). The feature learning
method for the SELM approach is thorough but the input
image can preserved as the target outcome from the primary
ELM (T = X) for calculating the outcome-weighted matrix
B1 (inred box). Afterward, the outcome of 1st HL H; = S1xX
is provided as the 2nd input and target outcome of ELM
(T = H)) for calculating the resultant weighted matrix $8; (in
the green box). At last, it attained a higher-level feature rep-
resentation B3xH,. Therefore, the method develops a linear
model, and the resultant weighted matrix of all the ELM g
is calculated based on the count of HL nodes.

1
H'T,N > n, (13)

IV. RESULTS AND DISCUSSION

In this part, the performance validation of the CACCD-
GOADL technique can be tested employing a medical image
database, comprising 918 samples with seven classes such as
columnar (CE), Carcinoma In Situ (SCCSI), Mild Dysplasia
(MS-NKD), Superficial squamous (SSE), Severe Dyspla-
sia (SS-NKD), Intermediate Squamous (ISE), and Moderate
Dysplasia (MOS-NKD). Table 1 signifies the complete
details of a dataset.

Fig. 3 displays the confusion matrices produced by the
CACCD-GOADL technique at 80:20 and 70:30 of the
TRAP/TESP. The simulated values indicate the effectual
detection with all seven class labels.

In Table 2 and Fig. 4, the detection analysis of the
CACCD-GOADL methodology with 80:20 of TRAP/TESP is
provided. The results demonstrate that the CACCD-GOADL
method categorizes all 7 samples. With 80% of the TRAP,
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TABLE 1. Database details.

Classed ﬂf;go;
SSE 74

ISE 70

CE 98
MS-NKD 182
MOS-NKD 146
SS-NKD 197
SCCSI 151
En?;ﬁes 18

Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix

SSE

ISE

CE

MS-NKD

Actual
Actual

MOS-NKD

SS-NKD

sccsl

B Hnnﬂn
MOS-NKD =
S

L
MOS-NKD

Predicted Predicted

(a) (h)
Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix

Actual

Actual
H
@
z
=
B
MOSHI® == £ -nn

Predicted

Predicted
(c) (d)

FIGURE 3. Confusion matrices of (a-c) TRAP of 80% and 70% and (b-d)
TESP of 20% and 30%.

the CACCD-GOADL system provides an average accuy of
99.22%, precy, of 97.38%, reca; of 96.52%, Fscore of 96.93%,
and MCC of 96.49%. Additionally, based on 20% of the
TESP, the CACCD-GOADL methodology gives an average
accuy 0f 99.38%, precy, of 96.71%, reca; of 97.45%, Fscore Of
97.04%, and MCC of 96.71% respectively.

In Table 3 and Fig. 5, the recognition analysis
of the CACCD-GOADL methodology with 70:30 of
TRAP/TESP is exhibited. The simulated values show that
the CACCD-GOADL technique categorizes all 7 samples.
According to 70% of the TRAP, the CACCD-GOADL model
gives an average accuy of 98.66%, prec, of 95.24%, reca; of
94.28%, Fycore of 94.73%, and MCC of 93.96%. Moreover,
with 30% of TESP, the CACCD-GOADL method provides an
average accuy of 98.96%, prec,, of 96.27%, reca; of 95.37%,
Ficore 0f 95.71%, and MCC of 95.17% disparately.
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B Training Phase (80%)

2001 @ Testing Phase (20%)

99 1

98 1

97 1

Avg.Values (%)

96

95 -

Accuracy Precision Recall F-Score Mcc

FIGURE 4. Average of CACCD-GOADL algorithm with 80:20 of TRAP/TESP.

TABLE 2. Detection outcome of CACCD-GOADL algorithm with 80:20 of
TRAP/TESP.

Class

Labels Accu, | Prec, | Reca; | Fyore | MCC
TRAP (80%)

SSE 99.46 | 98.18 | 94.74 | 96.43 | 96.15
ISE 99.18 | 98.18 | 91.53 | 94.74 | 94.36
CE 99.32 | 97.53 96.34 | 96.93 96.55
MS-

NKD 98.91 96.60 | 9793 | 97.26 | 96.58
MOS-

NKD 99.18 | 9580 | 99.13 | 97.44 | 96.97
SS-

NKD 99.59 | 98.73 99.36 | 99.05 | 98.79

SCCSI 98.91 96.64 96.64 96.64 95.99
Average | 99.22 97.38 96.52 96.93 96.49

TESP (20%)

SSE 99.46 | 94.44 | 100.00 | 97.14 | 96.89
ISE 9891 | 9091 | 90.91 | 9091 | 90.33
CE 99.46 | 94.12 | 100.00 | 96.97 | 96.73
MS-

NKD 100.00 | 100.00 | 100.00 | 100.00 | 100.00
MOS-

NKD 100.00 | 100.00 | 100.00 | 100.00 | 100.00
SS-

NKD 9891 | 97.50 | 97.50 | 97.50 | 96.81
SCCSI | 9891 | 100.00 | 93.75 | 96.77 | 96.19

Average | 99.38 96.71 97.45 97.04 96.71

To define the performance of the CACCD-GOADL system
with 80:20 of TRAP/TESP, TRA, and TES accu, curves are
definite, as demonstrated in Fig. 6. The TRA and TES accu,
curves exhibit the values of the CACCD-GOADL system
over numerous epochs. The figure offers important facts
regarding the learning tasks and generalized capabilities of
the CACCD-GOADL system. With an improvement in epoch
count, it is observed that the TRA and TES accu, curves
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100

B Training Phase (70%)

I Testing Phase (30%)
99

98

97 1

96

Avg.Values (%)

95 -

94 -

93 -

Accuracy Precision Recall F-Score Mcc

FIGURE 5. Average of CACCD-GOADL algorithm with 70:30 of TRAP/TESP.

TABLE 3. Detection outcome of CACCD-GOADL algorithm with 70:30 of
TRAP/TESP.

IC‘zlaiSeSls Accuy, | Prec, | Reca; | Fyype | MCC
TRAP (70%)

SSE 98.75 95.92 88.68 92.16 | 91.56
ISE 98.60 91.84 90.00 90.91 | 90.16
CE 99.22 97.06 95.65 96.35 | 95.92
MS-

NKD 98.60 95.49 97.69 96.58 | 95.71
MOS-

NKD 98.29 95.92 93.07 94.47 | 93.47
SS-

NKD 98.29 94.29 97.78 96.00 | 94.94

SCCSI 98.91 96.19 97.12 96.65 | 96.00
Average | 98.66 95.24 94.28 94.73 | 93.96

TESP (30%)
SSE 9891 | 9091 | 9524 | 93.02 | 92.46
ISE 98.91 | 100.00 | 85.00 | 91.89 | 91.66
CE 99.28 | 96.55 | 96.55 | 96.55 | 96.15
MS-

NKD 98.91 | 94.55 | 100.00 | 97.20 | 96.58
MOS-

NKD 9891 | 9565 | 9778 | 96.70 | 96.06
SS-

NKD 98.55 | 9833 | 95.16 | 96.72 | 95.81

SCCSI 99.28 97.87 97.87 97.87 | 97.44
Average | 98.96 96.27 95.37 95.71 | 95.17

acquire enhanced. It is noticed that the CACCD-GOADL
methodology attains improved testing accuracy that can
potentially recognize the designs in the TRA and TES data.
Fig. 7 represents the complete TRA and TES loss values of
the CACCD-GOADL technique with 80:20 of TRAP/TESP
over epochs. The TRA loss reported that the method loss
attained reduced over epochs. Mostly, the loss values are
minimized as the model adjusts the load to reduce the forecast
fault on the TRA and TES data. The loss curves display the
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FIGURE 6. Accuy curve of CACCD-GOADL algorithm with 80:20 of
TRAP/TESP.
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FIGURE 7. Loss curve of CACCD-GOADL algorithm with 80:20 of
TRAP/TESP.

level to which the method is suitable for the TRA data. It is
evidenced that the TRA and TES loss is gradually reduced
and represents that the CACCD-GOADL model successfully
learns the designs shown in the TRA and TES data. It is
also remarked that the CACCD-GOADL system modified the
parameters to decrease the difference amongst the predicted
as well as actual TRA labels.

The PR performance of the CACCD-GOADL technique
with 80:20 of TRAP/TESP is exhibited to plot accuracy
against recall as labeled in Fig. 8. The simulated values con-
firm that the CACCD-GOADL method achieves improved
RR values with all 7 class labels. The figure indicates
that the method learns to classify dissimilar classes. The
CACCD-GOADL algorithm obtained improved results in the
recognition of optimistic samples with reduced false posi-
tives.

The ROC study provides the CACCD-GOADL methodol-
ogy with 80:20 of TRAP/TESP as shown in Fig. 9, which can
differentiate the seven classes. The figure specifies respected
insights into the tradeoff amongst the TPR and FPR rates over
various classification thresholds and modifying the count
of epochs. It offers the precise forecast performance of the
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FIGURE 10. Comparative outcome of CACCD-GOADL algorithm with other
recent systems.

CACCD-GOADL methodology on the recognition of diverse
7 class labels.

In Table 4 and Fig. 10, a contrast study of the
CACCD-GOADL approach with recent systems [26], [27].
It is noticed that the DenseNetl21 and ShuffleNet mod-
els have shown worse results. In addition, the GCN,
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TABLE 4. Comparative outcome of CACCD-GOADL algorithm with other
recent systems.

Methods Accu,, | Prec, | Reca; | Fy.ope
ggilc)]i' 99.38 | 96.71 | 97.45 | 97.04
ngé_a 99.17 | 96.02 | 97.05 | 96.46
igﬁ i 96.74 | 92.58 | 95.85 | 92.93
ﬁggjﬁ 9459 | 8775 | 9657 | 86.69
&ejﬁ“m 92.01 | 89.18 | 9721 | 91.21
ﬁi‘:;;Netm 86.71 | 86.95 | 84.71 | 85.74
ﬁ‘:ggeNet 8025 | 80.18 | 78.96 | 79.97

Mor-27, and ResNet-101 models have obtained consider-
able performance. At the same time, the EOEL-PCLCCI
model reaches reasonable performance. The results indi-
cate that the CACCD-GOADL algorithm reaches enhanced
results with maximum performance with maximum accu,
of 99.38%, prec, of 96.71%, reca; of 97.45%, and Fcore
of 97.04%. These results show excellent performance of the
CACCD-GOADL technique.

V. CONCLUSION

In this research paper, we have mainly concentrated on
the design and growth of an automated CACCD-GOADL
technique for the identification and recognition of CC. The
main intention of the CACCD-GOADL methodology is to
inspect the image detection of CC. To accomplish this,
the CACCD-GOADL approach incorporates an improved
MobileNetv3 model, GOA-based hyperparameter tuning, and
SELM classification. Moreover, the CACCD-GOADL tech-
nique designs a new GOA for the hyperparameter tuning
of the improved MobileNetv3 system. For the identification
and detection of cancer, the CACCD-GOADL methodology
used the SELM technique. The simulation validation of the
CACCD-GOADL methodology is verified on the benchmark
dataset of Herlev. A comparison of outcomes depicted that
the CACCD-GOADL system reaches superior outcomes with
other approaches.

The significance of these findings is underscored by the
superior outcomes demonstrated in the evaluation of the
benchmark Herlev dataset, suggesting its potential to enhance
the accuracy and efficiency of cervical cancer detection. Fur-
thermore, the CACCD-GOADL framework holds promising
implications for clinical practice, offering a reliable and auto-
mated diagnostic tool that could augment the capabilities of
healthcare professionals in cervical cancer screening. The
incorporation of artificial intelligence and deep learning in
this approach has the potential to reduce human error and
improve the overall reliability of diagnostic outcomes. The
success of CACCD-GOADL also points toward avenues for
further research, encouraging exploration into optimizing and
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expanding the framework for broader applications in medical
imaging and diagnostic methodologies. The holistic nature of
the approach positions it as a noteworthy advancement with
substantial implications for advancing cervical cancer diag-
nosis and potentially reshaping the landscape of automated
diagnostic tools in healthcare.
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