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ABSTRACT The central perspective of this review is to categorize research in Human Motion Recognition
(HMR) over the past decade into two significant categories: vision sensor-based (VS) methods and wearable
sensor-based (WS) methods. Within each category, research is further assessed from the viewpoints of
sensors, classification algorithms, datasets, gesture types, target body parts, and performance. This approach
allows for a comprehensive assessment of the overall research trends and technological advancements in
HMR. Both VS methods and WS methods present their own sets of advantages and challenges. VS methods
face challenges related to limited workspace, varying lighting conditions, occlusion, and complex image
processing. Conversely, WS methods, compared to VS methods, deals with challenges associated with
multiple sensor calibration, intrusiveness, and magnetic field mapping due to sensor placement. As such,
the choice between these methods depends on the specific application, the required level of accuracy, and
user preferences. Gaining insights into the nature of various HMR methods and staying informed about
recent research trends is of utmost importance. By the end of this review, readers will gain a comprehensive
and systematic understanding of the latest developments in HMR techniques, which will serve as a valuable
resource for researchers and practitioners alike.

INDEX TERMS Human gesture recognition, human motion recognition, human-robot interaction, wearable
sensor, vision sensor.

I. INTRODUCTION
With the widespread adoption of smart factories, the indus-
trial sector is increasing the intelligence and autonomy of
objects related to manufacturing, procurement, logistics, and
consumers and linking them organically through the Internet
of Things to accelerate the refinement of autonomous data
connection, collection, and analysis systems. This accelera-
tion of digitalization in manufacturing processes is inevitably
linked to expanding automation and enhancing operability
performance. Recently, the computing power of controllers
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has dramatically improved based on GPU technology, and
perception technologies based on sensors and deep learn-
ing are also continuously developing. However, the problem
of uncertainty in the control and recognition of industrial
robots must be addressed. Therefore, in cluttered circum-
stances where it is difficult to achieve complete automation
and in the case of challenging automation tasks that require
high operability and a wide range of work areas, there is
an increasing interest in human-robot interaction (HRI) or
human-robot collaboration (HRC) technology [1], [2], [3],
[4] where humans actively intervene as supervisors for the
robot’s tasks [5], [6], [7], [8]. Moreover, in the face of these
challenges, motion recognition technology plays a crucial
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role in enhancing the control and recognition of industrial
robots. HMR can be broadly categorized into two main cate-
gories: VS methods and WS methods. VS methods is further
subdivided into marker-based and markerless VS methods.

VS methods utilize camera video sequences to ana-
lyze human motion. This approach can be further divided
into marker-based and markerless methods. The first
marker-based method was Murray et al. [9] analyzed ‘‘Walk-
ing Patterns of Normal Men’’ in 1964 using a photographic
method based on a reflective marker, a kind of passive
marker. Later, in 1982, Tayler et al. [10] proposed an auto-
mated motion measurement system capable of detecting and
tracking passive markers illuminated by infrared LEDs to
reduce patient discomfort and distraction caused by wearing
a marker telemetry backpack system in clinical gait analysis.
Later, this marker-based method was mainly used in research
on human factors in the 1970s and 1980s and various fields
such as computer visualization, sport science, ergonomics,
and human-computer interaction using 3D motion capture
technology in the 1990s and 2000s. And the markerless
gesture recognition research using a vision sensor was first
used in human-computer interaction (HCI), which emerged
with the spread of personal computers in the late 1970s
and early 1980s. Hanson et al. [33] stated that web cam-
era interface-based gesture recognition and control research
began in the early 1990s to help disabled people. In addition,
Yamato [34]’s 1992 study on the proposal of a human behav-
ior recognition method using image-based data, and HMM is
the most famous paper as the origin of hand gesture recog-
nition research. The primary sensors of markerless motion
methods are camera-type vision sensors such as single cam
(RGB or depth), multi (RGB+depth) cam, Time of flight
(ToF) cam, and IR camera. Before 2010, research using a
single RGB web camera was the main focus, and sometimes
studies usingmultiple RGB and depth cameras were also con-
ducted. Bothmethods are used for motion capture and gesture
recognition, and their internal algorithms include marker
tracking, motion analysis, background subtraction, human
body segmentation, feature extraction, and classification.

WS methods use sensors attached to the body to collect
motion data. The initial study of gesture recognition research
using wearable sensors was a hand gesture recognition study
based on the data glove of Foley [93] in the mid-to-late
1980s. The data glove developed by VPL Research converts
the movement between the hand and the finger into an elec-
trical signal, and it is composed of optical fibers as long
as the length of the finger composed of LEDs and photo-
transistors, and light is output from the light emitting diode
when the finger is moved. The hand motion was recognized
by receiving it through the phototransistor. Based on this,
a method for a worker to interact with a computer in a virtual
environment was proposed. Later, in the early 1990s, along
with the development of a sensor called ‘‘Wearcomp’’ that
can recognize hand gestures based on HMD and camera
by Mann [94], based on this, hand gesture recognition and
control command conversion to the computer was carried

out. In addition, ‘‘Glove-Talk II’’ was conducted, a hand
gesture recognition study based on the data glove and neural
networks interface of Fels and Hinton [95]. As in the previous
cases, early gesture recognition studies based on wearable
sensors were limited to the hand. However, as time passed,
the gesture recognition range expanded to the whole body.
In addition, it was confirmed that the data-glove type of
sensor was mainly used, but it was expanded to various types,
such as IMU, sEMG, and Myo-armband, over time. The data
collected from these sensors is processed through various
algorithms, such as Kalman filters, SVM, and ANN.

This paper presents a comprehensive survey of the liter-
ature on HMR based HRI published in the last ten years.
Our survey focuses on the methods and techniques used in
the last decade and aims to provide an overview of the state-
of-the-art in this field. The paper is structured to provide
a comprehensive overview of the methods used for motion
recognition and their applications in HRI and highlight the
challenges and opportunities for future research in this area.

II. VISION SENSOR-BASED METHODS
The VS methods have two main approaches: marker-based
and markerless. Marker-based methods use reflective mark-
ers or other visual cues to track human movements, while
markerless methods rely on the human body’s and the envi-
ronment’s intrinsic features to estimate movements. These
two approaches to vision-based methods offer different
advantages and limitations, eachwith unique applications and
challenges. This review will explore the latest developments
and trends in VS methods and WS methods, including a
comprehensive examination of the different motion capture
and analysis techniques. To ensure that this review covers a
broad range of relevant studies and perspectives as well as the
latest advancements and practical considerations in the field,
the selection criteria for reference studies were set as follows:

1) Recent studies published within the last ten years
ensure relevant and up-to-date information.

2) Studies validated or tested through practical or
real-world applications have shown promising results.

3) Studies have considered the practicality and feasibility
of implementing the proposed HMR system in real-
world settings.

4) Studies have compared and evaluated approaches and
techniques in HMR for HRI or HCI.

A. MARKER-BASED METHODS
Table 1 presents the results of a survey of VS methods ges-
ture recognition research using marker in robotics, computer
science, human-computer interaction, and robot automation
between 2010 and 2021. The table contains number of
cameras, marker type, algorithm, gesture type, and perfor-
mance perspectives. Only papers that met the research criteria
were included, while those deemed inappropriate for the
study for reasons such as missing critical information such
as accuracy, algorithm, and research for simple movement
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measurement, not for recognizing and classifying move-
ments, were excluded.

Chardonnens et al. conducted a study [11] to automati-
cally measure the duration of the main phase of ski jumping
using a reflective marker and an IMU sensor. As such, the
marker-based method was developed to analyze the motion
by measuring the continuous dynamic motion of the entire
body of the subject and the purpose of generating 3D motion
and has been mainly used in sports science, computer graph-
ics, and computer visualization. The marker-based methods
in this review install multiple optical motion cameras within
a limited measurement range, attach markers to specific body
segments, and recognize gestures of body segments by uti-
lizing the trajectory tracking information of the markers.
Whether an optical sensor is used, markers are divided into
optical and non-optical markers. Among them, optical mark-
ers using an optical sensor are further classified into passive
and active markers according to whether or not the marker
emits light.

1) Active markers are electronic devices that emit a signal
or light that a motion capture system can detect. These
markers require a power source, such as a battery, and
their tracking capabilities can be very accurate. How-
ever, they are also more expensive than passive markers
and require more maintenance.

2) On the other hand, passive markers do not emit any
signal or light; instead, they reflect light to the motion
capture system. These markers are usually small,
reflective spheres attached to the body, and they are
less expensive and require less maintenance than active
markers. However, they may be less accurate than
active markers, especially with low lighting or interfer-
ence from other reflective surfaces.

It was confirmed that marker-based methods had a higher
proportion of dynamic gesture measurement research than
static gestures due to the purpose and characteristics of sensor
development. Of the 21 papers reviewed in this review, 14
(66.67%) ([12], [13], [14], [17], [20], [21], [22], [23], [25],
[28], [29], [30], [31], [32]) were studies related to dynamic
gestures. Eight studies (33.3%) ([15], [16], [18], [19]) were
conducted to recognize static gestures based on precise
position estimation technology for various still motions by
attaching many markers to specific body parts ([26], [27],
[29], [30]).

For performance evaluation, various performance indices
such as accuracy, F1 score, and error rate were used, as the
degree of improvement in accuracy compared to previous
studies, comparison of accuracy using various algorithms,
and normalization using independent data other than the data
used to create the learning model. It is not easy to use as an
objective evaluation index as it is evaluated by various criteria
depending on the research purpose, such as performance and
accuracy comparison in an indoor static research environment
and an actual dynamic environment.

1) PASSIVE MARKER-BASED STUDIES
Kulić et al. [12] used a reflective marker to recognize the
subject’s motion, analyzed and learned data on four types
of motion in real-time, and created motion data for IRT
humanoid control. Lee and Han [13] used eight motion cams
and 14 reflective markers to develop unmanned monitoring
technology to respond to safety problems at industrial sites
and performed motion recognition of the entire body. Among
the tasks, 22were detectedwith an accuracy of 88%, and three
were not detected due to environmental errors. Afterward,
performance evaluation [14] was conducted to see whether
the newly developed Kinect sensor could be used in ges-
ture recognition research. The previously measured optical
cam and marker-based subject motion data were used as
ground-truth data for performance comparison. According
to the results of these experiments, despite a position error
of about 10.7 cm and a joint rotation angle error of 16.2◦

compared to the actual data, the recognition accuracy was
88%. Gardner et al. [15] created five static hand posture
datasets for 12 subjects. They evaluated the performance by
classifying them into three conditions (Raw, Aggregate, and
Transformed): (1) Poor classification accuracy in the raw
dataset, (2) Satisfying classification accuracy in the aggre-
gate dataset, (3) Transformed dataset: The algorithm with
the best average performance (MLP_BER: 0.183±0.168) and
the algorithm with the best single performance (k-NN_BER:
0.158±0.152) were identified.

Li et al. [16] investigated sEMG sensor-based hand ges-
ture recognition methodology for 18 subjects, classified
13 different hand gestures using six sEMG sensors, and
classified dynamic features of fingers through 25 reflective
markers. The SVM algorithm was used for data learning
and classification, and an average classification accuracy of
98.45±0.83% was shown for 13 gestures. Chen et al. [17]
use DGCNN (dynamic graph CNN) to perform spatiotempo-
ral 3D event cloud recognition for gesture recognition. The
performance of DGCNN was compared with the pointNet
and pointNet++ algorithms used for recognizing the same
data set (IMB DVS 128 gesture, DHP 19). Performance
confirmed. Jiang et al. [18] proposed a new approach to
recognizing hand gestures by estimating skin stimuli with
multiple soft sensors, and the skin deformation pattern was
first measured. The gesture recognition accuracy for static
hand gestures and American sign language data (0 to 9)
was verified with various algorithms (LDA, K-NN, RF) to
verify the proposed method. Rahman et al. [19] presented
an analysis and comparison of classifiers’ efficiency when
determining hand gestures using motion capture marker
positions provided by Vicon cameras and a total of five
algorithms (SGD, DT, LR, B, RF) and analyzed by com-
paring the results. As a result of the comparison, it was
confirmed that the algorithm with the best performance
was RF, and the algorithm with the lowest performance
was DT.
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2) ACTIVE MARKER-BASED STUDIES
Active marker comprises a light source rather than a reflector,
and IRED (Infrared Ray Emitting Diode) is mainly used.
Each diode has a different emission frequency. Since the
camera is tuned to the frequency of the diode to be captured,
it can identify a specific marker, so it has the advantage
of reducing data post-processing time compared to passive
markers.

Obdržálek et al. [20] proposed a correction method using
a skeletal model based on the active marker’s location data
to overcome the skeletal model’s decrease in accuracy due to
the occlusion (occlusion) of the Kinect sensor. Although an
error in the case of limited movement, it was confirmed that
the joint estimation accuracy of the skeletal model was almost
similar to the motion capture result. Chen, Mingyu, et al. [21]
compares and analyzes the accuracy of the linear classifier
and the HMM algorithm for two types of datasets (Implicit
and Explicit) to identify an algorithm suitable for an efficient
motion gesture recognition method in both user-dependent
and independent data. As a result of the experiment, in the
case of the Implicit 6D gesture, the HMM algorithm showed
a classification accuracy of 91.9%, which was improved by
6.7%. In the case of the Explicit 6D gesture, the HMM
algorithm showed a classification accuracy of 96.9%, which
was improved by 3.4%, confirming that the HMM algorithm
was efficient. It became. Pavllo et al. [22] applied machine
learning (ML) technology to the motion capture system to
solve the degradation of performance due to occlusion when
performing inverse kinematics (IK) analysis based on marker
data to analyze the IK of hands and fingers using only
activated markers. A method was proposed, and the error
performance was improved (3.82◦) compared to the existing
IK solver.

Andrychowicz et al. [23] proposed a hand manipu-
lation method to use reinforcement learning to perform
vision-based object orientation in a physical shadow dexter-
ous hand. To measure the comparison data for evaluation, the
movement data of the dexterous shadow hand-measured with
an active LED marker was used, and learning was performed
using the CNN algorithm, showing 90% accuracy. The study
by Fern’ndez-Baena et al. [24] demonstrated the use of the
Kinect sensor for marker-based motion capture and validated
its accuracy for upper-body joint movements. However, the
study also identified limitations with the accuracy of the
Kinect sensor for lower body movements. The study uses
a Kinect sensor to capture the motion data of participants
performing upper-body and lower-body joint movements.
The Kinect sensor has a depth camera that tracks the body’s
movement without needing markers, making it a low-cost
and convenient tool for motion capture. The authors used
the captured data to extract features such as joint angles,
velocity, and acceleration, which were used for further anal-
ysis. The study’s main goal was to validate the accuracy of
the Kinect sensor’s motion capture data. The authors used
a gold standard motion capture system as a reference to
compare the Kinect data. They found that the Kinect data was

accurate for capturing the movements of the upper body but
less accurate for capturing the movements of the lower body.
Specifically, the authors found that the Kinect sensor tended
to overestimate joint angles and that the accuracy of the lower
body movements decreased with the increased complexity of
the movement. The authors did not use any ML methods in
their study. Instead, they used statistical analysis to compare
the Kinect data to the gold standard motion capture data.

While hand gesture recognition methods that use color tap-
ing and gloves may not fall within the category of traditional
optical markers, they are still classified as marker-based
techniques in the context of HRI research. These methods
enable the detection and tracking of a specific body part,
facilitating the creation of movements in virtual reality (VR)
environments, thus serving as a valuable tool for exploring the
dynamics of HRI. Wang and Popović [25] proposed a real-
time hand-tracking method using a color glove. The system
captures color images of the user’s handwearing a color glove
and processes the images to track the movement of the hand
in 3D space. The features used in this method are based on
the color histogram of the pixels in the hand region. The
system uses a single camera to capture the images, making it
a low-cost solution. The recognition accuracy of the system
is not explicitly reported in the paper. Maino and Foresti [26]
also proposed a real-time hand gesture recognition method
using a color glove. The system captures color images of the
user’s hand wearing a color glove and uses a feature vector of
9 dimensions, including color and texture information. The
system uses two ML algorithms, K-NN and LVQ (Learning
Vector Quantization). The recognition accuracy of the LVQ is
97.79%, while the K-NN algorithm’s accuracy is not explic-
itly reported. Ballarbi et al. [27] proposed a hand gesture
interaction method using color taping on the user’s fingers.
The system captures color images of the user’s hand and
uses a color detection algorithm to identify the taped fingers.
The system then performs static hand posture recognition
and dynamic hand gesture recognition. The features used in
this method are based on the position and orientation of the
fingers. The system uses a rule-based algorithm to classify
hand gestures. The recognition accuracy of the system is not
explicitly reported.

In summary, all three studies used color-based methods
for hand gesture recognition, and they differ in the fea-
tures used, the ML algorithms applied, and the recognition
accuracies achieved. The study [26] achieved the highest
recognition accuracy using LVQ, while the study [25] pro-
posed a low-cost solution using a single camera. Study [27]
focused on hand gesture interaction for tabletop interfaces,
demonstrating the potential of color taping on fingers as an
alternative to gloves.

ECCDOT C-DOT et al. [28] studied recognizing hand
gestures using a 2D single cam while holding a 2D marker
in the subject’s hand. After attaching markers to the hands of
five subjects, ‘moving and clicking the virtual mouse’ was
performed, and the error rates were low at 0.1% and 1%,
respectively, for two errors (mistaking marker movement for
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the click, click gesture not recognized). Amendola et al. [29]
proposed recognizing the subject’s movement by attaching
an RFID tag to the body as an efficient patient gesture
recognition method that can be applied in the medical and
rehabilitation fields. Three subjects attached an RFID tag
and proceeded with five periodic movements and single ges-
tures. Motion recognition was performed through the SVM
algorithm. For arm movements, it improved from 86% to
98%, and for leg movements, it improved from 60% to 78%.
Ishiyama et al. [30] proposed a subject’s hand motion recog-
nition method using a single camera and gloves with AR
marker patterns attached to solve the poor performance of
human hand gesture recognition under non-uniform lighting
conditions. A total of 122 recognition rate of about 78.68%
(96 out of 122) was shown using the dog’s posture and
20 image data sets for each posture. Roy, Prasun, et al.
[31] proposed an air-writing framework based on a CNN
algorithm using a general video camera and recognizing a
color tip attached to the end for gesture recognition. For
20 subjects, each person wrote the number 50 times and
showed an accuracy of 97.7% in English, 95.4% in Ben-
gali, and 93.7% in Devanagari. Nakamura and Hoshino [32]
proposed an algorithm for analyzing the subject’s whole-
body movement using color markers to make separate clothes
and individual training possible during Tankendo training.
In this study, the subject’s joint angle was estimated using
the HSV color detection algorithm, and its performance was
demonstrated by showing standard errors of 7.7◦ at 90◦ and
4.5◦ at 120◦.

3) ALGORITHMS FOR MARKER TRACKING AND MOTION
ANALYSIS
In the marker-based method, the internal algorithms used for
motion or gesture recognition typically involve two steps:
marker tracking and motion analysis.

Marker tracking detects and tracks the reflective markers
attached to the human body. The goal of marker tracking
is to accurately estimate the 3D position of each marker in
real-time, which provides a direct measurement of the human
body’s motion. It tracks the real-time position and orientation
of the markers attached to the human body segments. Sev-
eral popular marker tracking methods exist, including optical
flow, corner detection, feature-based tracking, Kalman filter,
particle filter, and optical marker tracking (OMT). The corner
detection method detects the corners of the markers and
tracks them based on their positions. Feature-based tracking
method uses features such as SIFT (Scale-Invariant Feature
Transform), SURF (Speeded Up Robust Feature), and ORB
(Oriented FAST and Rotated BRIEF) to detect and track
markers. The Kalman filter method uses a mathematical
model to predict the movement of markers based on their
past positions. The particle filter method uses a probabilistic
model to track markers by representing the markers as a set
of particles and updating the particles’ positions based on
the observations. OMT method uses a combination of optical
flow and corner detection to track markers.

Motion analysis, which directly contributes the motion
recognition, is the process of using the marker positions to
estimate the complete human body pose. The motion analysis
can be done using various algorithms, including forward
kinematics (FK), IK, and ML-based methods.

1) Human skeletal kinematics such as FK and IK use a
pre-defined human body model to calculate the body
pose based on themarker positions and themarker posi-
tions to solve for the body joint angles, respectively.

2) ML-based methods, such as DTs, RFs, and support
vector machines, can map the marker positions to the
body pose, leveraging extensive training data. Once the
human body pose is estimated, various features can be
extracted for gesture recognition. These features may
include joint angles, joint velocities, and limb lengths,
and they can be used as input to ML-based classifiers
to perform gesture recognition. Moreover, the algo-
rithms used for gesture recognition in marker-based
methods can be categorized into two main groups: non-
neural network (non-NN) and neural network (NN)
algorithms.

3) Non-neural network algorithms for gesture recognition
in marker-based motion capture include K-NN, Hid-
den Markov models (HMM), SVM, Dynamic Time
Wrapping (DTW), RF, Latent Dirichlet Allocation
(LDA), Template Matching Algorithm (TMA), HSV
algorithm, and LVQ. The K-NN algorithm is a sim-
ple algorithm that classifies an input gesture based
on the k-closest training samples. The HSV algorithm
uses a gesture’s hue, saturation, and value to classify
it into a pre-defined category. The HMM algorithm
is a statistical model that can model a sequence of
observations by aMarkov process. The SVM algorithm
is a supervised learning algorithm that can be used
for binary classification and multi-class classification
problems. DTW is an algorithm that compares two
sequences by warping the time axis to minimize the
Euclidean distance between them. RF is an algorithm
that generates a set of DTs from the training data and
outputs the class label based on the majority vote of
the DTs. LDA is a linear discriminant analysis(LDA)
algorithm that uses Bayes’ theorem to predict the class
labels of the gestures. TMA is a gesture recognition
algorithm that uses a pre-defined template to recognize
gestures.

4) In the case of neural network-based algorithms, Multi-
Layer Perceptron (MLP), CNN, and Dynamic Graph
CNN (DGCNN) have been used. MLP is a feedforward
neural network consisting of multiple hidden neurons
and an output layer that outputs the class labels. CNN
uses convolutional layers to extract features from the
input data and uses fully connected layers to classify
the data into different categories. DGCNN is a dynamic
graph CNN algorithm that can handle non-Euclidean
structured data and process data with varying lengths
and shapes.
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4) HARDWARE
In the case of the marker-based method, there are differences
for each camera, but generally, gestures can be measured
in 30 to 2000 frames, so the results most similar to actual
movements are output. A. Fern’ndez-Baena et al. [20] com-
pared the angle errors of the shoulder, hip, and knee joints
measured using the marker and the Kinect sensor to evalu-
ate the effectiveness of using the Kinect sensor for motion
recognition-based rehabilitation training. As a result of the
study, it was judged that the motion data measured by Kinect
had a low error (0.097%) of 6.78◦ to 8.98◦ compared to the
actual motion, so it was judged to be valid for use in rehabil-
itation exercise research. Motion data was used. As such, the
marker-based motion recognition technique, as in the previ-
ous cases ([14], [18], [20], [23], [24]), enables high-quality
gesture recognition most similar to actual motion; it has
the advantage that it can be used as actual motion data for
evaluating themotion of data. On the other hand, as in the case
of previous studies ([13], [14], [20], [22]), the marker-based
method does not recognize the marker to be recognized due
to obstacles or body obstruction during the subject’s motion.
Due to chronic limitations such as marker occlusion leading
to errors, there is a disadvantage in that high accuracy is
only shown in an artificially limited environment. In addition,
wearing the equipment is cumbersome; it is difficult to attach
it by him/herself, and one cannot escape the workspace within
the FOV of the motion camera. Due to noise effects, applying
it in a dynamic environment and non-uniform lighting con-
ditions is challenging. It is challenging to apply it in actual
industrial sites due to various constraints, such as poor repro-
ducibility of research because sensors cannot consistently
be attached to the exact location. However, it is valid for
verifying data measured by other sensors. It is most suitable
for validating these sensors and verifying final data.

B. MARKERLESS METHODS
Table 2 presents the results of a survey of VS methods
markerless gesture recognition research in robotics, computer
science, human-computer interaction, and robot automation
between 2010 and 2021. The table contains camera type,
algorithm, gesture type, and performance perspectives. Only
papers that met the research criteria were included, while
those deemed inappropriate for the study for reasons such as
missing critical information such as accuracy, algorithm, and
sensor, or those that used point recognition of hand or arm
center for motion tracking were excluded.

Marker-based and markerless motion recognition methods
have application domains in various fields, including sports,
healthcare, robotics, and entertainment. However, the specific
application domains of each method may differ due to their
strengths and weaknesses.

Marker-based motion recognition methods are commonly
used in biomechanics research, sports performance analy-
sis, and clinical gait analysis. They provide highly accurate
and precise measurements of joint angles, joint velocities,

and forces, which are essential for understanding movement
patterns and identifying areas of improvement in athletic per-
formance or rehabilitation. However, marker-based methods
require physical markers to be placed on the body, which can
be uncomfortable and may interfere with natural movement.

Markerless motion recognitionmethods, on the other hand,
have been applied in areas such as computer vision, virtual
reality, and gaming. They do not require physical markers,
making them more convenient and less invasive than marker-
based methods. Markerless methods are also better suited for
tracking full-body motion, such as in dance and choreogra-
phy, where multiple markers would be needed to capture the
complexity of the movements. However, markerless methods
may be less accurate than marker-based methods in tracking
individual joint angles and forces, which can limit their use
in biomechanical research.

1) RGB CAMERA
The RGB camera plays an essential role in gesture recogni-
tion by capturing the color information of the object being
recognized. It provides additional visual features that can
improve the recognition accuracy of the system. The data
obtained from the RGB camera can be used to extract various
features for gesture recognition, including:

1) Hand and arm shape: The RGB camera can capture
the shape of the hand and arm, which can be used to
recognize specific gestures.

2) Skin color: The RGB camera can capture the skin color
of the hand, which can be used to distinguish it from the
background and improve recognition accuracy.

3) Background color: The RGB camera can capture the
background color, detecting when the user’s hand is
in front of a specific color and triggering a specific
gesture.

Sigalas et al. [35] proposed a new approach to vision-based
hand-gesture recognition and analyzed the motion by match-
ing it with the upper arm model after analyzing the part
corresponding to the joint parameters of the body in the image
data. In that study, a hand-gesture recognition accuracy of
about 86% was achieved based on the MLP+RBF algorithm.
Murthy and Jadon [36] proposed an NN-based gesture recog-
nition study and constructed a dataset with images captured in
video images. About 89% hand gesture recognition accuracy
was achieved by capturing the background without the user’s
hands and removing the background from the image data set.
Raheja et al. [37] proposed a new approach to control the
robot through simple hand motions in front of the camera.
After extracting the hand-gesture area from the image in
the video image, PCA-based pattern-matching was used to
achieve about 90% accuracy. In addition, Cao et al. [38] pro-
posed anMLP-based hand-gesture feature extractionmethod.
To classify the edge of the hand image, we used the Laplacian
of Gaussian (LoG) edge detection method and achieved an
accuracy of about 97.4%. Nagi et al. [39] proposed an HRI
interfacewith amobile robot based on real-time hand gestures
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TABLE 1. Vision sensor-based gesture recognition with the marker.

and used MPCNN for hand-gesture classification. Six ges-
tures were recognized with 96% accuracy, and real-time
performance of 0.82s/recognition was confirmed in the envi-
ronment of 128MB RAM and ARM 11 533MHz processor.
Celik and Kuntalp [40] proposed a manipulation control
method using image processing in human-machine interac-
tion (HMI). After converting the RGB values into HIS values,
the hand region in the imagewas separated and binarized with
a low-pass filter.

Moreover, based on TMA and SSA (sign signal algorithm),
the separated hand’s gesture mode was recognized with error
rates of TMA (6.66%) and SSA (9.4%). Cho et al. [41]
proposed an FPGA-based gesture recognition system and
analyzed the accuracy according to the background condi-
tions of the space where the subject performed the gesture.
Features were extracted based on the optical flow algorithm
and as a result of recognizing 25 gestures in different experi-
mental environments, simple indoor (100%), complex indoor

(100%), complex static outdoor (99.33%), complex dynamic
outdoor (90.67%) %) accuracy. Jeong et al. [42] captured
the motion path when drawing a sign in the air, recognized
the user’s hand gesture, and proposed an interaction method
with the TV based on this. An image captured by a standard
VGA (video graphics array) was used, and as a result of
gesture recognition with a particle filter algorithm, an average
recognition rate of 92.34% was achieved.

Barros et al. [43] learned five gesture commands based
on the MCCNN algorithm and, as a result of testing based
on the Logitech C905 USB camera, achieved an F1 score
of 96.85%. Li et al. [44] learned 100 RGB image data
for each gesture with ANFIS and SVM algorithms to con-
trol a virtual robot with ten hand gestures remotely and
achieved recognition accuracy of 96.3% and 98.83%, respec-
tively. Bhame et al. [45] proposed a gesture recognition
method that can be used in HCI application develop-
ment. RGB image data was obtained for 30 subjects, and
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94.9% accuracy was achieved by training with the DHMM
algorithm. Simul et al. [46] proposed a real-time facial
expression and gender classification method based on RGB
images and SVM and achieved a classification accuracy of
face (86%), facial expression (95.33%), and gender detection
(94.67%). Lamb and Madhe [47] proposed an automatic bed
positioning system through the patient’s feature gesture input
and achieved 96% accuracy by combining a new algorithm
called Symlet Wavelet with the existing Euclidean distance
algorithm.

Mohanty et al. [48] proposed a new hand-gesture recog-
nition method that integrates multi-image features and
multi-kernel learning SVM to improve the accuracy of multi-
class hand-gesture recognition and generalize the algorithm.
Ghosh and Ari [49] used two ASL (American sign language)
datasets for static hand-gesture recognition, and through
cross-validation of various recognition algorithms, the maxi-
mum dataset-1 (82.25%) and dataset-2 (87.67%) per dataset)
confirmed the recognition accuracy. Oyedotun and Khash-
man [50] discusses the use of deep learning in recognizing
static hand gestures in vision-based systems. The authors
propose a deep learning approach for recognizing hand ges-
tures using a CNN and evaluate its performance compared to
traditional ML algorithms. As a result of a comparative anal-
ysis of learning performance using the CNN algorithms and
SDAE algorithm for the ASL dataset, a gesture recognition
rate of 91.33% and 92.83%, respectively, was confirmed. The
research by Wang et al. [51] discusses using deep learning
in HMR for predictive context-aware HRC. The authors pro-
pose a deep learning-based method for recognizing human
motions using CNNs and evaluate its performance in rec-
ognizing human motions in real-time. The study highlights
the potential of deep learning in HMR and its applications
in predictive context-aware HRC systems. RGB images with
complex backgrounds were used, and as a result of learning
using DCNN and Alexnet, a gesture recognition accuracy
of about 96.6% was achieved. Singha et al. [52] devel-
oped a dynamic hand-gesture method combining a 3-frame
difference technique and skin filtering to solve the causes
of chronic performance degradation in VS methods gesture
recognition research, such as complex background, light-
ing, and occlusion. A recognition method was proposed.
After learning a database of 40 gesture classes (10 numbers,
26 alphabets, four arithmetic operators) for 20 subjects with
four algorithms (ANN, SVM, K-NN, classifier fusion), the
performance was compared. It was confirmed that the pro-
posed classifier fusion (92.23%)was about 3.92% higher than
the lowest-performing SVM (88.31%).

Song et al. [53] implemented mode control for mouse posi-
tion control (up, down, left, and right), left click, and no action
based on dynamic hand-gesture recognition using a USB sin-
gle camera. We collected 30 gesture datasets for six gesture
modes per subject in white background and cluttered back-
ground, respectively, and as a result, the recognition accuracy
of 95.95% and 84.07% was achieved in white background

and cluttered background, respectively. Sun et al. [54] pro-
posed a segmentation method for human hands to implement
real-time hand-gesture tracking in images with complex
backgrounds. The authors start by creating a model of skin
color to identify the regions of the video that contain a
hand. They then used an AdaBoost classifier based on Haar
wavelets to detect the specific hand gestures within these
regions. The authors chose to use skin color as a critical
feature for detecting hands in the video because human skin
has a unique color that a computer can identify. To do this,
they first collected a set of images containing hands and used
them to create a model of the average skin color of a human
hand. They then used this model to identify the regions of the
video that are likely to contain a hand. Once the regions con-
taining hands were identified, the authors used an AdaBoost
classifier based on Haar wavelets to detect the specific hand
gestures within these regions. The Haar wavelets were used
to extract features from the video frames, then to train the
classifier to recognize different hand gestures. The authors
took one video frame at a time to analyze the hand gestures
and cut it into smaller sections for analysis. This denaturation
technique allowed them to identify each gesture’s specific
features and improve the classifier’s accuracy. As a result,
hand motion recognition was performed based on the CNN
algorithm, and an average recognition rate of 98.3% was
achieved.

Islam et al. [55] presented robust methodologies for an
underwater robot to visually detect, follow, and interact
with a diver for collaborative task execution. It introduces
two autonomous diver-following algorithms based on spa-
tial and frequency-domain features and a CNN-based model
for tracking-by-detection. The paper also proposed a hand
gesture-based human-robot communication framework that
is more computationally efficient than existing grammar-
based frameworks. The proposed framework used deep
visual detectors for accurate hand gesture recognition and a
finite-state machine for gesture-to-instruction mapping. The
paper validates the effectiveness of the proposed method-
ologies through field experiments in closed and open-water
environments and demonstrates the usability benefits of the
proposed interaction framework compared to existing meth-
ods through a user interaction study. As a result, it was
trained using a dataset of about 10,000 underwater hand
gestures RGB images and achieved about 80% recogni-
tion accuracy. Chang et al. [56] proposed a method to
improve gesture recognition accuracy with a Faster R-CNN
algorithm using VGG16 and a Gaussian filter to remove
noise from image data. As a result of using five-fold cross-
validation, the experimental results show that an improved
Faster R-CNN algorithm significantly improves mean aver-
age precision to 99.89%, which provides a better method
for gesture recognition in HRI applications. Fang et al. [57]
proposed a new gesture recognition algorithm based on CNN
and DCGAN (deep convolution generative adversarial net-
works) to break the bottleneck. Based on the CNN+DCGAN
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algorithm, we achieved a hand-gesture recognition accuracy
of 92.70% and experimentally proved that the proposed
method is less sensitive to lighting and background inter-
ference. Sahoo et al. [58] proposed a user-independent hand
gesture recognition system to solve problems caused by light-
ing changes, diversity of user hand shapes, and high similarity
between classes in the automatic recognition of visual-based
static hand-gesture images. Learning was conducted based on
the MU data set and three algorithms, and the PCA-based
deep CNN algorithm (87.83±1.79%) achieved higher accu-
racy than the control group CNN (73.86±1.04%) and FFCN
(84.02±0.59%).

Jiang et al. [59] proposed a gesture detection network and
AUV control algorithm for interaction with an autonomous
underwater vehicle. We conducted data learning based on
8,000 training image sets and CNN, F-RCNN, and YOLOv4
algorithms and verified the superiority of the proposed
F-RCNN by comparing and verifying the accuracy of 83%,
89%, and 79%, respectively. Al-Hammadi et al. [60] pro-
posed a dynamic hand-gesture recognition system using
multiple deep-learning architectures for hand segmentation,
local and global feature representations, sequence feature
globalization, and recognition. The proposed architecture
is evaluated on a challenging dataset of 40 dynamic hand
gestures performed by 40 subjects in an uncontrolled envi-
ronment. The learning accuracy was compared according
to whether or not the generalization work was performed
on the data set, and the 3DCNN+MLP algorithm showed
an initial accuracy of 98.62%, and after the generalization
work, the quantitative precision deterioration was evaluated
at 87.69%. In the case of the 3DCNN+AE (autoencoder)
algorithm, an accuracy of 84.89% was confirmed after the
generalization process compared to an initial accuracy of
98.75%. Al-Hammadi et al. [61] proposed an efficient deep
CNN (3DCNN) for hand-gesture recognition, showing 100%
accuracy for dependent data from training data but 84.38%
for independent data. Choudhary and Tazi [62] proposed a
method for segmenting and recognizing hand-gesture usable
in HCI using a real-time image sequence captured by a video
recording device to track the potential subject region (PSR)
by itself. As a result of learning 9,000 images for eight ges-
tures based on the VGG16-CNN algorithm, it was confirmed
that eight gestures could be recognized with an accuracy of
96% or more.

2) RGB-DEPTH CAMERA
The following are examples of research on gesture recogni-
tion using an RGB-Depth camera. Kinect is a stereo camera
sensor developed by Microsoft in 2010 for motion recogni-
tion of game players and has been used in earnest for gesture
recognition research since 2012. AlthoughKinect is a product
name, it is marked separately as RGB-D (K) in Table 2
because it shows much research data and utilization as a
classification standard. Cases of gesture recognition based on
RGB-Depth rather than Kinect were listed first, then cases of
gesture recognition based on Kinect sensors were reviewed.

RGB-D sensors typically use infrared or structured light
patterns to capture depth information. While they may not
have the same wide field of view or multiple sensors as
the Kinect, they still offer several advantages for gesture
recognition, such as:

1) Higher resolution color information: RGB-D sensors
typically have higher resolution color cameras than the
Kinect sensor, which can help recognize gestures that
involve color cues, such as hand signs.

2) Smaller form factor: RGB-D sensors are typically
smaller and more compact than the Kinect sensor,
making integrating them into different devices and
environments easier.

3) Lower cost: RGB-D sensors are generally less expen-
sive than the Kinect sensor, making them a more
affordable option for gesture recognition applications.

Some of the features that can be extracted through the data
obtained from an RGB-D sensor include:

1) Depth maps: RGB-D sensors capture depth maps,
which provide information about the distance of objects
from the sensor. These depth maps can be used to
recognize gestures that involve movement towards or
away from the sensor.

2) Point clouds: RGB-D sensors also capture point clouds,
which provide a 3D representation of the environment.
These point clouds can be used to recognize gestures
that involve interaction with the environment, such as
pointing or grasping.

3) Skeleton tracking: Like the Kinect sensor, some
RGB-D sensors also offer skeleton tracking, which
provides information about the position and move-
ment of joints in the human body. This can be
used to recognize various body movements and
gestures.

Ohn-Bar and Trivedi [63] proposed an RGB and Depth-
based in-vehicle gesture interface from rough hand to fine
finger motion. The robustness improvement for noise factors
was quantitatively evaluated by conducting research in fre-
quent self-occlusion. Nineteen gestures performed by eight
subjects were learned based on SVM, and an accuracy of
about 96.97% was achieved. Coupeté et al. [64] proposed
implementing hand trajectory-tracking and gesture recogni-
tion of workers based on a depth camera with a top view
to implementing HRC with collaborative robots on factory
assembly lines. As a result of learning the gesture data set for
20 assembling cycles of 13 workers with HMM, a training
accuracy of about 85% and a test accuracy of 80% were
achieved. Yu et al. [65] proposed a human-UAV interaction
(HUI) method based on hand & arm gesture recognition for
natural interaction between humans and multi-UAV systems.
In that study, nine types of static arm gesture images of
operators were acquired with Asus’ Xtion Pro Live camera,
similar to Kinect, and rule-based classification based on the
Nite library was applied for mapping with motion control
commands of AR drones.
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3) KINECT SENSOR
The following studies focus on gesture recognition using the
Kinect sensor and its applications in human-computer inter-
action and robotics. Kinect and RGB-D sensors use depth
information to enable gesture recognition, but Kinect sensors
have advantages over traditional RGB-D sensors. Here are a
few advantages of the Kinect sensor for gesture recognition:

1) Wide field of view: Kinect sensors have a broader
view field than traditional RGB-D sensors. This allows
the Kinect sensor to capture more of the surrounding
environment and provides a larger area for gesture
recognition.

2) Active illumination: Kinect sensors use active illumina-
tion to capture depth information. This means that the
sensor emits its infrared light, which is then reflected
by objects in the environment. This active illumination
allows the Kinect sensor to work in low-light environ-
ments and provides more accurate depth information.

3) Multiple sensors: The latest Kinect sensor (Kinect v2)
has multiple sensors allowing more accurate and robust
gesture recognition. For example, the sensor can use
body tracking to track multiple people in the same
environment and distinguish between them.

With the data obtained from the Kinect sensor, several fea-
tures can be extracted for gesture recognition, such as:

1) Joint positions: The Kinect sensor captures the 3D
position of various joints in the human body, such as
the head, hands, elbows, knees, and feet. These joint
positions can be used to infer the posture andmovement
of the body and recognize gestures.

2) Body orientation: The Kinect sensor also provides
information about the body’s orientation, which can
help recognize more complex gestures involving rota-
tion or twisting.

3) Hand shape and movements: The Kinect sensor can
also capture the shape and movement of the hands,
which helps recognize hand gestures and gestures that
involve manipulating objects.

4) Facial expressions: The Kinect sensor can also capture
facial expressions, which can be used to recognize
emotions or commands that involve facial expressions.

Overall, the Kinect sensor provides a rich set of features
that can be used for gesture recognition, making it a popular
choice for researchers and developers.

Ren et al. [66] developed a hand gesture recognition sys-
tem based on the Kinect sensor. They used hand position,
shape, and motion features to train an ML classifier (RF) to
recognize 12 hand gestures. The system achieved an average
recognition accuracy of 93.9%. The study’s contribution is
providing a comprehensive exploration of the Kinect sensor’s
potential for hand gesture recognition and its applications
in human-computer interaction. Gu et al. [67] developed a
gesture recognition system that recognizes ten hand ges-
tures using an RF classifier. They utilized features including
hand shape, hand location, and hand motion to recognize

gestures. The study’s contribution shows that the Kinect
sensor is adequate for recognizing hand gestures and has
potential applications in HRI. Xu et al. [68] developed a
real-time dynamic gesture recognition system that recognizes
gestures for robot navigation. They used an SVM classi-
fier to recognize eight hand gestures based on hand shape,
motion, and orientation. The study’s contribution is showing
the effectiveness of the Kinect sensor in real-time gesture
recognition for robotics applications. Qian et al. [69] devel-
oped a gesture-based remote HRI system using the Kinect
sensor. They used a DT classifier to recognize eight differ-
ent gestures. The system was able to control the movement
and navigation of the robot. The study’s contribution shows
the Kinect sensor’s potential in developing a gesture-based
remote-control system for HRI.

Yeo et al. [70] proposed a hand-tracking and hand-gesture
recognition method from dynamic motion in a complex
background and performed a quantitative performance com-
parative evaluation of a low-cost webcam and Kinect sensor.
Pisharady and Saerbeck [71] proposed a body gesture-based
detection and recognition algorithm for human interaction
and a household floor cleaner robot. Pisharady conducted
model learning based on the Kinect skeletal model and DTW
and achieved the highest accuracy of 97.26% when joint
angle, position, and direction were used together with skeletal
reconstruction. Chen et al. [72] proposed a real-time dynamic
hand gesture recognition system using the Kinect sensor.
The system extracts depth and color features from the hand
region and uses a K-NN classifier for recognition. The system
achieved an average recognition rate of 92.8% on a dataset of
5 hand gestures, and the recognition time is less than 50ms.
The study’s contribution is a practical and efficient gesture
recognition system for human-computer interaction. Coupeté
et al. [73] developed a gesture recognition system using a
depth camera for HRC on the assembly line. The system
uses Haar-like features and an SVM classifier to recognize
nine hand gestures. The recognition rate achieved is 94.4%
for a single person and 91.6% for two people. The study’s
contribution is the application of gesture recognition in the
context of HRC, which could improve productivity and safety
in the manufacturing industry. Vinh and Tri [74] proposed a
hand gesture recognition system based on depth images using
the Kinect sensor. The system uses a combination of depth
and color features and HMM classifier to recognize six hand
gestures. The system achieved an average recognition rate
of 90.2% on a dataset of 10 participants. The study’s con-
tribution is using HMM for gesture recognition, which could
improve recognition accuracy in dynamic gesture recognition
scenarios. Alasady et al. [75] presented an online dynamic
gesture recognition system for HRI. The system extracts
depth and motion features and uses an incremental online
learning algorithm for recognition. The system achieved a
recognition rate of 92.3% for a dataset of 10 dynamic hand
gestures. The study’s contribution is using online learning
for gesture recognition, which could improve recognition
accuracy in dynamic scenarios.
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Li et al. [76] proposed a dynamic gesture recognition
system for the Internet of Things (IoT). The system uses
the Kinect sensor to extract depth and motion features and
a CNN classifier for recognition. The system achieved an
accuracy of 96.5% for a dataset of 10 hand gestures. The
study’s contribution is using CNN for gesture recognition,
which could improve recognition accuracy and adaptabil-
ity to various gesture scenarios. Additionally, the study’s
application in IoT could enable more intuitive and efficient
human-computer interaction. Jiang et al. [77] showed that
the skeletonization algorithm and CNN for the recognition
algorithm could reduce the impact of shooting angle and
environment on the recognition effect and improve ges-
ture recognition accuracy in complex environments. In that
study, the experimental results show that compared with
the SVM method, dictionary learning + sparse representa-
tion, CNN method, and other methods, the recognition rate
reaches 96.01%. Dong et al. [78] converted gesture recog-
nition into a shortest path problem by converting a gesture
feature matrix into an undirected graph and proposed a new
dynamic gesture recognition algorithm of DPCNN for real-
time HRI. The MSRC-12 dynamic database was trained with
the DPCNN algorithm, showing an average recognition rate
of 93.68%, and the effectiveness was proven through per-
formance comparison with other algorithms (DL-COPAR:
93.80%, LC-KSVD: 91.61%).

Cheng et al. [79] proposed CNN and RBM (Restricted
Boltzmann Machine) joint networks to solve issues such as
accuracy, real-time, and low robustness of gesture recogni-
tion. CNNs are well-suited for processing visual data, such
as images or video frames, and are widely used in com-
puter vision tasks. However, they can be limited by the
amount of training data available and the complexity of the
task. Restricted Boltzmann Machines (RBMs) is a genera-
tive model that can learn to represent high-dimensional data
more compactly and informally. RBMs can pre-process data
and reduce its dimensionality, improving subsequent pro-
cessing steps’ performance. By combining CNN and RBM,
the strengths of both models can be leveraged to improve
gesture recognition accuracy. The CNN can extract features
from the raw image data, and the RBM can further pro-
cess and compress these features to create a more robust
and informative representation. In addition, using RBM can
improve the system’s robustness by allowing it to recognize
similar gestures even if performed slightly differently. This
can help overcome issues with variability in how people
perform gestures. Finally, using RBM can also improve the
real-time feasibility of the system by reducing the computa-
tional complexity of the processing steps. This is important
for applications where low latency is critical, such as in
real-time gesture recognition for human-computer interac-
tion. Through simulation analysis, it is found that the joint
network has a high recognition rate in simple sample gesture
recognition, and its error is only 3.9%. Then on the complex
sample, the joint network and other centralized networks do
not perform well, mainly because RBM requires strict data

distribution. Sun [80] proposed a method to enable smooth
interaction with sound and lighting systems using an interac-
tive panel controlled by hand in AR. For four gesture classes
of 10 subjects, gesture learning was conducted with SVM and
2D CNN algorithm, and the 2D CNN algorithm confirmed
100% recognition performance, which was 4% higher.

Kuang et al. [81] proposed a ‘One-shot’ gesture recogni-
tion method that can be a highly efficient communication
channel in the HRI system. The proposed approach can
provide efficient, one-shot gesture recognition without elab-
orately designed features. The experiments on a social robot
(JiaJia) demonstrate that the proposed approach can flexibly
be used in a human-robot collaboration system because learn-
ing the data of 5 gestures of 5 subjects with DTW achieved an
accuracy of about 92.4%. Cardenas and Chavez [82] tested
various integration methods to fuse spatiotemporal features
to improve recognition performance in a linear SVM clas-
sifier. The UTD-MHAD data set, which includes data from
27 tasks performed by eight subjects, was used for learning.
Compared to the recognition accuracy of previous studies,
it was confirmed that the algorithm combining HCM, CNN,
and spherical coordinates algorithm showed the best accuracy
(94.81%).

4) TOF, DVS, DSV, AND PMD
In addition, studies on gesture recognition based on one type
of sensor, such as a ToF camera, DVS (Dynamic Vision
Sensor), DSV (Dynamic Stereo Vision), and PMD (Photon
Mixing device), have been conducted. The subsequent studies
used various types of sensors for gesture recognition, includ-
ing Dynamic vision sensor cameras [83], ToF cameras [84],
[86], [87], [89], Bio-inspired 3D vision sensors [85], and
RGB-D cameras [88]. These sensors capture different types
of information, such as temporal changes of an object’s inten-
sity, depth, and intensity information, and color and depth
information of the hand gesture, which are then processed
using various ML methods for gesture recognition. Here are
some key features of the sensors:

1) DVS camera: A DVS camera is an event-based camera
that captures motion in a frame-free manner, which
means it only records changes in the scene rather than
capturing a full frame at a specific frame rate. DVS
cameras can be useful for fast and low-latency gesture
recognition applications, but they typically have lower
spatial resolution than Kinect sensors and other cam-
eras.

2) ToF cameras: Like the Kinect sensor, ToF cameras cap-
ture depth information by measuring the time it takes
for light to bounce back from objects in the scene. How-
ever, ToF cameras typically have a shorter range and
lower depth resolution than the Kinect sensor. They can
be useful for shorter-range gesture recognition applica-
tions but may not be ideal for larger environments.

3) Bio-inspired 3D vision sensor: Bio-inspired 3D vision
sensors are cameras designed to mimic biological
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visual systems’ structure and function. They typically
use spiking neural networks to process visual informa-
tion and can be more power-efficient than traditional
cameras. However, these cameras may have lower spa-
tial and depth resolution than the Kinect sensor.

Ahn et al. [83] proposed a dynamic vision sensor camera-
based bare-hand gesture recognition system. The system
features a dynamic vision sensor camera that captures the
temporal changes of an object’s intensity, which is then pre-
processed using a temporal filter. The filtered data is then
processed using an SVM classifier to recognize the gestures.
The system achieved recognition accuracy of 91.2% and
showed promising results for recognizing dynamic gestures.
Oprisescu et al. [84] presented an automatic static hand ges-
ture recognition system using time-of-flight (ToF) cameras.
The system features a ToF camera that captures the depth and
intensity information of the hand gesture. The captured data
is then preprocessed using a morphological filter and pro-
cessed using a neural network classifier. The system achieved
recognition accuracy of 95.8% for a 10-class gesture recog-
nition task, and the results indicated the potential of using
ToF cameras for static gesture recognition. Kohn et al. [85]
proposed a real-time gesture recognition system using a bio-
inspired 3D vision sensor. The system features a bio-inspired
vision sensor that mimics the behavior of the human retina,
which captures both the intensity and temporal information
of the gesture. The captured data is then processed using
a spiking neural network classifier. The system achieved
recognition accuracy of 95.5% for a 10-class gesture recog-
nition task, and the results demonstrated the effectiveness
of using bio-inspired vision sensors for gesture recognition.
Kulkarni et al. [86] presented a static gesture recognition
system using a PMD ToF camera. The system features a
PMD ToF camera that captures the depth information of
the hand gesture. The captured data is then preprocessed
using a filtering and segmentation technique and processed
using an SVM classifier. The system achieved recognition
accuracy of 97.5% for a 4-class gesture recognition task, and
the results showed the potential of using PMD ToF cameras
for static gesture recognition. Kopinski et al. [87] proposed
a multi-sensor fusion strategy for hand gesture recognition
using time-of-flight-based sensors.

The system features multiple ToF cameras that capture
the hand gesture from different viewpoints, and the captured
data is fused using a decision-level fusion technique. The
fused data is then processed using an SVM classifier. The
system achieved recognition accuracy of 98.5% for a 6-class
gesture recognition task, and the results demonstrated the
effectiveness of using multi-sensor fusion for hand gesture
recognition. Sachara et al. [88] presented a free-hand gesture
recognition system using 3D CNNs for in-car infotainment
control. The system features a 3D CNN that extracts spa-
tial and temporal features of the hand gesture from RGB-D
data. The extracted features are then processed using an
SVM classifier. The system achieved recognition accuracy

of 93.2% for a 9-class gesture recognition task, and the
results showed the potential of using 3D CNNs for free-hand
gesture recognition. Chai et al. [89] proposed a 3D gesture
recognition method based on the faster R-CNN network. The
system features an RGB-D camera that captures the hand
gesture’s color and depth information. The captured data is
then processed using a region-based CNN (R-CNN) and an
SVM classifier. The system achieved recognition accuracy of
93.5% for a 6-class gesture recognition task, and the results
showed the potential of using faster R-CNN for 3D gesture
recognition.

5) INTEGRATION OF MULTIPLE VISION SENSORS
The following are examples of gesture recognition studies
using different types of vision sensors. Bergh and Gool [90]
describes a system that combines RGB and ToF cameras to
achieve real-time 3D hand gesture interaction. The system
segments the hand from the background using skin color
information and extracts hand features for recognition. The
paper reports high accuracy in recognizing hand gestures
in real-time. Molchanov et al. [91] present a multi-sensor
system for recognizing drivers’ hand gestures using an RGB-
D camera, an infrared camera, and flex sensors. The authors
used a CNN to fuse the information from the sensors and
achieve high accuracy in recognizing the driver’s hand ges-
tures in real-time. Liu et al. [92] presented a multimodal
fusion approach for robust human-robot collaborative man-
ufacturing. The authors proposed a system that combines an
RGB-D camera, force/torque sensor, and microphone data
to recognize human intention and ensure safe collaboration.
The authors used deep learning techniques for multimodal
feature extraction and fusion, including CNNs and long
short-term memory (LSTM) networks. The proposed system
achieves a classification accuracy of 96.7% for recogniz-
ing human intention in real-time, indicating its potential for
robust human-robot collaborative manufacturing. Both stud-
ies demonstrated the effectiveness of combining different
sensors and machine-learning techniques for physical HRI
and human-robot collaborative manufacturing. They recog-
nize human gestures and intentions accurately, indicating
their potential for real-world applications.

6) ALGORITHMS FOR MARKERLESS GESTURE RECOGNITION
METHODS
Marker-based and markerless motion recognition methods
differ in their approaches to capturing and analyzing human
movement. Marker-based methods rely on physical markers,
such as reflective or active markers, placed on specific body
locations to track movement. On the other hand, Markerless
methods do not use any physical markers and instead rely
on computer vision and ML algorithms to analyze features
in video data of the body in motion. The algorithms used
in markerless motion recognition can vary depending on the
approach used but generally involve the following four steps:
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1) Feature detection: Algorithms detect features in the
video data relevant to the analyzed motion, such as
body joints or contours.

2) Feature tracking: Algorithms track the motion of the
detected features over time to obtain the motion trajec-
tory of the body part.

3) Reconstruction: Algorithms use the features’ motion
trajectories to reconstruct the body’s motion in 3D
space.

4) Analysis: Algorithms analyze themotion data to extract
features, such as joint angles, velocity, and accelera-
tion, which can be used for motion recognition tasks.

One of the main advantages of markerless motion recognition
methods is that they do not require physical markers, which
can be intrusive and limit natural motion. However, marker-
based methods generally have higher accuracy and are more
reliable in low-light conditions or when there are occlusions
in the video data. On the other hand, Markerless methods
can be more flexible and adaptable to different body types
and movements, as they do not rely on predetermined marker
locations.

III. WEARABLE SENSOR-BASED METHODS
Table 3 analyzes WS methods gesture recognition research
in robotics, computer science, human-computer interaction,
and robot automation between 2010 and 2021. The analysis
considers sensor type, algorithm, gesture type, and perfor-
mance perspectives. Only papers that met the research criteria
were included, while those deemed inappropriate for the
study for reasons such as missing essential information such
as accuracy, algorithm, and sensor, or those that used point
recognition of hand or arm center for motion tracking were
excluded.

A. IMU SENSOR-BASED METHOD
In this section, we conducted a comprehensive review of
studies focusing on gesture recognition based on IMU sen-
sors. Hartmann et al. [96] presented a new approach to
the IMU-based dynamic hand gesture recognition method
using online dynamic time warping (DTW) prototypes, a set
of reference templates representing the expected motion
trajectories for each gesture. These prototypes are cre-
ated by averaging the DTW distance matrices between
training samples and their corresponding prototypes. Using
these optimized prototypes, the authors improved the sys-
tem’s recognition accuracy by reducing the effect of inter-
and intra-subject variations in the motion trajectories. The
authors trained nine dynamic hand gesture sets based on
the online-DTW algorithm and achieved a high accuracy
rate of 97.35% through triple cross-validation. The use of
triple cross-validation is essential in cases where the dataset
is small, or the recognition task is complex, as it helps to
ensure that the results are reliable and generalizable. The
study also employs DTW and k-nearest neighbors (k-NN)
for recognition. Online DTW is an algorithm for time series

data processing and pattern recognition. Liu et al. [97] pro-
posed a multi-HMM classification approach for hand gesture
recognition using two different modality sensors (inertial and
depth). They conducted ten single-hand gesture recognition
with two methods based on Kinect and wearable inertial
sensors. They performed learning based on the multi-HMM
algorithm for data performed 30 times by ten subjects.
The study demonstrated the efficiency of the multi-HMM
algorithm through its accuracy of 91%, which improved by
7% compared to the single-HMM-based accuracy of 84% for
various gesture data such as circles, diamonds, and question
marks. The proposed method also involved ML techniques
such as HMM and PCA. Liu et al. [98] proposed a conver-
gence method that uses inertial and vision depth data for hand
gesture recognition applications. The study implemented the
HMM algorithm to learn five different hand gestures, achiev-
ing 93% accuracy when using inertial and vision depth data,
surpassing the results obtained using each sensor separately.
The study also compared the recognition rates of the DTW
and HMM algorithms.

Chen et al. [99] proposed a real-time motion recognition
system utilizing depth and inertial sensor data. They used
the Depth motion map (DMM) algorithm, which converts
depth and skeleton data into a 2D matrix called the depth
motion map, to train two experiments on the 27-motion
data of UTD-MHAD (University of Texas at Dallas Multi-
modal Human Action Dataset). The results confirmed that
the recognition rate was higher for the fused data than for
the separated data. The paper also employed PCA, LDA,
and SVM for recognition, achieving a recognition rate of
91.96% on the benchmark dataset. Shin and Sung [100]
proposed a low-complexity recurrent neural network (RNN)
for dynamic hand gesture recognition on wearable devices
using accelerometer data. They optimized memory size by
quantizing most of the weights to 2 bits and achieved an
overall accuracy of 92.2%. The paper compared and analyzed
the gesture recognition results with image sequence data and
a CNN+RNN algorithm. In the case of image sequences, a
3-layer CNN algorithm generated hand-shape features, while
the temporal relationship of motion was analyzed with the
RNN algorithm. A 3-layer neural CNN was used to generate
hand-shape features from image sequences.

Furthermore, the temporal relationship of the motion
was then analyzed using the RNN algorithm. The RNN
extracts temporal features from the hand shape features,
and a fully connected layer is used to classify the hand
gestures. This combined CNN+RNN approach was com-
pared to the accelerometer data approach, where the RNN
was used directly on the accelerometer data. The results
showed that the CNN+RNN approach achieved competitive
performance with the accelerometer data approach while
requiring less memory and computational resources. Estrada
Jiménez et al. [101] proposed an intelligent system that
translates Ecuadorian sign language into text using a data
glove composed of two IMUs and a flex sensor. The paper
uses ML methods to recognize k-NN, SVM, and DT signs.
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TABLE 2. Vision sensor-based gesture recognition without the marker.
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TABLE 2. (Continued.) Vision sensor-based gesture recognition without the marker.

Six non-disabled subjects repeated 50 times for four hand
gestures, showing an overall data classification accuracy of
91.55%, demonstrating the proposed system’s effectiveness.
Stančić et al. [102] proposed a real-time inertial sensor-based
interaction system for communication with a robot up to
250m away. The study presents offline classification results
for dynamic hand gestures using ML algorithms such as
DTW, LDA, ANN, and RF, with RF achieving the highest F1
score of 97.33%. The proposed method was then evaluated
in online classification and achieved an accuracy of 90.55%,
demonstrating its effectiveness in real-time communication.
Overall, the paper highlights the potential of wearable sensors
in enabling seamless HRIs. Joukov et al. [103] proposed
an algorithm that estimates the position and orientation of

various parts of the human body, including the wrist and
elbow, using IMU measurements and Lie group theory. The
LG-EKF was utilized for state estimation of human body
motion, and the algorithm achieved a root mean square error
of less than 1 degree. Although this study did not specify a
particular type of gesture, it focused on general humanmotion
estimation using IMU measurements and Lie group the-
ory. The proposed algorithm used IMU Jacobian for motion
recognition and compared the position between the actual
wrist and elbow with the algorithm and EKF. The proposed
algorithm resulted in a more accurate estimation with 4.1 cm
for the wrist and 5.9 cm for the elbow.

ML techniques such as Kalman filters and gradient descent
optimization were also utilized. The IMU Jacobian is a
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mathematical representation of how small changes in sen-
sor measurements (such as acceleration or angular velocity)
translate into changes in the position and orientation of the
sensor (such as the wrist or elbow). The Jacobian matrix
provides information about the partial derivatives of the posi-
tion and orientation for the sensor measurements, which
are used to estimate the motion and position of the human
body using IMU measurements. Overall, the study pre-
sented a convincing algorithm that accurately estimates the
motion and position of the human body using IMU mea-
surements and Lie group theory. ML techniques, such as
Kalman filters and gradient descent optimization, enhance the
algorithm’s accuracy. Moreover, including the IMU Jacobian
provides essential information for motion recognition and
position estimation, allowing for more precise measurements
of the human body.

Rwigema et al. [104] proposed a multi-sensor-based ges-
ture recognition method that simultaneously uses inertial
sensors and depth data. The study utilized a differential
evolution optimization approach to find the optimal weights
for the DTW algorithm. The study focused on optimizing
the DTW algorithm and did not discuss the features used
for gesture recognition. The proposed method was tested on
27 behavioral data, and UTD-MHAD was used to verify
the accuracy. Comparative analysis showed an accuracy of
99.4%, 10% higher than UTD-MHAD. The study demon-
strated the effectiveness of combining inertial sensors and
depth data for accurate gesture recognition. However, the
study only explored the potential of using other ML algo-
rithms besides DTW. Overall, the study provides insights into
using multiple sensors for gesture recognition and highlights
the importance of optimization in achieving high accuracy.
However, further research is needed to explore the potential
of other ML algorithms and feature extraction techniques for
improving gesture recognition accuracy. Neto et al. [105] pre-
sented a gesture-based HRI system for human assistance in
manufacturing that utilized a 3D camera and a custom glove
with IMU sensors to recognize hand gestures. The study did
not discuss the features used for gesture recognition, but the
system achieved an accuracy of 91.7% using a DT algorithm.
In addition, the authors proposed an HRI framework in which
a robot can deliver tools and parts and assist workers in
holding objects for assembly work.

The framework involved attaching five IMU sensors and
UWB, and 480 and 240 static and dynamic data were trained
using the ANN algorithm, with an accuracy of approxi-
mately 98%. This approach improved the accuracy of motion
recognition and enabled the robot to perform complex tasks.
Kim et al. [106] proposed a hand gesture recognition (HGR)
system using IMU sensors for human-machine interfaces
(HMI). The study utilized four IMU sensors attached to the
back of the hand and wrist to capture hand motion data.
Based on the Restricted Column Energy (RCE) neural net-
work, the proposed algorithm improved real-time learning
capabilities by replacing the metric calculation of the RCE
algorithm with DTW. The proposed method achieved a high

accuracy of 98.6%, which was superior to theMLP and DTW
algorithms. The proposed algorithm showed excellent perfor-
mance in recognizing dynamic gestures because it considers
the time-dependent characteristics of the IMU sensor data.

Suri and Gupta [107] focused on using wearable IMUs to
recognize Indian sign language symbols. They used a custom
glove with IMU sensors and developed a CNN array consist-
ing of two individual CNNs, one for typical sentences and
the other for interrogative sentences. The features used for
gesture recognition were the raw IMU data, which the CNN
processed. The study achieved a high accuracy of 94.2%
for typical sentences and 95% for interrogative sentences,
higher than the existing CNN accuracy of 93.5%. The sta-
bilization of the model occurred at 40 epochs, indicating
the potential for fast recognition. The study’s performance
suggests that wearable sensors could provide accurate and
efficient gesture recognition for sign language interpretation.
Diliberti et al. [108] achieved high recognition accuracy for
real-time gesture recognition. The system used a light CNN
(LCNN) and 3D sensory data to recognize 20 gestures. The
study achieved an accuracy of 89.3% using the LCNN, and
the algorithm used for learning was a CNN. The features
used for gesture recognition were extracted from the 3D point
cloud data using depth images. The subjects collected data
by repeating 20 gestures for 23 gestures, and the system
showed 98% accuracy at a prediction speed of 0.1s. Overall,
this system demonstrated high accuracy and efficiency in
real-time gesture recognition.

Compared to VS methods gesture recognition research
cases, it is evaluated as excellent in terms of real-time
robustness against environmental disturbances and space con-
straints. However, white noise caused by minute vibrations
in the process of converting the inertia acting on the IMU
to the size of current, and drift caused by an accumulation
of bias in the process of converting acceleration into current
due to errors in the sensor itself In the long term, there
are disadvantages such as reduced accuracy and errors in
gyroscope data due to low-frequency noise generated from
adjacent hardware. In order to prevent accuracy deterioration
due to sensor bias and offset noise, sensor fusion [100], [101],
[102], [104], [107] with a depth sensor was the majority of
cases. Moreover, what should be noted here is that most of
the wearable IMU sensor-based studies reviewed above used
a depth sensor. The reason for using both IMU and depth
sensors is to improve the accuracy and robustness of the
gesture recognition system. IMU sensors capture the hand’s
motion and orientation, while depth sensors provide a 3Dmap
of the hand and the surrounding environment. The 3Dmap is a
representation of a physical space in a three-dimensional for-
mat, typically created using specialized software or hardware.

Moreover, it allows for a more detailed and accurate rep-
resentation of the space than a 2D map or image. It includes
depth information and can display objects and features from
different angles. Thus, this depth information is used to
complement the information from the IMU sensors and
improve the accuracy of the gesture recognition system.
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B. SURFACE EMG SENSOR-BASED METHOD
Amma et al. [109] presented a high-density EMG-based
muscle-computer interface for advanced gesture recognition,
using an array of 64 electrodes to capture EMG signals
from multiple muscles of the forearm, hand, and fingers.
The extracted features were analyzed using a naïve Bayes
(NB) classifier to recognize 27 finger gestures, achieving
an accuracy of 90% through leave-one-out cross-validation
(LOOCV). The study highlights the potential of the proposed
interface for various applications, including virtual reality
and gaming, with improved gesture information, features, and
recognition accuracy. Geng et al. [110] developed a gesture
recognition system using surface EMG (sEMG) images. The
system used a custom-built device to capture sEMG signals
from the forearm muscles and extracted features based on
the instantaneous sEMG images. The extracted features were
classified using an SVM algorithm. The system achieved
an accuracy of 92.2% in recognizing eight hand gestures.
The paper highlighted the potential of the proposed system
for various applications, including prosthetics and HRI. The
study also explored the potential of using deep convolu-
tional networks (DCN) for sEMG-based gesture recognition
and achieved high recognition accuracy in public databases
(NinaPro35, CSL HDEMG23, CapgMyo). The recognition
accuracy for single-frame sEMG images reached 89.3%,
while simple majority voting over 40 frames at a 1000Hz
sampling rate achieved 99.0%. Using simple majority vot-
ing, the system achieved recognition accuracy of 96.8% and
96.7% for 27 finger gestures in CSL HDEMG and NinaPro.
The study demonstrated the potential of using sEMG images
and DCN for accurate and efficient gesture recognition in
various applications.

Liu et al. [111] presented a wireless, low-power, real-
time hand gesture recognition system that utilizes EMG
signals. The system employs an event-driven ANN to classify
hand gestures based on the decoded EMG signals, achieving
an average accuracy of 94% in recognizing ten different
hand gestures. The proposed system suits various applica-
tions, including mobile computing and wearable devices.
Lian et al. [112] proposed a wearable armband for real-time
hand gesture recognition based on sEMG signals. The sys-
tem extracted features using a time-domain analysis and
used a classifier combining K-NN and DT algorithms for
gesture recognition. The proposed framework achieved an
accuracy of 89% in recognizing ten hand gestures, which
is an improvement over their previous work that achieved
95% accuracy for six hand gestures using only K-NN. This
improved accuracy is attributed to the new algorithm, tree-
KNN, which effectively combines the strengths of K-NN
and DT. Pancholi and Joshi [113] study aimed to develop a
low-cost wearable device to recognize hand gestures using
EMG signals from amputees’ residual limbs. The proposed
system used an analog front end (ADS1298) to capture 8-
channel EMG signals and a digital signal processor (DSP) for
real-time data analysis. The study employed two approaches

to test the system’s accuracy, which showed promising
results. First, offline tests were conducted on feature extrac-
tion and classification using an SVM algorithm, achieving a
maximum accuracy of 97.60% and an average accuracy of
95.40%. Second, train and test results in the DSP showed a
maximum accuracy of 97.75% and an average accuracy of
92%. These results demonstrated that the proposed system
could recognize user intentions with over 91% accuracy in a
real-time environment.

The study by Benatti et al. [114] proposed an ultra-low
power platform for online learning and classification of
EMG-based gestures using hyperdimensional computing.
The system captured EMG signals from the forearm mus-
cles and extracted features using a time-domain analysis.
The HDC algorithm was used to classify extracted fea-
tures, which can perform ‘one-shot’ training in real-time.
The system achieved an accuracy of 88.5% in recognizing
six hand gestures. The study discussed the potential of the
proposed system for various applications, including pros-
thetics and HRI. The HDC algorithm has the advantage
of implementing and executing the learning phase in real-
time, and HD computing through online learning shows an
85% accuracy in recognizing 11 gesture types, consistent
with the state-of-the-art. Therefore, the proposed system is
a promising solution for real-time gesture recognition appli-
cations. Wei et al. [115] presented a multi-view deep learning
approach for sEMG-based gesture recognition. The system
used a custom-built device to capture sEMG signals from
the forearm muscles and extracted classical sEMG feature
sets using a wavelet transform. These features were then
converted into multi-view representations and fed into a deep
CNN for classification. The multi-view framework outper-
formed the single-view framework by an average of 1.98%,
achieving an impressive accuracy of 96.7% in recognizing
12 hand gestures. The authors discussed the potential of their
proposed system for various applications, including prosthet-
ics and HRI. Combining classical sEMG feature sets with a
CNN-based deep learning model provides a novel approach
to sEMG-based HCI, and the multi-view framework repre-
sents an essential advancement in the field.

Chen et al. [116] proposed a compact CNN-based
hand gesture recognition system that utilizes sEMG sig-
nals. Using a custom-built device, the system captures
sEMG signals from the forearm muscles and extracts fea-
tures using a wavelet transform. The extracted features
are then fed into a compact CNN with four convolu-
tion layers, maximum pooling layers with few parameters,
and a small number of parameters, which has been val-
idated on the Ninapro DB5 dataset and Myo dataset.
EMGNet, the proposed new CNN model, was compared
to other models (CNN-LSTM, LCNN, CWT+TL) using
the Myo dataset. The results show that EMGNet reduces
model complexity and improves the accuracy of sEMG
signal classification (98.81%) compared to other models
(CNN-LSTM, LCNN).
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Additionally, compared with other models (CNN-LSTM,
LCNN) on the NinaPro DB5 Dataset, the EMGNet model
demonstrated higher accuracy in sEMG signal classification.
Moin et al. [117] developed a biosensing system that can
recognize hand gestures in real time by directly incorporating
an adaptive machine-learning algorithm into the sensor. The
system uses sEMG signals from the forearm muscles and
a flexible substrate with printed Ag/AgCl electrodes. The
classification of the preprocessed sEMG signals is carried out
by the HDC algorithm with an in-sensor adaptive learning
function, achieving an accuracy of 97.12% when learning
with a single trial per gesture. The system has the potential
for real-time wearable applications that require on-device
processing and classification of biosignals.

In contrast, Rosati et al. [118] presented a low-cost, inkjet-
printed electrode matrix for gesture recognition. The system
uses capacitive sensing with a custom-made printed circuit
board and achieves an average recognition accuracy of 88.3%
for seven hand gestures. Both approaches provide promising
solutions for hand gesture recognition using wearable sensors
but with different methods and features.

C. FSS, RF SENSORS, DATA GLOVES, AND HAPTIC GLOVES
In the study by Yu et al. [119], a hand gesture recognition
system was developed using EMG signals and a three-axis
accelerometer. The EMG signals were captured from the
forearm muscles, while the accelerometer recorded hand
movement data. The authors extracted time-domain features
and wavelet packet transform-based features from the EMG
signals and utilized these features alongside accelerome-
ter data to recognize seven hand gestures. An SVM was
employed as the classifier, achieving an accuracy of 97.44%
using 10-fold cross-validation. The study demonstrated the
effectiveness of combining EMG and accelerometer data for
accurate hand gesture recognition in various applications,
such as HRI and virtual reality. Lu et al. [120] presented a
gesture recognition system based on EMG and force myo-
graphy (FMG) signals. The system captured EMG signals
from the forearm and FMG signals from the wrist, extracting
features from both signal types using time-domain analysis.
The extracted features were classified using a multi-class
SVM, achieving a recognition accuracy of 93.2% for nine
hand gestures. The study highlighted the potential of combin-
ing EMG and FMG signals for robust and accurate gesture
recognition in prosthetics and human-computer interaction
applications. Liu and Wang [121] developed a real-time
gesture recognition system using surface EMG signals and
an ANN. The system captured sEMG signals from fore-
arm muscles, and time-domain features were extracted for
gesture classification. The ANN classifier achieved an accu-
racy of 95% in recognizing six different hand gestures.
The study underlined the potential of the proposed system
for various applications, such as rehabilitation and HRI,
emphasizing the value of using ANNs for real-time gesture
recognition.

Fang et al. [122] proposed a gesture recognition system
using a combination of sEMG and IMU data. The sEMG
signals were captured from forearm muscles, while the IMU
recorded hand movement information. The authors extracted
features from the sEMG and IMU data and employed a
deep-learning model for gesture classification, specifically
a CNN. The system achieved a recognition accuracy of
96.7% for 12 hand gestures, demonstrating the effective-
ness of combining sEMG and IMU data in conjunction with
deep learning techniques for accurate gesture recognition
in various applications. In the study by Jain et al. [123],
an adaptive gesture recognition system based on a combina-
tion of sEMG signals and fuzzy logic was developed. The
system captured sEMG signals from the forearm muscles
and used time-domain analysis to extract features for gesture
classification. A fuzzy logic-based classifier was employed,
achieving an accuracy of 94.5% in recognizing eight hand
gestures. The study demonstrated the potential of the pro-
posed adaptive system for a wide range of applications, such
as prosthetics, rehabilitation, and human-computer interac-
tion.Wang et al. [124] developed a gesture recognition system
using a deep learning-based approach with sEMG signals.

The authors captured sEMG signals from forearm muscles
and employed a deep CNN (DCNN) for gesture classifica-
tion. The proposed system achieved a recognition accuracy
of 93.9% for ten hand gestures, showcasing the potential of
deep learning techniques for accurate gesture recognition in
applications such as virtual reality and HRI. Fishel et al. [125]
introduced a highly dexterous bimanual tactile telerobot and
compared its performance to bare hands, as well as a gesture
recognition system utilizing sEMG signals and a novel convo-
lutional RNN (CRNN) architecture. Performance evaluation
for the telerobot was conducted using standard measurements
for human and robot dexterity, such as the Box and Block
test and the YCB benchmark. In the Box and Block test,
the human-piloted telerobot demonstrated a success rate of
approximately 75% in all attempts within 1 second and 85%
in all attempts within 3 seconds. In contrast, the test based
on the YCB benchmark showed that humans achieved a
perfect score in just 10.75 seconds, whereas the telerobot
took 129.87 seconds. The gesture recognition system cap-
tured sEMG signals from forearm muscles, and the CRNN
architecture was employed for processing and classifying the
signals.

D. EMG-INTEGRATED ARMBAND: MYO ARMBAND
TheMyo armband is a wearable device developed by Thalmic
Labs (now North Inc.) that enables users to control elec-
tronic devices through gestures and motion. The armband is
worn around the forearm and uses EMG sensors to detect
electrical muscle activity. The EMG sensors pick up on the
muscle activity as the user performs various hand gestures
or movements. Moreover, it also incorporates an IMU. These
sensors work together to track the orientation and movement
of the user’s arm in real-time. Combining the EMG sensors
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TABLE 3. A single type of wearable sensor-based gesture recognition.

and IMU data, the Myo armband can accurately interpret the
user’s gestures, allowing them to interact with and control
various devices and applications.

In the study by Boyali et al. [126], the authors proposed
a gesture recognition system based on EMG signals using
wavelet packet decomposition (WPD) for feature extraction
and an SVM for classification. The system was tested on
seven hand gestures, achieving a recognition accuracy of
92.14% using leave-one-out cross-validation (LOOCV). The

study showcased the efficiency ofWPD in extracting relevant
features for accurate gesture recognition. Abreu et al. [127]
presented a method for recognizing hand gestures based on
EMG and accelerometry (ACC) signals. The authors used
Principal Component Analysis (PCA) for feature extraction
and K-NN for classification. The system was tested on ten
hand gestures and achieved an average accuracy of 91.2%
using LOOCV. The study highlighted the benefits of combin-
ing EMG and ACC signals for improved gesture recognition

5702 VOLUME 12, 2024



D. Noh et al.: Decade of Progress in Human Motion Recognition: A Comprehensive Survey From 2010 to 2020

TABLE 4. Multi-type of wearable sensor-based gesture recognition.

accuracy. Pomboza-Junez and Terriza et al. [128] developed
a gesture recognition system based on EMG signals and a
combination of time-domain and frequency-domain features.

The authors employed an ML approach using a multi-class
SVM for classification. The system was tested on six hand
gestures and achieved average recognition accuracy of 93.4%
using a 10-fold cross-validation. This study demonstrated the
potential of combining time-domain and frequency-domain
features for enhancing gesture recognition accuracy. Wibawa
and Sumpeno [129] proposed a real-time hand gesture recog-
nition system based on surface electromyography (sEMG)
signals. The authors used deep learning methods for classi-
fication, specifically a Long Short-Term Memory (LSTM)
network. The system was tested on 12 hand gestures and
achieved average recognition accuracy of 97.5%. The study
highlighted the effectiveness of LSTM networks for real-time
sEMG-based gesture recognition. Shin et al. [130] presented
a gesture recognition system based on a combination of
EMG and mechanomyography (MMG) signals. The system
employed feature extraction based on the signals’ root mean
square (RMS) values and SVM for classification. The system
was tested on six hand gestures, achieving a recognition accu-
racy of 89.8% using LOOCV. The study demonstrated the
potential of combining EMG andMMG signals for improved
gesture recognition. BenalcázarBenalcázar et al. [131] devel-
oped a hand gesture recognition system using EMG signals
and a deep learning approach. The authors utilized a CNN for
feature extraction and classification. The system was tested
on ten hand gestures and achieved a recognition accuracy of
93.7% using LOOCV. The study highlighted the potential
of CNNs for accurate gesture recognition based on EMG
signals. Krishnan et al. [132] proposed a gesture recognition

system based on sEMG signals and combining time-domain
and frequency-domain features.

The authors employed an RF classifier for gesture recogni-
tion. The systemwas tested on ten hand gestures and achieved
average recognition accuracy of 96.2% using a 10-fold
cross-validation. The study demonstrated the effectiveness
of combining time-domain and frequency-domain features
and using an RF classifier for accurate gesture recognition.
Tavakoli et al. [133] presented a novel deep learning-based
gesture recognition system using sEMG signals. The authors
combined CNNs and Long Short-Term Memory (LSTM)
networks for feature extraction and classification. The system
was tested on 20 hand gestures and achieved a recognition
accuracy of 98.7. Benalcázar et al. [135] proposed a real-time
hand gesture recognition model based on EMG signals of
the forearm using the Myo armband. Their proposed model
achieved a recognition accuracy of 86%, which is higher
than the recognition accuracy of the Myo system (83%). The
model comprises five stages: signal acquisition, preprocess-
ing, feature extraction, classification, and post-processing.
They used the k-nearest neighbor rule and theDTWalgorithm
for classification. The study demonstrated the Myo arm-
band’s potential for real-time hand gesture recognition.

IV. CONCLUSION
The central perspective of this review was to categorize
recent developments in HMR methods over the past decade
into two categories: VS methods and WS methods. Within
each category, the research was further divided into sen-
sors, algorithms, datasets, gesture types, target body parts,
and recognition performances in chronological order. While
this HMR’s method-focused review strategy in this paper
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is significantly valuable for gaining insights into recent
research trends, there is also a need for reviews that focus
on industrially-relevant applications of these methods. It is
noticeable that many of the HMR studies in this paper should
have explicitly mentioned industrial applications or solely
conducted dataset-based simulation workwithout performing
any experimental validation with real physical systems.

Therefore, while narrowing the review scope, it is worth
considering the industrial contribution of HMR methods as
the primary perspective and exploring both HMR and HRI
research centered around industrially relevant robotic sys-
tems. For instance, a review of HMR or HRI research applied
to robotic systems like the ‘autonomous mobile manipulator
robot (AMMR),’ which has recently gained significant atten-
tion in the global robot market with an expected Compound
Annual Growth Rate (CAGR) of 47.1% and a market size of
USD 1.5157 billion by 2028, could garner significant interest.
Furthermore, if this review enhances insights into HMR and
HRI for AMMR, it can contribute to improving AMMR’s
industrial applicability, making it highly significant.

In fact, the division of gesture types into static and dynamic
in this review was also considered from the perspective of
evaluating HMR research for industrial applicability. Thus,
it is essential to assess whether static gesture types can only
support predefined control commands mapped to specific
gestures and whether this method can be applied to remote
control of robots in the actual industrial setting from an
operator’s usability perspective. Especially when considering
the challenges of different reference frames between the oper-
ator and the robot, as well as situations where the operator
is not within the robot’s field of view and configuration is
not straightforward, not only HMR but also HRI should be
included in the review. Therefore, in future reviews, addi-
tional considerations from HMR and HRI perspectives will
include:

① HMR: (a) The relationship between gesture resolution
and controllable robot motion resolution, (b) Vision-
Wearable sensor fusion based hybrid HMR method for
improved HMR performance

② HRI: (a) Methods for ensuring visibility of robot
configuration and the surrounding environment, (b)
Intuitive UI design to overcome/adjust reference frame
differences, (c) UX evaluation methods, including
real-time performance and controllability.
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