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ABSTRACT Otoscopy is a diagnostic procedure to visualize the external ear canal and eardrum, facili-
tating the detection of various ear pathologies and conditions. Timely otoscopy image classification offers
significant advantages, including early detection, reduced patient anxiety, and personalized treatment plans.
This paper introduces a novel OTONet framework specifically tailored for otoscopy image classification.
It leverages octave 3D convolution and a combination of feature and region-focus modules to create an
accurate and robust classification system capable of distinguishing between various otoscopic conditions.
This architecture is designed to efficiently capture and process the spatial and feature information present in
otoscopy images. Using a public otoscopy dataset, OTONet has reached a classification accuracy of 99.3%
and an F1 score of 99.4% across 11 classes of ear conditions. A comparative analysis demonstrates that
OTONet surpasses other established machine learning models, including ResNet50, ResNet50v2, VGG16,
Dense-Net169, and ConvNeXtTiny, across various evaluation metrics. The research’s contribution to
improved diagnostic accuracy reduced human error, expedited diagnostics, and its potential for telemedicine
applications.

INDEX TERMS Artificial intelligence, medical image analysis, diagnosis, convolutional neural networks,
otology, applied engineering, healthcare.

I. INTRODUCTION
Otoscopy is a vital diagnostic procedure used by medical pro-
fessionals to visualize the external ear canal and eardrum [1],
aiding in the detection of ear pathologies and conditions [2].
This non-invasive examination plays a crucial role in diagnos-
ing various ear conditions and abnormalities. It can identify
issues like otitis media (middle ear infections), tympanic
membrane perforations [3], excessive earwax accumulation,
foreign bodies lodged in the ear canal, ear infections (includ-
ing otitis externa or swimmer’s ear), ear-drum abnormalities,
Eustachian tube dysfunction [4], and, in rare cases, tumors
or growths within the ear. The otoscope enables medical
professionals to assess inflammation, fluid buildup, structural
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abnormalities, and other indicators that guide accurate diag-
nosis and appropriate treatment.

Images are captured in an otoscope by integrating spe-
cialized cameras or imaging sensors within the device [5].
The otoscope emits light onto the area under examination
using LEDs, which are then directed and focused onto the ear
canal and eardrum through lenses and mirrors. The integrated
camera captures the illuminated image, which is instantly
displayed on a screen for real-time visualization by healthcare
professionals. This technology, illustrated in Figure 1 enables
clear and magnified views of the internal ear structures, aid-
ing in accurate diagnoses and medical evaluations. Timely
otoscope image classification brings numerous advantages
to medical diagnostics and patient care. It enables early
detection and intervention, ensuring swift identification of
ear conditions and tailored treatments. This leads to reduced
patient anxiety, prevention of complications, and optimized
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FIGURE 1. Ear exam using otoscope [7].

resource allocation. With precise diagnoses, personalized
treatment plans can be promptly implemented, contributing
to improved patient outcomes and cost savings.

Applying Convolutional Neural Networks (CNNs),
directly to otoscopy image classification [6] faces unique
challenges due to the distinctive characteristics of medical
imaging data. Otoscopy images often exhibit variations in
lighting, orientation, and the presence of artefacts, making it
essential to design robust and optimized deep-learning mod-
els for accurate classification. AI holds promise in reshaping
otoscope image analysis. Its automated image classifica-
tion capability offers efficient diagnostic avenues, ensuring
the timely detection of subtle ear conditions. By extracting
features and recognizing patterns, AI enhances diagnostic
accuracy, ultimately assisting medical professionals in deliv-
ering precise and timely diagnoses. Classifying otoscope
images presents challenges due to varying image quality,
subtle visual differences in ear conditions, limited training
data, class imbalance, and the need for domain adaptation.
Anatomical variations, interclass variability, and the lack
of annotations further complicate accurate classification.
Factors like ethnicity, age, and evolving medical knowledge
require adaptable models.

The motivation behind this research lies in the need to
develop an efficient and automated approach to optimize
deep neural networks for otoscopy image classification [6].
The primary aim of this research is to design an accurate
and robust image classification system that can effectively
differentiate between these various otoscopic conditions. The
proposed model leverages the innovative OTONet frame-
work, which incorporates octave 3D convolution technique
with submodules that focus on specific features and regions
in the images. The study seeks to enhance classification
performance, reduce region redundancy, and increase the
receptive field, ultimately providing a valuable tool for clin-
ical diagnosis and decision-making in the field of otoscopy.
The research will evaluate the model’s performance against
these multiple otoscopy categories, contributing to improved
healthcare practices and patient outcomes.

The problem at hand is to develop an accurate and efficient
deep learning model for the classification of otoscopy images
into distinct categories, representing various ear conditions
and abnormalities. Otoscopy image classification plays a
crucial role in assisting medical professionals in diagnosing
ear pathologies, such as otitis media [8], tympanic membrane
perforations, and ear infections.

The challenges in otoscopy image classification arise from
the variability in otoscopy images, including differences in
lighting conditions, image orientations, and the presence of
artefacts. The intricate structures of the ear [9] make distin-
guishing subtle variations challenging, necessitating the need
for a robust and optimized classification approach.

The objective of our work is to design a custom archi-
tecture capable of accurately and efficiently classifying
otoscopy images, allowing for timely and accurate diagnosis.
By addressing the complexities of otoscopy image classi-
fication through an optimized model, this research aims to
improve patient outcomes, facilitate early detection of ear
conditions, and enhance the overall efficiency of medical
diagnostics [10], [11].

The proposed solution involves leveraging CNNs and
exploring optimization strategies, including hyperparameter
tuning and transfer learning. Through rigorous experimen-
tation and validation, we aim to identify the most effec-
tive model that achieves high classification accuracy while
ensuring generalization and robustness across diverse oto-
scopy image datasets. By effectively solving the problem of
otoscopy image classification, this research contributes to
advancing computer-aided medical diagnostics, supporting
healthcare professionals in making informed decisions. The
optimizedmodel can serve as a valuable tool for early diagno-
sis, personalized treatment plans, and improved patient care
in the field of otolaryngology [12].

The contributions of this paper are as follows:
1. This paper presents a novel OTONet framework tai-

lored specifically for otoscopy image classification, featuring
octave 3D convolution and feature and region focus modules
created from the ground up.

2. The model’s ability to accurately classify a diverse range
of otoscopic conditions, such as Acute Otitis Media, Otitis
Externa, Ventilation Tubes, and more, showcases its practical
utility for classification tasks..

3. This paper provides a benchmark for otoscopy image
classification by comparing the custom OTONet with well-
established models.

II. RELATED WORK
In the field of otoscopy image analysis, a significant body
of research has been dedicated to the development of
advanced techniques for the detection and classification of
ear conditions.

Table 1 provides an overview of notable research studies
focused on otoscopy image analysis. These studies aim to
enhance the diagnosis and classification of various ear condi-
tions using advanced computational methods, primarily deep
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learning and computer vision techniques. The table highlights
key aspects of each study, including the primary objective,
the dataset used, the number of images or videos analyzed,
evaluation metrics, GPU utilization, the introduction of novel
models, and the overall conclusions.

III. METHODOLOGY
The methodology section of this research presents a com-
prehensive process to address the classification of otoscopy
images, as illustrated in Figure 2. This section delineates
the critical stages that include data acquisition, preprocessing
methods, the architectural structure of OTONet, consisting of
Octave Convolution and Feature and Region Focus submod-
ules, and the rigorous evaluation using various performance
metrics. The methodology is segmented into distinct subsec-
tions to provide an in-depth understanding of each phase of
the image classification process. These components include
dataset acquisition, preprocessing steps, the architecture of
the innovative OTONet model, focusing on its crucial com-
ponents like Octave Convolution and Feature and Region
Focus submodules, and the comprehensive evaluation strat-
egy employing diverse performance metrics to assess the
model’s effectiveness and robustness. Each phase is described
in detail in the subsections that follow.

A. DATASET
The otoscopy image dataset used for this study presented
herein has been meticulously curated and evaluated to
facilitate accurate and reliable classification of various ear
conditions. In total, the dataset comprises 956 otoscope sam-
ples, categorized into distinct classes that reflect a spectrum
of ear conditions: Normal Tympanic Membrane, Acute Otitis
Media (AOM), Chronic Suppurative Otitis Media(CSOM),
Excessive amount of Earwax, Otitis Externa, Ear Ventilation
Tube, Foreign Bodies in the Ear, Pseudo Membranes, Tym-
panosclerosis. The classes and the number of samples in each
class are represented in Figure 3.
The dataset undergoes a series of preprocessing steps. First,

the original frame, representing the unprocessed, raw image
frame captured during otoscopy, serves as the foundational
starting point. In this process, specific attention is given to
the isolation of low-quality images resulting from factors like
insufficient lighting or inadvertent camera movement. This
meticulous organization ensures that the model is exposed
to high-quality, pertinent data, effectively preventing noise or
irrelevant details from interfering with the learning process.
Subsequently, the original color images are converted into
grayscale, simplifying each pixel’s intensity representation to
a single value. This grayscale conversion reduces the data’s
complexity while preserving essential information, making
it more amenable to further processing. The application of
a Gaussian filter through convolution follows, serving the
purpose of smoothing out the original images and mitigating
noise, especially critical in medical imaging where high-
frequency noise and fine details can be present. The outcome
is a cleaner image representation that emphasizes relevant

features. To enhance image contrast and highlight specific
details, thresholding is applied by subtracting the smoothed
image from the original. Employing a threshold value of 4,
pixels with intensity values greater than or equal to 4 are
designated as high, while those below four are classified
as low. Finally, a crucial step in the segmentation process
involves computing a circular Region of Interest (ROI) for
each image. This segmentation isolates the area of inter-
est within the image, specifically focusing on the circular
frame encapsulating pertinent information. This meticulous
preprocessing sequence collectively contributes to refining
the dataset and facilitating improved feature extraction during
the subsequent model training process.

A notable challenge in otoscopy image classification with
this dataset is the inherent class imbalance, where certain ear
conditionsmay be underrepresented in the dataset. To address
this issue, oversampling is performed on minority classes by
replicating images while undersampling is applied to major-
ity classes by reducing the number of instances. This balances
the class distribution, for underrepresented classes such as
foreign objects and pseudo membranes, synthetic data points
are generated using the Synthetic Minority Over-sampling
Technique [23].

To enhance the diversity of the dataset, data augmentation
is applied to the images. Data augmentation plays a cru-
cial role in enhancing the robustness of the otoscopy image
classification model presented in the paper. By introducing
simulated variations in viewpoints through random rotations
and employing mirroring effects via horizontal and vertical
flips, the model becomes adept at discerning ear conditions
from different perspectives encountered during otoscopy pro-
cedures. The inclusion of minor changes in zooming values,
alterations in brightness and saturation, and the addition of
Gaussian noise during augmentation addresses real-world
challenges, such as varying lighting conditions and image
quality. Collectively, these techniques contribute to the depth
of the training data, exposing the model to a diverse set
of scenarios and improving its adaptability to unpredictable
conditions. By training on augmented data, the model learns
to classify ear conditions more effectively under a broader
range of circumstances, ultimately resulting in improved clas-
sification performance, especially in scenarios not adequately
represented in the original dataset.

B. OTONET: OCTAVE CONVOLUTION
In this section, we outline the OTONet framework that
constitutes a multiscale octave 3-Dimensional CNN [24]
incorporated with both feature and region-focus submodules
designed for the classification of otoscope images.

The primary characteristic of the OTONet revolves around
the notable observation that both the network’s parameters
and the memory requisites experience a pronounced escala-
tion on par with the augmentation of convolutional layers.
This phenomenon is particularly prominent in the context
of 3D CNNs. An approach termed octave convolution [25]
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FIGURE 2. Methodology process flowchart followed in this study.

FIGURE 3. Representative otoscope images from 11 classification classes.

employs a decomposition strategy [26] to segregate the map
of features generated by the model into discrete regions
and space features. These segregated components are sub-
sequently updated individually before being exchanged and
eventually fused, leading to a reduction in region redundancy
and an efficient expansion of the output space.

Our current study advocates the incorporation of three tiers
of octave 3D convolution. The feature maps in the jth layer
are denoted by

Aj =

{
a1, a2, · · · , ai, · · · , anchannels | ai ∈ Rnbands×l1×l2

1

}
(1)

where each ai is an element of Rnbands×l1×l2
1 . Here, l1 ×

l2 signifies the region dimensions, and nbands indicates the
number of color channels (R, G,B).

The input feature maps are divided into two groups, the
highfrequency groupAHigh1 and the low-frequency groupALow1

long the feature dimension, as the first stage in the octave
three-dimensional convolution process. A hyperparameter α,
which denotes the fraction of the low-frequency category in
relation to the total, controls this division. The feature counts
of AHigh1 and ALow1 are calculated as (1 − α) × C and α × c
respectively, where c signifies the total number of features.
The result of the first layer of the three-dimensional octave
convolution is expressed as follows, given the input map of
attributes A1:

AHigh1 = 3DConv (A1) (2)

ALow1 = 3DConv (Avg_pool (A1)) (3)

In this context, the operation denoted as 3DConv(. ) repre-
sents the standard 3D convolution process, while Avg_pool
corresponds to the mean of the pooling operation [27].
The high-frequency and low-frequency groups communicate
between features and update across features during the inter-
mediate layer. The information that follows is a breakdown
of the calculation for the central layer’s output:

AHigh2 = 3DConv
(
AHigh1

)
+ UpSample

(
F

(
ALow1

))
(4)

ALow2 = 3DConv
(
ALow1

)
+ F

(
Avg_pool

(
AHigh1

))
(5)

Here,UpSample(.) signifies the up-sampling operation. In the
context of hyperspectral image classification, during the final
layer, adjustments aremade to the high-frequency and lowfre-
quency groups to ensure they share the same shape tomitigate
feature redundancy [28]. The output of this concluding layer,
denoted as B, is determined by:

B = 3DConv
(
Avg_pool

(
AHigh2

))
+ F

(
ALow2

)
(6)

As a result, within the framework of octave 3D convolu-
tion, the region resolution of the low-frequency group is
effectively diminished through the exchange of information
across adjacent regions. Two key benefits of the octave three-
dimensional convolution method are the decrease in region
redundancy and the increase in the receptive field. In order
to improve the precision of otoscope image classification,
we thus suggest incorporating octave three-dimensional con-
volution instead of standard three-dimensional convolution.
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FIGURE 4. Feature and region focus submodules.

C. OTONET: FEATURE AND REGION FOCUS SUBMODULES
To enhance the representational capabilities of the model
network, considering the wealth of colour features and region
data intrinsic to HSIs, integration of both the feature focus
sub-module and region focus submodule is proposed. These
subsystems aim to bestow distinct significance upon feature
map features and determine the salient portions within a
feature map. We accomplish this by utilizing the convolu-
tional block focus module, which was first presented by
Woo et al. [29]. It is a flexible and fully trainable supplement
to basic CNN architectures. The configurations of the sub-
modules are visually depicted in Figure 4. Feature attention
[30] operates by accentuating the reduction of feature redun-
dancy and constructing a feature attention map that captures
inter-feature relationships within features. As illustrated in
the top region of Figure 4,
Let A = {a1, a2, · · · , ai, · · · , anchannels | ai ∈

R1nbands × l 1 × l2} represent intermediate layer feature
maps. Both average pooling and max pooling are simultane-
ously used to compress and combine the features, creating
two distinct feature maps: max-pooled features Xmax and
average-pooled features Aavg. To facilitate training, a shared
network consisting of two dense layers processes these

pooled features. The learned weights from this network are
applied to both Xmax and Aavg. Consequently, the sub-
module feature focus submodule, denoted as SC∈Rlnfeatures
×1 × 1 × 1, is derived as a tensor of dimensions nchannels
×1 × 1 × 1. We also introduce a reduction ratio, r , to opti-
mize parameters and set the concealed activation size to
nchannels/r ×1 × 1 × 1[32].

The calculation of focus in the feature-focus submodule is
summarised as:

SC = σ
(
FC (Max_pool(A)) + FC

(
Avg_pool((A)

))
(7)

where themax pooling operation is denoted byMax_pool and
σ stands for the sigmoid function.
We complement the focus submodule features with a

region mechanism to further explore the focal points within a
feature of a featuremap. The region focusmodule comes after
the feature-wise focus module, as seen in the bottom part of
Figure 4. The region focus module,
The input for the region focus submodule, denoted as AC ,

consists of feature-refined feature maps, calculated as:

Ac
= A ⊗ Sc (8)

where ⊗ stands for multiplication of individual elements.
Global mean and max pooling operations are used to effec-
tively utilize the feature information, producing 3D feature
maps ACmax and ACavg. The 3D region focus map is then
created bymerging and convolving thesemaps through a con-
ventional convolutional layer. The region focus is ascertained
as follows:

SS = σ (F3×3×3([Max_pool(AC;Avg_pool()AC)])) (9)

In this case, F3×3×3 represents a standard 3D convolution
with a 3 × 3 ×3 kernel size. The output feature map B is
obtained by SS to AC through element-wise multiplication:

B = Ac
⊗ Ss (10)

The final B represents the optimal feature map obtained from
A by running both attention modules in succession. It is
possible that this improved feature map will improve the
classification performance.

D. OTONET: CLASSIFICATION
In this section, we outline the design of our OTONet archi-
tecture, structured as follows:

Prior to official network training, we first apply Principal
Component Analysis [32] (PCA) to reduce the dimension-
ality of the data. As shown in Figure 5, this step aids in
parameter reduction and the preservation of important infor-
mation. Subsequently, the 3D patch undergoes processing
through three network branches. Each branch comprises three
consecutive 3D octave convolution layers for the extraction
of multi-scale features [33]. Batch Normalization-Rectified
Linear Unit [34] (BN-RELU) activation comes after each of
these layers. The outputs of these branches are denoted as A1,
A2, and A3. It’s important to note that the three branches vary
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FIGURE 5. OTONet architecture.

in octave 3D convolution kernel sizes—1 × 1 ×1, 3 × 3 ×3,
and 5 × 5 ×5. Figure 5 illustrates the design of each branch
with distinct numbers of convolution kernels.

For ease of concatenation, we ensure the consistency of
the original data size and feature map dimensions. Thus, the
outputs of the three branches (A1,A2,A3) are concatenated
to form A:

A = Concat(A1,A2,A3) (11)

In this case, the concatenation operation is represented by
Concat(.). To further abstract the feature map, a standard 3D
convolutional layer is then applied.

Next, in order to improve the acquired feature maps’ ability
to discriminate, a focusmodule is presented that includes both
feature-wise focus and region-wise focus.

Lastly, for classification, our architecture makes use of a
softmax classifier and two fully connected layers. The fully
connected layer uses ‘dropout’ to reduce overfitting in a sen-
sible way without adding too many parameters. Categorical
cross-entropy is chosen as the loss function as follows:

E = −

∑
to ∗ log(yo) (12)

where yo denotes the network output and to denotes the
correct label. For the ongoing reduction of loss and parameter
updates, we adopt the Adam optimization method. OTONet
is an innovative multi-scale octave 3D CNN designed specif-
ically for the classification of otoscopy images. It is enhanced
with feature-focus and region-focus mechanisms.

OTONet utilizes Octave Convolution, Feature Focus, and
Region Focus submodules to boost its classification capabil-
ities. Octave Convolution addresses the challenge of increas-
ing model parameters and memory requirements in 3D CNNs
by decomposing feature maps into high and low-frequency
components. It updates these components individually and
then fuses them to reduce region redundancy and efficiently
expand the output space. This three-tiered octave 3D con-
volution diminishes region redundancy and increases the
receptive field. The Feature and Region Focus submod-
ules further enhance OTONet’s architecture. The Feature

Focus submodule reduces feature redundancy and constructs
a feature attention map to capture inter-feature relationships.
Simultaneously, the Region Focus submodule explores focal
points within feature maps, improving the model’s ability to
discern salient portions. The seamless integration of these
submodules works cohesively to bestow distinct significance
upon feature map features. This results in a comprehensive
framework excelling in capturing intricate patterns and fea-
tures crucial for accurate otoscopy image classification.

E. EVALUATION METRICS
The assessment of the proposed OTONet framework’s per-
formance in otoscopy image classification is vital for under-
standing its effectiveness. Thesemetrics encompass accuracy,
sensitivity, specificity, and the F1 score, providing a com-
prehensive view of the model’s classification capabilities.
Accuracy reflects the overall correctness of predictions, while
sensitivity measures the model’s ability to correctly identify
positive cases. Specificity assesses the model’s aptitude for
accurately recognizing negative cases, and the F1 score bal-
ances precision and recall. The formulae for the computation
are given in equations 13-16.

F1 − score =
2.precision.recall
precision+ recall

(13)

Sensitivity =

∑c
i=1

TPi
TPi+FN i

c
(14)

Precision =

∑c
i=1

TPi
TPi+FPi

c
(15)

Specificity =

∑c
i=1

TN i
TN i+FPi

c
(16)

where True Positives (TP) signify instances that have been
correctly classified into a specific class, True Negatives (TN)
denote instances that have been accurately classified as not
belonging to a particular class, False Positives (FP) represent
instances that have been erroneously classified as belonging
to a class, False Negatives (FN) refer to instances that have
been incorrectly classified as not belonging to a specific class.
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FIGURE 6. Otoscopy image preprocessing steps on an image in the dataset - (a) Original frame, (b) Grayscale version, (c) Smoothing by
gaussian kernel, and (d) Thresholded details.

FIGURE 7. Example of image (a) acquired from the dataset, (b) cropped
based on ROI.

IV. RESULTS
A. DATA PREPROCESSING
The dataset was organized manually through the segregation
of samples. Efforts have been made to ensure data quality
by isolating low-quality images resulted from factors such
as insufficient lighting or inadvertent camera movement. The
preprocessing described in detail in the methodology section
were applied to the dataset to prepare it for further processing
by the OTONet and is demonstrated in Figure 6. Figure 6a
shows the original frame which refers to the unaltered,
raw image frame captured during the otoscopy procedure.
It serves as the starting point for all subsequent preprocessing
steps. The original color image is converted into a grayscale
version as shown in 6b, where each pixel’s intensity is repre-
sented by a single value (gray level) instead of multiple color
channels causing image simplification for further processing.
In order to smooth out the original and reduce noise, Figure 6c
illustrates the process of convolution of the input with a
Gaussian filter. It helps to eliminate high-frequency noise and
detail, resulting in a cleaner representation. The frame in 6d
shows thresholded values when smoothed image is subtracted
from the original image. In our work, a threshold value of
4 is applied, meaning that pixels with intensity values greater
than or equal to 4 are set to high, and those below 4 are set to
low. A circular region of interest is computed for each of the
images and segmented from the binary image to isolate the
area of interest within the image which is the circular frame
that captures relevant information as illustrated in Figure 7.
In Table 2, we demonstrate the data split for the OTONet

model. The dataset is categorized into various ear conditions,
with images divided into training, testing, and validation
sets. The allocation of separate validation and test datasets is

TABLE 2. The number of samples for each class for training, testing and
validation.

TABLE 3. Addressing the imbalance in classes using oversampling
techniques.

crucial for assessing the model’s performance, validating its
generalization, and ensuring its accuracy in classifying oto-
scopy images across diverse categories. These datasets serve
as independent benchmarks to gauge the model’s robustness
and reliability in real-world scenarios, which is essential for
the development of an effective otoscopy image classification
system.

Table 3 provides an overview of the class distribution
before and after applying the synthetic minority over-
sampling technique to address class imbalance in our dataset.
The table displays the original number of images in each
class and the percentage of over-sampling applied to the
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TABLE 4. Techniques used for image augmentation on the fly.

minority classes using SMOTE. This technique helps create a
more balanced dataset by oversampling the minority classes
effectively increasing the representation of these classes.
As seen in the table, the oversampling percentage varies for
each class depending on the initial class distribution. The
highest oversampling percentage is applied to the ‘‘Foreign
Object’’ class, which originally had only two images. The
normal image class had 374 images and has not been under
or oversamples. This is done ensure that the machine learning
model is not biased towards the majority classes. We aim
to provide the model with sufficient examples to learn and
generalize from, ultimately improving its ability to accurately
classify otoscopy images across all classes.

We employed a suite of on-the-fly data augmentation tech-
niques as illustrated in the accompanying Table 4, brought
substantial value to our classification task. Random rotations,
within the range of 0 to 350 degrees, offered simulated vari-
ations in viewpoint, essential for modeling the wide array
of orientations seen in otoscopy procedures. Horizontal and
vertical flips provided mirroring effects, enabling the model
to discern ear conditions from both left and right perspec-
tives. Furthermore, minor changes in the zooming in values,
alterations in brightness and saturation, as well as adding
Gaussian noise, collectively introduced variations mirror-
ing the real-world challenges encountered during otoscopy.
These augmentation techniques added depth to our training
data, fostering a more robust and generalized model for accu-
rate ear condition classification.

B. LOSS ANALYSIS
The loss analysis of OTONet, as depicted in Figure 8, offers
valuable insights into the training and validation performance
over 110 epochs. In this analysis, the blue curve represents the
training loss, reflecting how effectively OTONet learned the
nuances of the training dataset with each successive epoch.
The orange curve illustrates the validation loss, which gauges
how well the model generalizes its knowledge to previously
unseen data. A small difference between the training and val-
idation loss curves is indicative of the model’s ability to mini-
mize overfitting, ensuring robust generalization to real-world
otoscopy images. As the loss values for both training and val-
idation data approach zero, it underscores the proficiency of
OTONet in capturing the intricate patterns within the dataset.
The diminishing loss values as the epochs progress signify

FIGURE 8. OTONet train and validation loss curves for 110 epochs.

FIGURE 9. OTONet confusion matrix depicting the classification results
for different ear conditions. [ N (Normal), AOM (Acute Otitis Media), COM
(Chronic Otitis Media), EP (Earwax Plug), OE (Otitis Externa),
VT (Ventilation Tube), PM (Pseudo Membrane), TS (Tympanosclerosis)].

the model’s rapid convergence and its capability to swiftly
enhance its performance. These findings collectively endorse
the efficacy of OTONet in learning and classifying ear condi-
tions from otoscopy images, demonstrating confidence in its
applicability and potential for accurate diagnoses.

C. CONFUSION MATRIX ANALYSIS
The confusion matrix, presented in Figure 9, provides a
comprehensive assessment of the classification performance
of OTONet across the spectrum of ear condition classes.
This matrix is instrumental in understanding the model’s
strengths and areas for improvement. The diagonal elements
represent true positive counts, indicating the number of
instances correctly classified. Notably, the ‘‘Normal’’ and
‘‘Acute Otitis Media’’ classes exhibit robust classification,
with the majority of instances correctly identified. However,
off-diagonal elements signify misclassifications, revealing
areas where OTONet may benefit from further refinement.
Instances of misclassification are observed in classes such
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TABLE 5. Performance comparison of OTONet with state-of-the-art ML image classification architectures.

as ‘‘Chronic Otitis Media,’’ ‘‘Earwax Plug,’’ and ‘‘Otitis
Externa.’’ The misclassifications observed in certain classes,
such as ‘‘Chronic Otitis Media,’’ ‘‘Earwax Plug,’’ and ‘‘Otitis
Externa,’’ can be partially attributed to the imbalanced distri-
bution of samples in these classes. Since these classes have
fewer instances, the model may have had less exposure to
them during training. As a result, possibly struggled to dis-
tinguish subtle differences in these less-represented classes,
leading to misclassifications even after augmentations and
oversampling techniques.

D. COMPARATIVE ANALYSIS
In this comparative analysis section, we evaluate the
performance of OTONet against several state-of-the-art
machine learning image classification architectures, includ-
ing ResNet50, ResNet50v2, VGG16, DenseNet169, and
ConvNeXtTiny on the dataset.

Table 5 provides an in-depth analysis of the performance
of OTONet in comparison to other state-of-the-art ML
image classification architectures. The exceptional accuracy
of OTONet at 99.3% indicates its remarkable capabil-
ity to correctly classify images, outperforming competitors
like VGG16. The high sensitivity of 99.3% underscores
OTONet’s proficiency in identifying positive instances, while
the specificity of 98.8% highlights its accuracy in recognising
negative cases. The F1 score of 99.4% further accentuates
OTONet’s ability to balance precision and recall, showcasing
its robust performance. These results collectively highlight
the superior classification capabilities of OTONet when
compared to other state-of-the-art machine learning models,
emphasizing its potential for advanced and accurate ear con-
dition classification in otoscopy images.

Figure 10 complements these quantitative results by illus-
trating the ROC graph and AUC comparison. OTONet
stands out with the highest AUC of 0.89, reinforcing its
exceptional ability to distinguish between different classes.
ResNet50, VGG16, DenseNet169, and ConvNeXtTiny, while
exhibiting reasonable AUC values, fall short of OTONet’s
performance.

E. LIMITATIONS OF THE STUDY
In the course of this research, potential limitations and chal-
lenges have been identified as follows. The publicly available
dataset used in the study may not fully encapsulate the

FIGURE 10. Comparative ROC graph.

diversity of otoscopy images encountered in authentic clinical
scenarios. This limitation could influence the model’s gen-
eralizability across various patient demographics, otoscope
devices, and clinical conditions. Despite efforts to mitigate
class imbalance through oversampling techniques, certain
classes, notably ‘‘Foreign Object’’ and ‘‘PseudoMembrane,’’
remain underrepresented, posing a challenge to the model’s
accurate classification of these conditions. The study also
acknowledges the need for further clinical validation on a
larger and more diverse patient population to assess the
model’s real-world applicability. Sensitivity to augmenta-
tion parameters is identified as another potential limitation,
emphasizing the importance of fine-tuning these parameters
for optimalmodel performance. Lastly, the proposedOTONet
architecture, with its multiscale octave 3D CNN, may require
substantial computational resources, potentially limiting its
accessibility in resource-constrained environments. These
limitations underscore the necessity for an open and thorough
discussion and serve as a valuable guide for future research
endeavours in this domain.

V. CONCLUSION
In conclusion, this paper presents an in-depth exploration of
the proposed OTONet framework designed for the purpose
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of automated classification of ear conditions in otoscopy
images. The OTONet architecture, with its unique combina-
tion of Octave Convolution, Feature Focus, and Region Focus
submodules, has demonstrated exceptional performance in
classifying various ear pathologies. Leveraging state-of-
the-art deep learning techniques, we have showcased its
effectiveness in detecting conditions like Acute Otitis Media,
Chronic Otitis Media, Earwax Plug, Otitis Externa, Ventila-
tion Tube, Pseudo Membrane, Tympanosclerosis, and more.
Our results underscore the remarkable accuracy and robust-
ness of OTONet when compared to other well-established
machine-learning models, such as ResNet50, ResNet50v2,
VGG16, DenseNet169, and ConvNeXtTiny. OTONet exhib-
ited superior performance across various metrics, including
accuracy, sensitivity, specificity, and F1 score, which are cru-
cial for precise diagnosis and classification of ear conditions.
In this work, we have highlighted the critical role of data
preprocessing, augmentation, and class imbalance handling
techniques in improving the model’s performance. Augmen-
tation, in particular, significantly contributed to enhancing
OTONet’s capability to classify ear conditions accurately.
The use of synthetic minority oversampling techniques effec-
tively addressed class imbalances, ensuring a more balanced
and reliable model.

The findings of this study are promising for the field
of otoscopy image analysis, with the potential to support
medical professionals in making accurate and timely diag-
noses. OTONet’s superior performance, combined with its
efficiency and robustness, positions it as a valuable tool in
revolutionizing the diagnosis of ear conditions. This work
opens doors to future enhancements and wider applications
in the field of medical image analysis, providing invaluable
support to medical professionals and contributing to the over-
all well-being of patients worldwide.
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