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ABSTRACT Deep learning excels at managing spatial and temporal time series with variable patterns
for streamflow forecasting, but traditional machine learning algorithms may struggle with complicated
data, including non-linear and multidimensional complexity. Empirical heterogeneity within watersheds and
limitations inherent to each estimation methodology pose challenges in effectively measuring and appraising
hydrological statistical frameworks of spatial and temporal variables. This study emphasizes streamflow
forecasting in the region of Johor, a coastal state in Peninsular Malaysia, utilizing a 28-year streamflow-
pattern dataset from Malaysia’s Department of Irrigation and Drainage for the Johor River and its tropical
rainforest environment. For this dataset, wavelet transformation significantly improves the resolution of
lag noise when historical streamflow data are used as lagged input variables, producing a 6% reduction
in the root-mean-square error. A comparative analysis of convolutional neural networks and artificial neural
networks reveals these models’ distinct behavioral patterns. Convolutional neural networks exhibit lower
stochasticity than artificial neural networks when dealing with complex time series data and with data
transformed into a format suitable for modeling. However, convolutional neural networks may suffer from
overfitting, particularly in cases in which the structure of the time series is overly simplified. Using Bayesian
neural networks, we modeled network weights and biases as probability distributions to assess aleatoric
and epistemic variability, employing Markov chain Monte Carlo and bootstrap resampling techniques.
This modeling allowed us to quantify uncertainty, providing confidence intervals and metrics for a robust
quantitative assessment of model prediction variability.

INDEX TERMS Artificial neural network, deep learning convolutional neural network, Bayesian statistic,
streamflow, time series, uncertainty analysis.

ABBREVIATIONS AND ACRONYMS
A Approximation Component.
AdaBoost Adaptive Boosting.
AI Artificial Intelligence.
ANFIS Adaptive Neuro-Fuzzy Inference Systems.
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ANN Artificial Neural Network.
ARIMA Autoregressive Integrated Moving Average.
CNN Convolutional Neural Network.
COD Chemical Oxygen Demand.
DW Detail Component.
ELM Elman Neural Network.
GP Gaussian Processes.
GRU Gated Recurrent Units.
LSTM Long Short Term Memory.
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MLP Multi-Layer Perceptron.
MSE Mean Square Error.
NSE Nash-Sutcliffe Efficiency.
NH+

4 Ammonium Concentration.
PCA Principal Component Analysis.
RF Random Forest.
RFBN Radial Basis Function Neural Networks.
RMSE Root Mean Square Error.
RNN Recurrent Neural Network.
SVM Support Vector Machine.
SVR Support Vector Regression.
SWAT Soil & Water Assessment Tool.
SWE Snow Water Equivalent.
TSL Total Sediment Load.
TSS Total Suspended Solids.
WT Wavelet Transform.
WWTP Wastewater Treatment Plant.
XGB eXtreme Gradient Boosting.

I. INTRODUCTION
Streamflow monitoring is critical for estimating the avail-
ability and distribution of water resources for human water
demands, which is essential for agricultural irrigation,
industrial operations, and municipal water supply planning.
Water resource pressures rise and environmental concerns
grow, prompting an urgent need to address a critical question:
Why is streamflow important, and how can a nuanced
understanding of its patterns and dynamics be leveraged
for sustainable water management, ecological health, and
infrastructure planning in the face of evolving environmental
and societal demands?

More broadly, the significance of streamflow extends
beyond the context of human water demands. Terrestrial
aquatic ecosystems are intricately linked to streamflow
dynamics, and their health depends on consistent ade-
quate flow [1]. Streamflow can impact the prevalence
and transmission of illnesses in aquatic ecosystems. While
streamflow does not directly cause diseases, it does play a
crucial role in generating habitat conditions that can impact
pathogen dynamics and their consequences for aquatic
animals. Streamflow facilitates the transport of pathogens,
including bacteria, viruses, and parasites, through aquatic
environments [2]. Increased flow can disperse pathogens over
greater distances, potentially affecting a broader range of
species and ecosystems. Streamflow influences water quality
parameters such as temperature, oxygen level, and nutrient
concentrations [3]. Changes in these factors due to variations
in streamflow can stress aquatic organisms, making them
more susceptible to diseases.

Understanding streamflow patterns not only is essential for
ecological health but also forms the basis for sedimentary
budget forecasting in fluvial flows [4]. Streamflow mod-
eling becomes a key tool in this regard, as it simulates
hydrodynamic processes within river systems, including flow
velocity, discharge, and channel morphology. These models

make it possible to identify areas prone to erosion or
sediment deposition [5]. Inadequate streamflowmanagement
can lead to increased erosion along riverbanks and within the
river channel. Without sufficient flow to transport sediment
downstream, sediments may accumulate due to elevated net
sedimentation rates. This can adversely affect water quality,
aquatic habitats, and infrastructure [6].

Streamflow modeling is a vital technique for managing
water resources, especially in the early detection of flood
dangers [7], [8], [9]. Several types of advanced models
can operate across the range of climate zones. Especially
during flood events, fast efficient replication of streamflow
is crucial to the forecasting process and is accomplished
by hydrodynamic models [10], [11]. For instance, Mah-
dian et al. [12] employed the Soil andWater Assessment Tool
model to simulate and analyze streamflow dynamics under
various climate and land use scenarios. Their findings help
clarify how changes in climate and human activities, such
as deforestation and urbanization, can impact streamflow
and sediment inputs to ecosystems, in their case the Anzali
wetland ecosystem. However, these complex models require
precise river geometry data, which is not always accessible.
In contrast, artificial intelligence (AI) tools, such as artificial
neural networks and deep learning, have abolished the
necessity for detailed knowledge of river geometry [13].
Furthermore, their modeling can be nonlinear, piecewise,
or discontinuous, among other types of relationships [14].

II. LITERATURE REVIEW
Existing literature reveals successful demonstrations of
AI-based models in hydrological forecasting, leading to
improved accuracy and predictive capabilities in hydrological
and water resource management. Models range from widely
used artificial neural networks (ANNs) to state-of-the-art
algorithms, such as deep learning, which include convo-
lutional neural networks (CNNs), long short-term memory
(LSTM), and generative adversarial networks.

Recurrent neural networks (RNNs), which include LSTM,
gated recurrent units (GRU), and standard RNN, are widely
employed for time series forecasting due to their proficiency
in handling sequential data. Sahoo et al. [15] illustrated
their effectiveness, finding that RNN outperforms radial basis
function neural networks (RFBN) for streamflow forecasting.
However, standard RNNs can encounter issues related to
vanishing or exploding gradients, potentially affecting their
performance. Samantaray et al. [16] demonstrated this
challenge by showing that support vector machines (SVMs)
and adaptive neuro-fuzzy inference systems (ANFISs) out-
performed RNN in rainfall modeling.

In response to the vanishing/exploding gradient problem,
LSTM has gained prominence. LSTM models exhibit a
lower susceptibility to these pitfalls and offer enhanced
performance. For instance, Bala et al. [17] achieved success
using LSTM for rainfall prediction, with the LSTM approach
surpassing the Elman neural network (ELM) and autore-
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gressive integrated moving average (ARIMA) approaches.
Researchers can also incorporate dynamic sliding windows
when working with time series data exhibiting a range
of periodicities. For instance, Dong et al. [18] applied
LSTM with dynamic sliding windows to predict streamflow
at monthly intervals, resulting in an impressive 8.63%
RMSE improvement. LSTM models have also demonstrated
their suitability for real-time streamflow prediction. In a
comparative study by Cheng et al. [19], their research
employed a recursive forecasting procedure for long lead-
time forecasting, where the last one-step-ahead forecast
was used as a new input for the next-step-ahead forecast
in both ANN and LSTM systems. The LSTM model
outperformed the ANN model in long lead-time daily
forecasting, showcasing superior performance. However, the
LSTM model’s performance was less satisfactory in multi-
monthly forecasting, attributed to the limited availability of a
large monthly training dataset.

Deep learning algorithms used in hydrology produce
not only one-dimensional (1D) time-series forecasts but
also significant supplemental information. Recent research
demonstrates the effectiveness of CNNs in various ground-
water mapping tasks. Panahi introduced a CNN model for
creating groundwater potential maps, which offer insights
into the spatial distribution of groundwater resources essen-
tial for sustainable freshwater management. Furthermore,
Hakim et al. [20] utilized a CNN–LSTM approach to
unveil patterns among 14 parameters and responses related
to groundwater potential, further enhancing groundwater
mapping endeavors. Other research, delving into three-
dimensional (3D) mapping, has predicted flow rates through
rock formations in 3D. Santos et al. [21] successfully
employed a 3D CNN to forecast flow rates, presenting an
alternative model for the Navier–Stokes equation, a pivotal
component of hydrodynamic simulations. These advance-
ments in deep learning hold significant promise for enhancing
hydrological modeling and resource management.

Aside from deep learning algorithms, recent research in
hydrological problems concerning streamflow has proven
the Gaussian processes (GPs) method as a viable route
in forecasting streamflow Donnelly et al. [22]. These
authors demonstrated that GPs consistently outperform other
models, including CNNs, excelling in streamflow forecasting
due to their adaptability to complex hydrological systems,
precise uncertainty estimation for flood risk management,
and computational efficiency. GP models exhibit minimal
inaccuracies in predicting streamflow, even in complex
metropolitan settings. These attributes make GPs a practical
choice for dependable efficient streamflow prediction.

A further investigation of streamflow hydrological pro-
cesses is that of Khosravi et al. [23] concerning soil
erosion by flowing water. That study identified elevation
as the most influential factor for soil water erosion (SWE)
susceptibility. They achieved high predictive performance
using various deep learning models, such as CNN, LSTM,
and RNN, with RNN exhibiting a slight advantage during

testing. These models provided valuable tools for SWE
susceptibility mapping in data-poor regions but inherently
lacked explanatory capability. Predicting sediment loads has
also been a research focus. For instance, Noori et al. [24]
intriguing study used principal component analysis (PCA) to
address multicollinearity among ten input factors impacting
total sediment load in rivers. They created PCA-basedmodels
using multiple linear regression or support vector regression
(SVR). During verification, the PCA-based RBF–SVRmodel
attained an exceptional Nash–Sutcliffe efficiency (NSE)
of 0.86, outperforming previous empirical models and
confirming its resilience in forecasting extreme sediment
concentrations.

Wastewater treatment facilities represent an additional
hydrological concern. Borzooei et al. [25] conducted exten-
sive data analysis, which involved identifying outliers and
addressing missing values, emphasizing significant outlier
events in chemical oxygen demand (COD) and total sus-
pended solids (TSS) data. They established peaking factors
for flow rate and pollutant characteristics. Their regression
analysis demonstrated a moderate positive association of
precipitation intensity (PI) with influent flow (Qin) and a
low negative correlation with pollutant concentration. Wet
weather, as determined by PI criteria, resulted in higher flow
rates and lower pollutant concentrations owing to dilution
effects. COD and ammonium concentration (NH+

4 ) were
more susceptible to meteorological conditions than TSS.
Another study by Borzooei et al. [26] aimed to estimate the
impact of wet-weather events on the Qin and wastewater
characteristics at a prominent Italian wastewater treatment
plant (WWTP) in Castiglione Torinese. They analyzed eight
years of collected data on influent flow and daily precipitation
to investigate the relationships between PI, Qin, COD, N-
NH4, and TSS. The study employed time-series data mining
to segment data into wet and dry weather events, with a
wet-weather definition proposed based on PI criteria. Their
results suggest that this methodology provides a practical
alternative to costly time-consuming data collection efforts
for emergency response and climate preparedness.

However, the complexity of time series forecasting pro-
cedures and the reliance on high-quality data in data-driven
approaches further enhance the desirability of integrating
AI models with data-preprocessing methods [27]. Data
preprocessingmethods dataminingmethods for transforming
raw data into data that can be efficiently used [28], [29].
The wavelet transform (WT) is one of the most used
time series preprocessing techniques for temporal extrac-
tion of crucial properties, including short- and long-term
fluctuations. Among the methods for accomplishing such
extraction is decomposition of the time series into its several
significant subcomponents [30]. Including WT in AI models
has become an integral aspect of time series forecasting
applications, particularly in univariate streamflow, where
the modeling processes considers only historical datasets.
Several researchers have used the wavelet analysis principle
to explore the association and coherency between streamflow
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and climate given constantly changing climatic conditions.
Ghaderpour et al. [31] conducted a study to understand the
interaction between climatic factors and streamflow. Their
research focused on uncovering trends and patterns that
might not be evident in conventional temporal or frequency
domain analysis. This approach is valuable for identifying
the cyclic or periodic patterns that influence streamflow,
especially over extended periods. Moreover, the coherency
established through this approach aids in comprehending
when and to what extent climate variables and streamflow
are correlated. Notably, in this research, the analysis of
time lags can reveal changes in precipitation precede or
follow changes in streamflow. Such information is crucial for
understanding cause-and-effect relationships and improving
forecasting accuracy.

In streamflow forecasting, WT machine learning applica-
tions have demonstrated significant success. Chong et al. [32]
presented an application that involved the aggregation of
decomposed wavelets to reconstruct the streamflow series,
resulting in performance superior to that of conventional
machine learning. Wu and Wang [33] used an LSTM
model rather than a CNN in research following these same
principles. In this context, deep learning may sometimes be
viewed as superior to machine learning due to its ability to
execute complex tasks. However, such an assumption should
not bemade by default. Indeed, onewell-known problemwith
deep learning is its propensity to overfit the training data,
especially for a relatively simple dataset, since deep learning
automatically learns a massive number of parameters when
constructing the model [34]. However, machine learning,
such as by an ANN, tends to underfit a complicated dataset
according to a set architectural form, thus suffering from a
flaw complementary to that from which deep learning can
suffer [35]. However, several studies have shown that deep
learning can outperform other methods for handling time
series problems when the spatial and temporal variations
are critical [36], [37]. This question of methodological
superiority has remained overlooked in prior WT research
since deep learning is typically seen as inherently superior to
machine learning. However, this question could be effectively
and meaningfully tackled by raising it in the context of a set
of streamflow impacts that includes simple one and spatially
and temporally variable ones.

Recognizing that spatially and temporally variable stream-
flows add complexity to the modeling process, previous
research has demonstrated that the most extensively used
deep learning algorithms, such as LSTM and CNN, can
account for spatial and temporal streamflow variability. For
instance, Hussain et al. [38] investigated the deep learn-
ing technique, specifically a 1D-CNN, for one-step-ahead
streamflow forecasting, where the streamflow time series is
convoluted with a 1D- CNN kernel. Van et al. [39] adopted
the multiple time series approach, consisting of several
rainfall stations’ data when utilizing CNN in hydrological
forecasting to exploit the correlation structure among the
time series. Furthermore, hybridizing 1D-CNN with another

deep learning algorithm, such as LSTM and GRU, may
provide a better solution. In the hybrid approach outlined
above, CNN processes and sends the information to LSTM.
However, under a CNN, the convoluted region of input data
frequently overlaps at grid sizes smaller than the original
grid size as the CNN traverses the whole domain of inputs
to find a better feature extraction procedure. This point is
crucial in signal processing and classification applications.
Overlapping across the entire input domain, however, might
cause a significant obstacle in time series forecasting:
data leakage. Previous research has thus concentrated on
the spatial and temporal effects of streamflow forecasting
rather than the practical relevance of time series forecasting
procedures.

Approaches previously employed in real-time applications
have typically produced only a single prediction due to the
lack of time to perform numerous model runs. However,
such approaches are coming to be seen as less satisfactory,
since numerous model runs are necessary to account for
the variability of the forecasting outcomes, given the
uncertainty surrounding the future in real-time applications.
Technical issues frequently undermine the credibility of such
approaches, and the absence of adequate calibration makes
it impossible to specify effective mitigation solutions [40],
[41]. Overestimating the technical limitation may result
in over-engineered design features, while underestimating
it may increase the probability of model failure [42].
Measuring the output behavior of a mathematical model is
essentially focused on computing statistical values such as
mean, variance, and distribution quantiles [43], [44]. These
statistical qualities are often quantified along with a set
of confidence levels, which give a more robust uncertainty
assessment [45], [46]. Modeling the aleatoric and epistemic
variation also generally helps in assessing the variation
among model outcomes [47].
One computationally relatively simple approach, known as

Monte Carlo analysis, conveys prediction variations in the
form of a probabilistic result [48]. An alternative approach
to Monte Carlo analysis is the ensemble prediction approach.
Ensemble predictions are collections of a limited number of
diverse models, offering greater variety than single-model
prediction. For example, Sharma et al. [8] incorporated
two separate models: a weather forecasting model and a
simulation hydrology model. This integration resulted in
an ensemble forecasting typically performing better with
medium-range time-frames than with shorter lead periods.
The ensemble technique is not limited to stacking only mod-
els that serve different functions. For instance, Lu et al. [49]
adopted a stacking ensemble strategy for predicting daily
streamflow in the Qiantang River Basin and demonstrated
that the final ensembled forecasting model outperformed
each of its constituent models, including random forest (RF),
adaptive boosting (AdaBoost), and extreme gradient boosting
(XGB), each trained individually on the same set of data.
Without questioning the probabilistic approach in general,
these authors could argue that single-model predictions were
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FIGURE 1. Location of Johor river basin.

either relatively accurate or relatively inaccurate. Their means
or some other means of elucidating the variability among
predictions is crucial.

III. CONTRIBUTIONS OF THE PRESENT STUDY
The paper emphasizes the following research questions, given
the progress made in previous studies: 1) How different
is a deep learning algorithm from a conventional machine
learning algorithm in handling a set of sub-series that result
from WT decomposition? 2) What forecasting advantages
do developing machine learning regression processes have,
especially when considering aleatoric and epistemic vari-
ables?

The primary objective of the present research is to
address significant gaps in streamflow forecasting through
the application of artificial neural networks and deep learning
convolutional neural networks. The research is aimed at
addressing the following main issues.

- To investigate the robustness and adaptability of AI
modeling streamflow forecasting under varying time
series complexity, providing insight into the models’
applicability and limitations.

- To address the practical water resources management
challenges associated with streamflow forecasting,
namely the temporal constraints imposed by deep
learning CNN.

- To address the aleatoric and epistemic variables
within AI modeling streamflow forecasting to improve
forecasting reliability using a Bayesian neural network,
in which quantification is achieved through confidence
interval estimation using the bootstrap method.

IV. METHODOLOGY
A. CASE STUDY
As illustrated in Fig. 1, Johor is a coastal state on the east
coast of Peninsular Malaysia, near the border with Singapore.
It boasts a 400-kilometer coastline that includes both the east
and west coasts and is recognized for its tropical rainforest

climate, with the South China Sea monsoon season lasting
from November to February each year. The average annual
rainfall is 1,788 mm, and the mean annual relative humidity
is 84%. Temperatures typically range between 21◦C and
32◦C, with a mean annual temperature of 26.7 ◦C. The Johor
River, the principal river of Johor, has an approximate length
of 130 km and a catchment area of 2,600 km2. Table 1
shows the average, minimum, and maximum annual Johor
River streamflows recorded over the 1977–2005 period. Its
principal tributaries include the Sayong, Lebam, Linggui,
and Tiram Rivers. Malaysia’s Department of Irrigation and
Drainage provided the streamflow data for this 28-year study.

TABLE 1. Monthly Streamflow raw data: Maximum, mean, and
minimum (m3/s).

B. MACHINE LEARNING APPROACHES
In our study of streamflow forecasting, we used an MLP
neural network, a traditional ANN architecture. Traditionally,
the choice of MLP is foundational for benchmarking against
more advanced models. Additionally, we explored the use of
a CNN, which is a state-of-the-art ANN variant tailored for
image recognition tasks. Here, we specifically designed it for
the analysis of spatial data. This traditional CNN model was
used with the aim of capturing spatial patterns in streamflow
data.

1) DATA COMPONENT
The main goal was to build a streamflow forecasting model
that accurately reflects the complex link between a collection
of input variables and the related streamflow values. These
input properties xp ∈ RI include a variety of potentially
significant factors such as rainfall, temperature, and humidity,
that collectively impact streamflow dynamics. Streamflow
values xp ∈ Rk indicate the outcomes of interest, representing
the volume of water flow in a river or stream per time
step. Through the mapping of input characteristics and
streamflow values, the model attempts to uncover patterns
and correlations in past data comprising both input attributes
and streamflow values, allowing projections of future or
alternative streamflow outcomes. The process of neural
network approximation has the goal of approximating the
underlying mapping F : xp → tp using a neural network.
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The activation function φ and weight parameter w are
interconnected throughout the layers of the neural network
architecture. The predicted streamflow Y(xp,w), which
emerges through a sequence of weighted transformations and
activation, is determined by the output layer of the network.
Mathematically, we can symbolize the predicted streamflow
Y(xp,w) as

Y(xp,w) = φL[wL × φL−1(wL−1 × . . . φ1(w1 × zp))], (1)

where L signifies the number of layers in the neural network.
The input feature vector zp undergoes a series of operations
(additive and multiplicative) involving weight matrices wL
and activation functions φ to yield the final streamflow value
prediction. The activation function φ of each layer transforms
the operation’s outcome from the previous layer, progres-
sively mapping the initial input features to the ultimate output
through a series of weight parameters {w1,w2, . . .wL}.

Due to the complexity of natural systems such as
streamflow, attaining a flawless alignment between F :xp→tp
andY(xp,w) is often unattainable.We considered a Euclidean
norm as a way to quantify and address the discrepancies
between our predictions and the actual values. This norm
serves as a measure of the distance between two vectors:
the predicted streamflow value Y(xp,w) and the actual
target streamflow value tp for a given data component. The
difference between these vectors is given as Y(xp,w) − tp,
which represents the prediction error associated with that
single data component.

A loss function was introduced to quantify the discrepancy
between expected outputs and actual targets. This function
directs the network to modify its settings to reduce this
discrepancy, increasing predictive accuracy. The loss is
frequently determined using the sum of squared errors (SSE),
obtained by adding all the patterns. However, comparing
SSE values across simulations of various sizes might lead to
inaccurate conclusions. Among the array of widely favored
loss functions, notable candidates include the mean squared
error (MSE) loss, cross-entropy loss [50], hinge loss [51],
Kullback–Leibler loss [52], and Huber loss [53]. Selection
among these loss functions hinges on whether the neural
network serves a classification role or takes on a regression
task. A comprehensive review of the loss functions in
machine learning can be found in Wang et al. [54].
TheMSE cost function was adopted to evaluate streamflow

forecasting performance. The model offers an in-depth
representation of the overall prediction error by adding the
squared values of these errors across all data components
in the historical streamflow datasets D. This summation,∑D

d=1 [Y(xp,w)−tp]
2, summarizes the collective disparity

between predictions and actual values across the entire set
of datasets. By iteratively updating the weight parameters
of network w through the optimization process, the model
converges toward minimization of this prediction error across
all data components D. This iterative adjustment process
enables the neural network to progressively enhance its
predictive capabilities and model the complex relationship

between input features and streamflow values with increasing
accuracy.

These criteria are relevant in that the lower the values of
these criteria, the more accurate the anticipated outcome.
The minimal value for these criteria is 0, indicating flawless
prediction (no difference between predicted and actual
values). However, the result (always a positive value) depends
on the scale of the numbers utilized. For example, an RMSE
of 0.7 is modest for data that range from 0 to 1,000. However,
when the data range is reduced to 0 to 1, the same RMSE
of 0.7 is no longer considered small; it assumes a more
substantial proportion relative to the data range.

2) DATA COLLECTION AND PREPROCESSING
Data preparation is considered a pivotal phase within the
ML process. Often, raw data sourced from diverse channels
harbors anomalies, outliers, missing values, or noise that can
potentially impact the efficacy of the predictive models [55].
The core of data preparation consists of a series of procedures
intended to clean up, transform, and organize the data into
a format that complies with model training specifications,
thereby alleviating these concerns. These procedures include
addressing missing values through approaches such as inter-
polation or imputation, identifying and managing outliers
to avert their distortion of outcomes, ensuring consistent
impact by scaling input features, and transforming categorical
variables into numerical representations utilizing methods
such as one-hot encoding. Additionally, the aggregation of
data into specific time intervals holds key importance for
discerning temporal relationships.

3) SCALING AND TRANSFORMATION AND PERFORMANCE
CRITERION
As a necessary part of data preparation for machine learning,
scaling emerges as a fundamental facet, requiring the intricate
task of aligning input values with the dynamic range of the
chosen activation function, that is, the range over which the
activation function exhibits heightened sensitivity to variation
in computing the information, particularly in the hidden
layer. Employing this approach prevents scenarios in which
the activation function operates within dormant domains,
thereby potentially impeding meaningful adjustments to
minor weight factors.

Within the extensive toolkit of scaling and transformation
techniques, a suite of strategies exists to normalize those
values within datasets that might introduce difficult com-
plexities. These complexities could stem from a lack of
meaningful minimum andmaximum values or the amalgama-
tion of disparate measurement units. Notably, when dealing
with bounded activation functions, there is an imperative to
scale target values for each data point. This adaptive step
enables the seamless integration of target values into an active
range. A commonly used linear scaling function is

xs =
xu − xu,min

xu,max − xu,min
×

(
xs,max − xs,min

)
+ xs,min, (2)
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where xu represents the unscaled value, xs signifies the scaled
value, and xu,max and xu,min correspond to the maximum and
minimum values of the unscaled range, respectively. xs,min
and xs,max denote the minimum and maximum values of the
scaled range.

There are numerous crucial reasons why RMSE is among
the primary measures used in statistical analysis. It is
commonly used in streamflow forecasting, ensuring the
comparability and understanding of results within the frame-
work of hydrology. RMSE returns findings in the original
data units; this behavior boosts interpretability, which is
crucial in streamflow forecasting, since flow magnitude
truly matters. RMSE’s ability to measure prediction errors
is critical for practical applications such as water resource
management and flood control. RMSE provides for objective
model comparison, assisting in selecting the best-suited
model. Its application adheres to accepted hydrological
principles, allowing for straightforward communication and
result comparison with other hydrological specialists. RMSE,
mathematically represented as the square root of the average
of squared differences between observed and predicted
values, is calculated as

RMSE =

√
1
n

∑n

i=1
(Yi − Ŷi)

2
, (3)

where n is the total number of data points, Yi represents
the observed (actual) values, and Ŷi represents the predicted
values.

4) FORMULATION OF INPUT DATA USING WAVELET
TRANSFORM
The wavelet transform is a time-frequency–localized analysis
that extracts information from the hydrological parameters
in the form of time series through stretching and shifting
processes. The wavelet transform works on a simple princi-
ple: it objectively decomposes the hydrological parameters
into a new hierarchy that is easier to define and forecast.
We employed the discrete wavelet transform in this study,
represented as

9m,n

(
t − r
s

)
= s

−
m
2

0 9

(
t − nr0sm0

sm0

)
(4)

where m represents the dilated parameter, n represents the
translation parameter, s0 represents the dilation step (> 1),
and r0 represents the position parameter. The dilation term
sm0 in the preceding equation governs the dilation process in
the complex parameter nr0sm0 .

5) MODEL ARCHITECTURE
a: ARTIFICIAL NEURAL NETWORK (ANN)
An ANN is a parametric model with a collection of
parameters, such as weights and biases, that are trainable.
It has several hyperparameters that need tuning, such as
learning rate and hidden layer size. At its last layer, it contains
only a fully connected layer, in which each neuron is
connected to all other neurons, as shown in Fig. 2.

FIGURE 2. Schematic diagram of standard artificial neural network.

FIGURE 3. Schematic diagram of convolutional neural network.

b: CONVOLUTIONAL NEURAL NETWORK FORECASTING
MODEL
While a CNN is a neural network model developed for work-
ing with a two-dimensional image dataset, it can work with
one-dimensional or three-dimensional data. The fundamental
building components of a CNN are its convolutional layers,
which serve as the core building blocks of the networks. In the
convolutional layer, the hydrological parameters convoluted
with the kernel filter, resulting in a feature map. Fig. 3
depicts the model architecture and structure of the forecasting
method. The CNN network layer and the fully connected
layer comprise the core of the architecture (dense layer).

c: BAYESIAN PROBABILISTIC MODEL
An uncertainty estimation method is necessary to address the
questions raised in this study. In this study, the uncertainty of
each parameter was assessed using the Bayesian approach.
Bayes’ rule describes the probability of an event (hypothesis
or degree of belief) based on prior knowledge (evidence).
Generally, the theorem can be expressed as

Posterior P (H |E) =
Prior P (H) × likelihood P(E|H )

Evidence P (E)
,

(5)

where H is the hypothesis whose probability may be affected
by evidence E (data), P(H |E) is the posterior predictive
distribution, P (E) is the marginal likelihood, and P(H ) is
the prior probability. In Bayesian inference, the likelihood
function plays a pivotal role. This function contains all
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FIGURE 4. Framework for a) standard neural network and b) probabilistic
neural network.

of the information needed to evaluate statistical evidence.
In hydrology, the likelihood function is frequently built-
in based on the assumption that any residual errors are
independent and follow a Gaussian distribution. Fig. 4
presents the probabilistic framework used to predict system
performance, along with relevant uncertainties.

Probabilistic models p(t|x,w) can be used to address
supervised learning problems and model the relationship
between the input and output, as represented by Z(t, x),
making predictions based on probabilistic reasoning. Here the
terms x and t are the input series and the desired output value,
respectively, in supervised learning networks. With reference
to Bayes’ theorem above, the problem can be formulated as

Posterior P (w |Z ) =
PriorP (w) × likelihood P(Z |w)

Evidence P (Z )
.

(6)

This probabilistic model can provide a distribution for future
data that are likely to occur, known as a predictive posterior
distribution (PPD). The PPD incorporates the uncertainty
associated with the parameterw. In essence, the PPD of future
observations is calculated based on current data by adding the
distribution of y over w to the posterior distribution of w over
x.

PPD(t, x) =

∫
P (t |w)P (w | x) dw (7)

Another analytical approximation of posterior distribution
is through variational inference, where a variation distribu-
tion, denoted as Q(w|θ), is established to make statistical
inferences about the true posterior distribution. A smaller
Kullback–Leibler divergence indicates a higher likelihood
that the two distributions are similar. The discrepancy
between the approximation and actual value can thus be
reduced by measuring and then iteratively minimizing the
Kullback–Leibler divergence, as follows:

KL (Q |P) = Q (x) log
Q
P

(8)

A confidence interval (CI) characterizes the degree of
certainty in the forecasted value. There aremany strategies for
constructing the CI, offering various choices. Several studies
have reviewed CI techniques [56]. The bootstrap methods,
such as the approximate bootstrap, percentile-t method, bias-
corrected percentile method, and accelerated bias-corrected
percentile method, can be employed in many applications and
fields.

The percentile-t method or bootstrap-t method can be
adopted to estimate the hydrological parameters quantile
as suggested by [57] and [58]. An intriguing study by
Ghiasi et al. [59] involved the resampling technique; they
adopted a modified bootstrap-t method developed from [60]
for uncertainty quantification. They employed the modified
bootstrap method for resampling distinct training patterns
to ensure that the selected training patterns accurately
reflected the statistical characteristics of the dataset used
in the study. This approach targets mitigation of potential
limitations associated with conventional bootstrap techniques
when dealing with rare instances. However, to align with
the objective of this research, we utilized resampling for CI
estimation to thoroughly examine the range of possible results
and the level of confidence associated with these outcomes.
This procedure necessitated accounting for both aleatoric and
epistemic variability in our streamflow forecasting models.

To refer to the percentiles, the data collected were used
to estimate the sampling distribution, which in turn yields
the CI [61]. Based on the forecast distribution of the series,
the confidence interval was formed using the quantiles of the
forecast distribution. In this case, we computed the CI at a
statistical significance level of 5%.

CI = forecast + (tcritical−value) × (σerror) (9)

V. RESULTS AND DISCUSSION
A. MODEL VALIDATION
Statistical and machine learning techniques assume that
the individual observations in a dataset are independent
and identically distributed (i.i.d.). However, this assumption
does not hold in the case of streamflow data, as individual
observations are not statistically independent; instead, they
depend on previous observations [62]. For example, the flow
of a river today is influenced by the flow in the preceding
days or weeks due to factors such as rainfall, snowmelt, and
watershed characteristics. Streamflow data exhibit significant
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autocorrelation, requiring correlation of observed values in a
streamflow time series with their corresponding past values.
This autocorrelation arises from the continuity and flow
dynamics of water in rivers.

To apply cross-validation to time series forecasting,
certain modifications are made to better adapt the method
to sequential data, one of which is the blocked cross-
validation (Bl-CV) strategy [63]. Bl-CV shares similarities
with the standard k-fold strategy but differs in that it does
not involve a random shuffling of the dataset. Instead,
it partitions the data into k subsets of a specific length,
creating k consecutive blocks of data observations. Bl-CV
maintains the temporal integrity of data within each block
of observations, which is critical for streamflow data, since
it preserves the temporal order of observations within each
block.

However, asmentioned in the study byCerqueira et al. [64],
Bl-CV is most suitable for a time series that is short and
stationary. Streamflow forecasting often encounters short-
time series data, particularly in regions with limited historical
streamflow records. The stationarity of streamflow may vary
depending on the interval of analysis. However, over extended
periods (e.g., monthly or yearly), extreme events, such as
floods and climate change, disrupt the typical streamflow
pattern, resulting in nonstationary data.

Therefore, the hold-out method was adopted, acknowledg-
ing the temporal nature of time series data. This method
involves dividing the data into two sets: a training set, which
contains historical observations up to a specific point in time,
and a validation set, consisting of data points from beyond the
training period.

B. ACCOUNTING FOR TEMPORAL VARIABILITY OF
STREAMFLOW
Despite the effectiveness of CNNs in the context of two-
dimensional images, a modified CNN was developed and
utilized to address the real-world optimization problem
adopted in this research study. As a CNN requires working
with two-dimensional datasets, the boundary to which CNN
extracts the information would be an (N×M) dimension,
where N is the width and M the length of each image. The
overlays of (N×M) dimension are essential in processing
an image by reducing the original size of the image to
a form that is easier to process toward a good prediction
without losing features. However, this extraction process
may disrupt the order in which the model receives the
input. Such a disruption is problematic, as the chronological
sequence of the time series data is crucial. The proposed
CNNwas designed to retain temporality while not unraveling
the sequence in which the input is fed into the model: the
prediction p(xk+1:xk, xk−1, . . .xk−n) omits any future time
steps, such as xk+1, xk+2, . . .xk+T. The proposed framework
thus does not reduce the number of features of (N×M)
dimension, so the reception field would still provide the same
coverage (Fig. 5).

FIGURE 5. Proposed framework of receiving the inputs per time step.

C. SIGNIFICANCE OF WAVELET TRANSFORM IN AI MODEL
UTILITY THROUGHOUT THE FORECASTING PHASE
To verify the proposed time series framework, the developed
CNN was verified, along with ANN, on a univariate time
series dataset, that is, a sequence of observations in temporal
order. This developed CNN needed this dataset as a model
to learn from in order to anticipate future values. Accurate
prediction involves accurate monitoring of the timing and
magnitude of streamflow in sustaining the water supply
system and reducing the risk of flood. Timing errors of
the models are a common problem in neural network
rainfall-runoff models. For comparison, naive prediction is a
prediction methods involving random and seasonal random
walks wherein all forecasts are based solely on the value
of the last observation. The lagging effect issue may occur
because naive methods do not incorporate sophisticated
models or account for dynamic changes in the underlying
data. This issue are not limited to the present research,
as indicated in Fig. 6, but have also been observed in previous
published research. As seen in Fig. 6, the predicted results
from CNN and ANN methodologies appear to lag behind the
actual data; such lag in the results is a common issue when
using lagged variables (historical data) as input features.

For example, Snieder et al. [65] provided a demonstration
that lagging effect often occur when dealing with streamflow
data characterized by high seasonality. The lagging effects
are evident in cases in which predictions resemble naive
forecasts, as observed for the Bow River (high seasonality)
but not for the Don River (no significant seasonality). Rivers
in Malaysia also exhibit high seasonality, primarily due to
the influence of the monsoon, making such timing errors
a likely outcome for Malaysian data. Similarly, Mehr and
Kahya [66] observed that univariate streamflow forecasting
using machine learning often leads to low quantitative effi-
ciency, primarily because of delayed predictions. Univariate
models may also have restricted predictive power when
compared to multivariate models. They might not be suitable
for long forecast horizons or scenarios where a compre-
hensive understanding of the system, considering multiple
variables simultaneously, is essential [67]. In contrast,
Shu et al. [68] reported that the machine learning algorithms
utilized, including CNNs and ANNs, were less affected,
by timing errors despite their lack of data preprocessing,
which contrasts with findings reported by other studies. This
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FIGURE 6. Forecasting results using a) an artificial neural network (ANN)
and b) a convolutional neural network (CNN).

divergence in findings highlights differing perspectives on the
effectiveness of data preprocessing methods.

Further discussion is necessary regarding the shortcomings
illustrated in Fig. 6, including overestimating low flows and
underestimating high flows. These discrepancies, in part, can
be attributed to timing errors, which encompass disparities
between projected and actual flow timings. Timing inaccu-
racy significantly impacts forecast accuracy by altering the
timing of flow events. Streamflow forecasting necessarily
involves temporal dependence, in which past states influence
the current state of streamflow. Markov chains are one
method for representing this temporal dependency [69].
Markov chains predict the possibility of shifting from one
flow state to another in the future based on previous
observations. This modeling method gives additional weight
to recent lagged variables for estimating future streamflow,
highlighting the impact of current states on the prediction.
It is essential to note that while Markov chains can be a
valuable tool in specific streamflow forecasting scenarios,
they represent just one of several modeling methodologies.
The choice of forecasting approach depends on the unique
characteristics of the data and the research objectives, with
more advanced models and machine learning techniques also
being employed.

In this research, based on the ML approaches, the RMSE
value for a hybrid wavelet–ANN (WA) model (119.25) was
significantly smaller than for a corresponding ANN model

without WT (126.88). This result highlights the substantial
potential of wavelet-aided hydrological prediction.

The lagging problem, as demonstrated in Fig. 6, shows
the critical importance of data preparation in developing
effective data-driven models with accurate representative
data collection. The quality of data significantly influences
the robustness of neural network models. In this context,
WA models play a pivotal role by employing data sub-series
acquired through multi-resolution analysis as input data.
This approach, as illustrated in Figs. 7 and 8, demonstrates
how incorporating wavelet components resolves the lagging
problem associated with lagged variables used as input
features. Notably, the WT used in this research divides
the original signal into multiple resolution levels (scales),
resulting in low-frequency approximation components (A)
and high-frequency detail components (DW). These char-
acteristics empower the models to effectively capture less
complex data series, even when dealing with considerably
nonlinear datasets. Ultimately, the forecasted streamflow is
derived by summing all the decomposed wavelets, providing
a comprehensive robust solution for addressing the lagging
problem.

It is also essential here to consider the distinction between
stationary and nonstationary time series data. Stationarity
is a critical factor in data analysis. Stationary time series
maintain consistent statistical properties over time, while
nonstationary time series can exhibit changing means,
variances, or other statistical characteristics, posing more
challenges for accurate prediction and modeling. Achieving
data stationarity is one of the crucial ways for obtaining
reliable insights and consistent forecasting results. This WT
transformation allows for the computation of meaningful
sample statistics of data in improving the predictiveness of
the model

While WT certainly helps, a perspective drawn from the
study of Ghaderpour et al. [70], who also demonstrated the
utility of machine learning in monthly hydrological (pre-
cipitation) forecasting, highlights the challenge of detecting
abrupt change. This observation, prompts a consideration of
the limitation of the current WT implementation. Our study
employed different machine learning techniques but has sim-
ilar findings, where the abrupt changes of streamflow were
not captured completely, the main divergence being in the
performance criteria used. They emphasized the importance
of exploring alternative data sources, such as for temperature,
soil moisture, and wind, which may have direct or indirect
causal relationships with streamflow. Historical streamflow
data may not accurately capture extreme weather events,
such as heat waves, heavy rainfall, or prolonged droughts,
which can swiftly and substantially impact streamflow.
Temperature and wind data can provide early warnings of
such occurrences. Utilizing a diverse set of input variables can
also enhance the performance of machine learning and data-
driven algorithms. The inclusion of temperature and wind
data as predictors alongside historical streamflow data can
enhance the predictive capabilities of these models.
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FIGURE 7. Wavelet decomposition series for ANN: individual components (a) DW1, (b) DW2, (c) DW3, (d) DW4, (e) DW5, (f) A5, and (g) original
resulting from wavelet analysis.

D. CNN ARCHITECTURAL INFLUENCE
The filter in CNN has a role similar to that of the neurons
in ANN, as an N×M filter contains N×M neurons, which

perform convolution on the input to form a feature map
(output). The full factorial design used in the current study
allows the effects of one component to be evaluated at several
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FIGURE 8. Wavelet decomposition series for CNN: individual components (a) DW1, (b) DW2, (c) DW3, (d) DW4, (e) DW5, (f) A5, and (g) original resulting
from wavelet analysis.

levels of the other factors, resulting in a wide variety of
experimental settings. An alternative method, the Taguchi

technique [71], is based on orthogonal arrays and defines
how to carry out the smallest number of tests necessary to

10876 VOLUME 12, 2024



Y. Wei et al.: Comparative Analysis of AI Methods for Streamflow Forecasting

FIGURE 9. Main-effect plots of the decomposed wavelets for the convolutional neural network (CNN) model: (a) DW1, (b) DW2, (c) DW3, (d) DW4,
(e) DW5, and (f) A5.

offer comprehensive information for all factors impacting the
output parameter. The reason for using a full factorial design
rather than the Taguchi method is the higher accuracy of
the full factorial array, although the cost of the experiment
(including the time to run the experiment) is admittedly
higher. On the other hand, the Taguchi method was adopted
for ANN, since the computational cost of running each
parameter ten times was unsustainably high. The letters A–E
are used to denote the components for simplicity. The set
of weight values for the four hidden layers in ANN was
(20,15,10,5), whereas the set of weight values for the first
four hidden layers in CNN was (128,64,32,16), and the last
layer of CNN is (20,15,10,5). Main effects plots were used to
examine variations around means for each factor level. The

main effect graphs for the decomposed wavelets are shown
in Fig. 9.

1) PERFORMANCE IMPACT OF PARAMETERS
Analysis of variance (ANOVA) was used to examine the
influence of the number of CNN filters on the performance of
streamflowmodel predictions. ANOVA is a reliable approach
for extracting useful information from data and is among
the most powerful statistical tests [72]. Table 2 presents the
ANOVA results for each parameter of the neural network.
Each p-value below 0.05 indicates a statistically significant
impact of that parameter on the performance metric.

A graphical examination of Pareto charts may also be used
to visually assess the amount and relevance of the impact of
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TABLE 2. Analysis of variance (ANOVA) of convolutional neural network
parameters.

each parameter (Fig. 10). The bars representing components
D, E, DE, and BC, for example, cross the red reference line in

TABLE 2. (Continued.) Analysis of variance (ANOVA) of convolutional
neural network parameters.

the Pareto graph for decomposed wavelet A5, indicating that
these components are statistically significant. These factors
exhibit statistical significance at a p < 0.05 level.
In addition, some of the interactions among parameters

are significant, as indicated in Table 2. For example, when
forecasting the dw1 component, the magnitudes of the effect
estimates show that A is by far the most dominant factor.
D plays the next most critical role, followed by C. Fig. 8
also shows the effects of interactions between the parameters
on model performance. Although parameters such as B and
E do not play important roles individually, their interactions
with the other parameters can obscure the main effects.
The weights of these intermediate layers are interconnected,
meaning that altering one initial layer affects subsequent
layers in the series. Hence, selecting the best hyperparameters
setting based solely on the main-effect plot for streamflow
forecasting is not advisable. In this study, the best set of
factors was determined from the designs that provided the
lowest average RMSE (the full factorial design) and the best
setting, as shown in Table 3.

2) STATISTICAL EVALUATION: CNN VS. ANN
A comparison between ANN and CNN was made to test
the effectiveness of deep learning in streamflow predic-
tion. Table 4 complements the information provided in
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FIGURE 10. Pareto charts for the effects of each of the decomposed wavelets: (a) dw1, (b) dw2, (c) dw3, (d) dw4, (e) dw5, and (f) A5.

Figs. 7 and 8. According to Table 4, the acquired data indicate
that ANN was more stochastic than CNN, the outcomes
fluctuating from run to run. Although both strategies perform
well in forecasting streamflow time series, each offers
distinct advantages. Because of its unique feature extraction
capabilities, CNN may offer good processing efficiency
and solutions that are closer to globally optimal. While
CNN offers efficient global solutions, ANN prioritizes
precision over stability. For the more sophisticated tasks,
CNN may outperform ANN. For example, CNN may give
better results than ANN for predicting the highest-frequency
component (dw1); meanwhile, ANN readily predicts the
lowest-frequency component (A5), outperforming CNN.
CNN exhibits large numbers of extraction features, causing
overfitting of low-frequency components such as A5.

It is worth noting that for real-time forecasting, CNN
can be a better for determining reservoir operating rules
than ANN, given the stochasticity of the ANN process.
When employing a predictive neural network model in
real-time, updating is required owing to fluctuations in the
predictions, which may be influenced by dynamic real-world
changes rather than being merely a statistical technicality.
Because the underlying state of the problem may have
changed, the impact of retraining a model with new data
may cause predictiveness to decrease. As a result, when
deploying the model in real-time, it becomes essential to
determine whether new input patterns resemble the historical
data used to calibrate the model. Given the lengthy time
necessary to train the new model, the CNN model is to be
preferred.
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FIGURE 11. Aleatoric uncertainty analysis of the time series.

E. ADDRESSING VARIABILITY IN THE PREDICTION
PROCESS
To cope with aleatory and epistemic variability, probabilistic
approaches are crucial for producing useful predictions.
In this investigation, the Bayes’ theorem approach was
used to predict variability. The negative log-likelihood term,
a cost function that measures how well or poorly the model
performs, with lower values indicating higher performance,
was used to calculate the loss for each machine learning
model. By minimizing the negative log-likelihood, the cost
function achieves maximization, which deviates from the
conventional minimization. This unique optimization is
enabled by representing the data as a probability distribution,
thus facilitating the estimation of the probability of selecting
the correct label. Using a popular alternative approach, a CI
may also be used to assess the variability in the forecast.
A wide confidence interval implies poor forecast accuracy
and vice versa. In this way, the prediction intervals may be

used to assess the amount of variability in the projections.
Unlike conventional prediction, which anticipates solely
point-by-point values, probabilistic prediction forecasting
contains variability information.

1) PREDICTIVE VARIABILITY OWING TO ALEATORIC AND
EPISTEMIC VARIABLES
The forecasting procedure grows more sophisticated with
increasing variability of the time series. Aleatoric variability
is a type of variability that indicates the underlying hetero-
geneity of the parameters. The mean and standard deviation
of the series are required to produce the aleatoric prediction.
According to Fig. 11, the red and black lines show the actual
and anticipated mean of the streamflow values, respectively,
while the shaded region reflects the output variability. The
existence of the mean and standard deviation of the series in
this form might convey information about the overall trend
and variability of the series.
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FIGURE 12. Epistemic uncertainty analysis of the time series.

TABLE 3. Numbers of filters in convolutional neural network (CNN) and
numbers of filters in artificial neural network (ANN).

Correspondingly, when modeling streamflow forecasting
variability, we encounter epistemic variability, resulting in a
broader range of outcomes, as shown in Fig. 12, that reflects

TABLE 4. Root-mean-square error (RMSE) for convolutional neural
network (CNN) and artificial neural network (ANN) in Streamflow
forecasting.

time series volatility.The epistemic variability for continuous
random variables is formed using multiple probability
density functions and employing the Flipout layers, such
as Convolution1DFlipout. This procedure samples from the
entire space of potential ensembles rather than separately
sampling each model in an ensemble.
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The expanded range of outcomes produced by the proba-
bilistic neural network model had significant implications for
the accuracy and reliability of streamflow predictions. This
finding indicates that the intrinsic variability of the time series
could not be adequately accounted for without a thorough
grasp of all impacting variables. Projections of individual
variables provided precision, but the integration of epistemic
variability introduced a layer of uncertainty, resulting in a
broader range of anticipated streamflow values. The results
were achieved by applying the Monte Carlo approximation
to forecast the overall mean across a finite number of trials.
The Monte Carlo approach enabled accurate portrayal of the
epistemic limits by directly accounting for uncertainty in the
modeling process.

Although the precise insights from the present research are
limited, future studies should prioritize reducing epistemic
variability. Such a reduction can be achieved through mea-
sures such as enhancing data collection and implementing
comprehensive environmental monitoring. While epistemic
variability broadens the range of expected outcomes, it also
opens up new avenues for study and innovation in the
field of streamflow forecasting. It is crucial to note that
this variability is not an artificial construct but rather an
accurate reflection of the inherent imprecision in the real-
world conditions, thereby necessitating adaptive approaches
in forecasting methodologies.

In theory, the addition of uncertainty knowledge makes
a Bayesian approach preferable to a deterministic one.
It provides a trustworthy approach for reaching a conclusion
when some prior knowledge is absent or foggy, eliminating
the need to estimate values for unknown features. Noise
cannot be included in any approach that is deterministic, since
noise is inherently non-deterministic. Accordingly, stochastic
approaches such as Bayesian methods should be employed to
address noise-contaminated signals rather than deterministic
methods.

VI. CONCLUSION AND RECOMMENDATIONS
This paper presents and analyzes the performance of a
strategy for streamflow time-series forecasting based onCNN
coupled with WT. A preliminary evaluation demonstrated
that forecasting streamflow series utilizing only lagged
variables resulted in the trailing of the expected outcome
behind the actual data. This finding validated the need for
WT. A comparative analysis was also performed to assess the
complicated interplay between spatially and temporally vary-
ing streamflow impacts and various complexity components
(decomposed wavelets). A deep learning CNN algorithm was
adopted and tested against ANN to investigate the potential of
CNN in hydrological forecasting. According to the findings,
CNN performed less stochastically than ANN due to its
ability to extract features, rendering CNN less susceptible
to changes in input, in particular spatial and temporal
variability. However, the simple structure exhibited by some
time series produced an overfitting issue for CNN. For
example, the forecasting of the highest-frequency component

(DW1) produced a better result using CNN than using
ANN. On the other hand, ANN easily predicted the lowest-
frequency component (A5) and outperformed CNN because
of overfitting by the large number of extraction features
under CNN.

A probabilistic neural network was then employed to
illustrate the difference in prediction produced by building
aleatoric and epistemic factors into artificial intelligence
models. This network made predictions the same way
as the previous non-Bayesian network, but it additionally
incorporated a parameter that measured the overall degree of
uncertainty. Since the uncertainty was caused by parameter
variability or by noise in the data, revealing the mean and
variance of the anticipated values increased the reliability
of the model, lowering the uncertainty inherent in the fore-
casting process. The Bayesian probabilistic neural network
offers various advantages over typical deterministic ANNs,
including the ability to forecast hydrological uncertainty.
Reasonable estimates of the forecast uncertainty of hydrolog-
ical simulations are required for decision-making in real-time
water resource management scenarios.

Recognizing changes in streamflow regimes is equally
crucial because these shifts can significantly impact the
accuracy and relevance of forecasting results. Regime
modifications might increase uncertainty when evaluating
water-associated risks; unexpected floods or droughts are
more likely when streamflow patterns change quickly than
forecasting models can fully account for. These unanticipated
occurrences may have detrimental effects on infrastructure
development and catastrophe preparedness, providing a
substantial challenge to overcome in hydrological forecast-
ing. At present, streamflow predictions from our Bayesian
approach are available only one day in advance. Subsequent
research on the proposed approach might go deeper into
developing confidence intervals for forecasting made more
than a day in advance by using different time intervals.
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