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ABSTRACT Reconfiguration of a distribution network is one of the main approaches to control and enhance
distribution network indices, such as voltage profile and power losses. Distribution network operators
perform reconfiguration for long-term or short-term periods based on network equipment and intended objec-
tives. Long-term or static reconfiguration is suitable for traditional and modern networks with conventional
switches. On the other hand, modern distribution networks that are equipped with one or more remote control
switches can perform reconfigurations within short-term periods, to maximize predefined objectives. This
paper presents a comprehensive review of recent literature on network reconfiguration. Reconfiguration
methodologies are classified into five groups: classical methods, heuristic methods, metaheuristic methods,
hybrid methods, and methods based on machine learning. The paper provides a general definition and
comparison of the categories and discusses their application in dynamic and static reconfiguration. The
paper introduces dynamic reconfiguration as the future challenges in smart and modern distribution networks
and for the first time categorizes various methodologies in dynamic reconfiguration. The paper serves as a
guide to assist engineers and researchers in selecting the most suitable methodology based on their system
equipment and objectives.

INDEX TERMS Distribution network, optimization, machine learning, static reconfiguration, dynamic
reconfiguration, metaheuristic algorithms.

I. INTRODUCTION banks [1], increasing distributed generation (DG) penetration

As the final stage of an electrical power system, electrical
power distribution networks (DNs) deliver the electricity
from the transmission system to individual consumers. DNs
have considerable losses due to their dispersion over vast
rural and urban areas, and their comparatively higher line
resistance. Therefore, the greatest portion of power system
losses occurs in distribution networks. Several methods are
proposed and have already been implemented to decrease
power losses of DNs such as the installation of capacitor
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[2], and network reconfiguration [3]. Among these, the power
loss reduction methods based on distribution network recon-
figuration (DNR) are known to be practical solutions, that can
often be implemented without much additional equipment
and with minimum investment.

DNs are often operated radially to simplify the protec-
tion and to lower the feeder short-circuit levels. However,
especially in urban areas, DN are designed with more sophis-
ticated structures such as a mesh to provide the possibility
of faster restoration after a fault. Therefore, there are some
normally open switches or tie switches in a DN to restore
any power outage to customers through connecting them to
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the healthy sections of the feeder by transferring interrupted
customers to other feeders.

In addition to the restoration, in normal operations,
DN operators can close one or more of the normally open
switches and open the same number of normally closed
switches to achieve some defined operational objectives for
DNs. Moreover, for DN planning studies, the optimal net-
work configurations can be designed to achieve some defined
planning objectives. Therefore, in normal conditions, a DNR
can be generally defined as a configurational change in a DN
with normally open and normally closed switches to achieve
specific objectives [4].

A. LITERATURE REVIEW

In 1975, Merlin proposed a DNR for the first time as a
method for power losses reduction [5]. Merlin used a branch-
and-bound algorithm to solve the reconfiguration problem
with DC load flow. Shirmohammadi and Hong developed
branch and bound with an optimal flow pattern and an AC
load flow for power loss reduction [6]. Civanlar in 1988 pro-
posed a branch exchange heuristic method to solve the DNR
problem for power losses [7]. Baran and Wu improved the
branch exchange method with approximate load flows [8].
They also implemented reconfiguration for load balancing
and introduced the benchmark IEEE 33 bus for DNRs. With
the rapid advancements in computational power during the
following years, the use of more complex techniques such
as meta-heuristic methods became popular [9]. In 1992 for
the first time, a genetic algorithm (GA) was implemented
for DNRs for power loss reduction [10]. In 1994 a modified
simulated annealing method was applied to DNRs for loss
reduction [11].

In addition to several solution methods proposed for the
DNR problem, the literature also varies in terms of its objec-
tives [12]. Decreasing the power losses has been the main and
the most common objective of the reconfiguration problem.
Reconfiguration with transferring loads from heavy feed-
ers to light feeders decreases the power losses of the DN.
In recent years some other objectives have been considered
for DNRs. Reconfiguration can change the flow of active
power and reactive power in a distribution network in a
targeted way to improve the voltage profile of all busses or
some specific busses [13]. DNR can improve the ability of
the system under planned conditions as defined with relia-
bility [14]. Changing the flow of active and reactive power
modifies the current magnitude of branches and improves
reliability indices [15]. Moreover, reconfiguration can modify
the harmonic current flow in branches in a way that the total
harmonic distortion of busses [16] and harmonic losses [17]
of the DN are improved. Furthermore, reconfiguration can
decrease the voltage flicker [18] and the voltage sag [19] by
changing the fault current path. Also, reconfiguration in a
three-phase DN can improve voltage unbalance and related
power losses by changing the phase loads [20], [21]. There
are also studies on decreasing the operational costs such as
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FIGURE 1. Number of publications in distribution network
reconfiguration from 1973 until October 2023.

the cost of demand response participation [22], operational
cost of microgrids [23], [24], cost of power losses [25], and
switching cost [26] by reconfiguration. Recently, the capabil-
ity of DNRs to increase DG hosting capacity has also gained
attention [27], [28], [29].

B. BIBLIOMETRIC ANALYSIS

The graph illustrates the trend of published papers in the field
of distribution network reconfiguration from 1973 to October
2023 in Fig. 1. Considering the inclusion of ten months of
2023, the number of papers in 2023 is lower than in 2022.
The graph indicates an increasing trend in the number of
published articles in this field in recent years.

C. MOTIVATION AND AIMS
In the context of Distribution Network Automation (DNA),
the reconfiguration of distribution networks is a core task
aimed at optimizing and controlling distribution network
metrics while striving to maximize predefined objectives.
Nonetheless, given the multitude of approaches that have
been proposed over more than 50 years of research in this
field, the selection of a suitable reconfiguration methodology
remains a significant challenge.

There is a need to establish clear categories and conduct
a thorough comparative analysis of the advantages, prerequi-
sites, and constraints associated with various reconfiguration
methods. This analysis is particularly crucial in the context of
modern and intelligent distribution networks. The objective is
to create a practical guide for selecting the most appropriate
reconfiguration technique for a specific system.

D. CONTRIBUTION

This paper reviews a relatively large number of different stud-
ies on the DNR problem proposed for either dynamic or static
reconfiguration. The techniques are classified and compared
from various aspects including the objectives considered,
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and the solution techniques proposed to serve as a guide
for engineers and researchers to select the most appropriate
method based on the problem and the related objectives.

E. PAPER ORGANIZATION

In Section II, effect of distribution system automation in
the context of DNR is investigated. In section III, the paper
presents a definition for the DNR problem and classifies
different methods based on their study time frame. Section IV
presents a methodological classification and an extensive
review of different DNR methods, where the details and
comparisons of different classes are presented in different
subsections. Finally, Section V presents the future trends and
the conclusions.

il. DISTRIBUTION SYSTEM AUTOMATION IN THE
CONTEXT OF DNR

Distribution System Automation (DSA) plays a crucial
role in the process of distribution network reconfiguration.
It involves the integration of advanced technologies, intelli-
gent devices, and decision-making algorithms to optimize the
operation and configuration of the distribution network. In the
context of DNR, DS A has more focus on using remote control
switches in dynamic reconfiguration.

DSA in distribution network reconfiguration consists of the
following components:

e Network Monitoring and Measurement: DSA relies on
real-time network monitoring and measurement techniques to
collect data such as load demand, distributed generation pro-
file, etc [30]. This data is obtained through various intelligent
devices, such as smart meters, sensors, and communication
systems.

e Decision-Making Algorithms: Advanced decision-
making algorithms according to defined objectives such
as power losses [31], THD [17], reliability [32], etc. are
employed to analyse the collected data and make informed
decisions regarding network reconfiguration.

e Remote Control and Switching Devices: After finding the
optimum configuration DSA utilizes remote control switches
to operate and manage the switching devices within the dis-
tribution network [33].

e Communication Infrastructure: A robust communication
infrastructure is essential for the operation of remote control
switches and the exchange of real-time data in the automation
of distribution network reconfiguration [34].

DSA has some benefits in reconfiguration. DSA allows for
quick fault detection and isolation, minimizing the impact
of faults and enhancing system reliability. By fast recon-
figuration, power can be restored to affected areas more
rapidly. DSA optimizes the distribution network indices such
as power losses, power quality, and voltage profile. Also,
DSA enables the seamless integration of renewable energy
sources, energy storage systems, and electric vehicles with
the network. Furthermore, DSA allows for real-time adap-
tation to changing network conditions, load demands, and
environmental factors.
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FIGURE 2. Possible configurations for a simple distribution network with
different flows and end busses.

lIl. DISTRIBUTION NETWORK RECONFIGURATION
PROBLEM

DNR, in general, is defined as topological changes in a DN
by normally open and normally closed switches to achieve
specific planning or operational objectives.

Fig. 1 depicts the effect of reconfiguration on a simple
DN. It is designed with a loop configuration, but it is oper-
ated radially. As shown, the network has four busses, four
normally closed switches or lines (L1, L2, L3, L4), and one
normally open switch or line (L5). With closing LS5, there are
three alternative lines to open (L2, L3, L4) to maintain the
radial operation. Generally, in this simple network, having
one normally open line provides four possible configurations
for the DN operator. The amount and direction of current
flow, and consequently power system indices (e.g., voltage
profile), are different for the four configurations. For exam-
ple, the direction of the current in line L3 in configurations
a and d is different from configuration b. Also, as shown in
Fig. 2, end busses that have a minimum voltage in this simple
DN are different for each topology, and each topology has a
specific voltage profile.

Every configuration in DN can be presented as a graph,
where the vertices represent the branches, and the nodes
represent the busses. Due to the radial operation of a DN,
only trees between all possible graphs are acceptable. There-
fore, DNR in graph theory can be defined as finding the
optimal tree within the possible graphs representing the DN.
As shown in Fig. 3, the DNR problem for this simple network
is the process of identification of the optimal tree among the
four possible trees, as the one satisfying some predefined
objectives, such as a better voltage profile or lower power
losses.

As mentioned before, reconfiguration can either be imple-
mented for long-term or short-term periods. The following
section describes the short-term and the long-term reconfig-
uration problems and highlights their differences.

A. STATIC RECONFIGURATION
Static reconfiguration is usually considered for the plan-
ning or long-term operation of a DN for a period such as
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FIGURE 3. Possible trees for the simple distribution network of Fig. 1.

a season or a year. In a static reconfiguration, loads and
production are assumed to be constant for the computations
during the study time frame. Static reconfiguration can be
done with both manual switches and remote-control switches.
Therefore, static reconfiguration is a more practical approach
for the reconfiguration of traditional DNs that are equipped
with manual switches. Static reconfiguration always pro-
vides a fixed topology over a long-desired study time
frame.

In static reconfiguration, inputs are the network model, the
static estimated values of active and reactive loads of busses,
and DG generations in the study time frame, and the output
is the optimal configuration for a long-term period.

The dimension of the search space of the static reconfig-
uration problem can be calculated according to (/) for each
study time frame:

SS=2x...x2=2"W (1)
[ ——
nsw

where ngy shows the number of switches.

B. DYNAMIC RECONFIGURATION

Dynamic reconfiguration is performed for shorter-term peri-
ods such as an hour, a day, or a week taking into account load
and production variations. Dynamic reconfiguration relies on
remote-control switches with fast and frequent opening and
closing capabilities and the required communication infras-
tructure. Therefore, it can only be applied to more modern
DNs equipped with such infrastructures. In static reconfigu-
ration, the loads and production are assumed to be constant in
peak or average of them, while for dynamic reconfiguration
their time variations can be considered [35].

For dynamic reconfiguration, the required inputs include
the network model, the estimated time series of active
and reactive loads of busses, and DGs in the study time
frame. As shown in Fig. 4, dynamic DNR studies can con-
sider the time-variations of DGs (e.g., PV units) and loads
(e.g., EV chargers) and operation programs such as demand
response. The output is an optimal configuration for each time
interval during the study time frames.
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1) TIME INTERVALS IN DYNAMIC RECONFIGURATION
Dynamic reconfiguration of the distribution network is an
NP (nondeterministic polynomial time) optimization prob-
lem taking into account the time-varying nature of loads and
distribution generation [36]. In order to reduce the search
space and also due to the integrations that might take place
between the periods, dynamic reconfiguration can be limited
to smaller-size multi-period problems in multiple time inter-
vals to prevent excessive switching [37].

Time intervals in a dynamic reconfiguration are the periods
where DN dynamic inputs such as load, electricity price, and
DGs power are considered to be constant and there is no new
dynamic input that would change network indices, such as
voltage profile and power losses. Therefore, reconfiguration
can be simply implemented for each time interval. In [38], a
24-hour dynamic reconfiguration problem with time-varying
electricity prices and different load levels with the effect of
distributed generations is divided into multiple time intervals
to make the problem more flexible.

2) SEARCH SPACE IN DYNAMIC RECONFIGURATION
Dynamic reconfiguration can be implemented for short time
frames such as hours, days, and weeks. In this part, the search
space of dynamic reconfiguration for one day with variable
hourly loads is discussed. Similar conclusions can be made
for other study time frames and time intervals.

Two approaches can be considered for the 24-hour
dynamic reconfiguration problem. Those are described
hereafter.

Approach One: without considering hourly switching
operation cost. Neglecting the switching cost makes the
optimal configuration of each hour independent of the next
hour. Therefore, the 24-hour dynamic reconfiguration can be
divided into 24 independent static reconfiguration problems,
one for each hour. Also, in some references, the 24 hours are
divided into fewer time intervals [39], [40], [41]. The search
space of this section can be calculated according to (2).

SS:nT]X 2X...x2 =nT1X2nSW (2)
————

nsw
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where ny; and ngy show the number of switches and the
number of time intervals in the study time frame, respectively.

Approach Two: considering hourly switching operation
cost. In this case, due to the consideration of switching
cost between different hours, the 24 hours should be con-
sidered together in the reconfiguration problem. In other
words, in some hours, the cost of switching is more than the
economic benefits of saving losses between configurations.
Therefore, some changes in configurations between hours
may not be economically appropriate or beneficial in com-
parison to the first case. Consequently, taking into account
switching costs can lead to a further reduction of operational
costs.

(3) shows the search space for the second case [42].

24

SS=[2x...x2

nsw

— p(nsw x24) 3)

Some research studies propose decreasing the search space
in the second case by clustering the loads into a few clus-
ters [43], [44]. In [45], the fuzzy C-mean clustering method is
utilized to reduce the load condition scenarios over the study
time frame.

Load clustering can reduce the search space as shown
in (4).

ncr

SS§={2x...x2

nsw

— 2nsw xncL) 4)

In (4), ncr shows the number of clusters.

In general, in situations where switching cost is non-
negligible, although the first approach has a lower compu-
tational burden, the integrated consideration of 24 hours can
provide more favourable results in terms of operational costs.

Either with a static or dynamic reconfiguration, there is
no unique way to solve the DNR problem. Various meth-
ods have been proposed during the last four decades. The
next section categorizes and discusses these reconfiguration
methodologies.

IV. RECONFIGURATION METHODOLOGIES
As mentioned before, the reconfiguration problem is about
determining the optimal tree in the graph representing the
distribution network topology. While the location of the net-
work switches defines the possible trees, the status of these
switches turns the reconfiguration problem into an optimiza-
tion problem with discrete variables. Besides, the equations of
power flow and power losses bring non-linearities to the prob-
lem. Therefore, reconfiguration can be considered a Mixed
Integer Nonlinear Programming (MINLP) problem with inte-
ger and continuous variables and nonlinear equations [46].
In this paper, the methods of finding optimum configu-
ration in DNR are categorized by reviewing recent papers.
Based on the reviewed literature on the DNR methods,
as shown in Fig. 5, methods for solving DNR in aspects of
the type of optimization are categorized into five groups:
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classical methods, heuristic methods, metaheuristic methods,
hybrid methods, and methods based on machine learning.
Classical methods mostly solve the reconfiguration problem
by transforming the objective function and problem con-
straints into a second-order or first-order problem. Heuristic
methods are algorithms that use the operator’s experiences
and special features of the problem to propose the optimal
configuration. These methods are specifically designed for
the reconfiguration problem and cannot be applied to other
optimization problems [47].

Metaheuristic methods rely on iterative optimization algo-
rithms that have often been developed based on an abstraction
of nature [48]. They are also called derivative-free methods
for optimization since they explore the space of solutions
without computing derivatives. Hybrid methods try to reduce
shortcomings and increase the advantages by combining two
or more methods. Finally, machine learning methods build
an optimization model and learn the parameters of the model
using the given data [49]. The next subsections review and
compare the methods proposed within each of the categories
shown in Fig.5.

A. CLASSICAL METHODS

As stated before, DNR is an MINLP problem that is very
difficult to solve mathematically. In classical DNR meth-
ods, the objective functions and constraints are approximated
in such a way that they are modeled as first-order or
second-order functions. Therefore, the reconfiguration prob-
lem changes to a mixed integer linear programming problem
(MILP) [50], [51] or a mixed integer quadratic program-
ming problem (MIQP) [52], [53], Because it can be solved
with non-commercial solvers too. In these methods, calcu-
lation time is significantly reduced but the approximations
of objective functions and constraints can cause the opti-
mum configuration obtained from the approximate network
to be different from the optimum one of the actual networks.
In [54] the MILP model is implemented to solve simultaneous
reconfiguration and capacitor placement in the distribution
network.

Some studies propose the implementation of classical tech-
niques to solve the dynamic reconfiguration problem. In [55],
a three-phase DNR with a power loss objective is formulated
as a mixed integer quadratically constrained quadratic pro-
gramming (MIQCQP) method, which is then solved using the
CPLEX software.

B. HEURISTIC METHODS

These methods are types of algorithms that are proposed
only for the reconfiguration problem and cannot be applied
to other optimization problems. In these methods, the con-
ventional rules of reconfiguration problems are used to solve
and simplify the problem. A heuristic algorithm mainly
determines the optimal configuration through a set of prin-
ciples. They can be considered as optimization processes to
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find an approximation of the optimal solution of the DNR
problem [56], [57].

1) METHODS BASED ON THE OPTIMAL FLOW PATTERN
The optimal flow pattern is a network load flow with two
conditions [6]:

1- All switches are closed.

2- The reactance of lines is neglected and only their resis-

tance is considered.

After the load flow, the optimal flow pattern opens the branch
that has the minimum current value. Then, performing the
load flow for this new grid topology, the next branch accord-
ing to the optimal power flow pattern is opened. The process
continues until a radial topology is achieved and configura-
tion with minimum losses is attained. The flowchart of this
method is shown in Fig. 6.

The main advantage of this method is that the final con-
figuration does not depend on the initial configuration. The
main shortcoming is that the final solution may not be optimal
because of the mutual effects among the loops. In [58], opti-
mal flow pattern is enhanced by considering only one loop
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and closing only one switch in each step. This method elim-
inates mutual effects among multiple loops. In [59], a global
optimal flow pattern is proposed for minimizing power losses
in unbalanced distribution networks.

2) METHODS BASED ON BRANCH EXCHANGE METHOD

In this class of methods, pairs of branches are considered in
two cases in which one of them is opened and another one
is closed. The resulting values of the objective function of
the two cases are compared and the branch with the better
value is selected to be opened [7], [8]. The main advantage
of the branch exchange method is that a radial configuration
is created during the optimization process and does not need
to be checked again. The main disadvantages of this method
are the dependency of the final configuration on the initial
configuration and the high computational time required to
reach the solution. The most common objective function
of this class of methods is based on power losses [7], [8],
[60]. However, recently, some studies have proposed branch
exchange methods with other objectives. In [61] and [62], the
branch exchange method is applied with power quality objec-
tives such as harmonic distortion, voltage sag, and voltage
unbalance.

3) OTHER KNOWLEDGE-BASED HEURISTIC METHODS

There are heuristic methods proposed based on optimal power
flow. In [63], a heuristic method with a convex relaxation of
the AC optimal power flow problem is introduced. In [64],
first, all switches are initially closed. Then a list of candidate
switches for breaking the loops is determined and one of them
based on optimal power flow is chosen. Some research studies
use a branch-and-bound strategy, which organizes the search
space with an implicit enumeration method that uses a tree
structure and bounds. In [65], a heuristic method based on a
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branch-and-bound strategy is proposed which constructs the
search space based on the branch exchange method.

C. METAHEURISTIC METHODS
Metaheuristic methods are iterative process algorithms
deployed to find optimal or near-optimal solutions using a
learning strategy, exploration, and exploitation of the search
spaces [57], [66], [67]. Metaheuristic algorithms, in contrast
to knowledge-based methods, do not use specific features
of the problem and can be utilized to solve a variety of
optimization problems by adjusting their specific parameters.
The computational time of these methods depends on their
convergence speed which is dependent on the type of problem
and the selected method parameters.

Some characteristics of metaheuristic methods can be sum-
marized as follow.

« Metaheuristics can be applied to many types of the
optimization problem.

o Metaheuristics usually allow an easy parallel implemen-
tation.

o Other methods such as heuristics can be combined with
metaheuristic algorithms.

« Exploration and exploitation are the main functions of
metaheuristics.

o Metaheuristics do not compute explicitly derivative of
objective functions, which is why they are often also
called derivative-free optimization techniques.

In Appendix, a classification of metaheuristic methods,
as well as their advantages and disadvantages, are presented.

Metaheuristic methods are one of the most popular meth-
ods for solving the static reconfiguration problem [68].
Table 1 shows some applications of metaheuristic meth-
ods in solving the static DNR. In [69], the application of
some popular metaheuristic methods such as Discrete Par-
ticle Swarm Optimization (DPSO), Shuffled Frog Leaping
Algorithm (SFLA), and Imperialist Competitive Algorithm
(ICA), to reduce power losses, are compared by considering
the speed and accuracy of the methods. In [70] the GA,
PSO, and Bat Algorithm (BA) are performed to improve
reliability indices. In [9], the results of static DNR for a wide
variety of metaheuristic methods in different case studies with
the objective of power losses are compared. Recently some
research works focused on introducing new metaheuristic
methods for DNRs [71].

In some recent research studies, metaheuristic methods
are also applied for solving the dynamic reconfiguration
problem. In [42], the stochastic model predictive control
concept is applied to consider dynamic and adaptable futures
in the optimization problem. In this research work, a GA
algorithm is implemented to solve reconfiguration for each
hour by considering the value of forward-looking hours.
In [25], a one-hour time interval is considered with Particle
Swarm Optimization (PSO), and 24 independent reconfigu-
rations are implemented for each hour. In [72], an improved
genetic algorithm is implemented for 24-hour dynamic
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reconfiguration considering the dynamic behaviour of
plug-in hybrid electric vehicles (PHEV) and wind generation.
Operational costs including switching costs, cost of power
losses, and cost of energy not supplied (ENS) are considered
in this study.

D. HYBRID METHODS

Hybrid methods are a combination of two or more algorithms
to achieve more advantages from their integration while min-
imizing their shortcomings.

1) HYBRID METAHEURISTIC METHODS

Hybrid metaheuristics are a combination of metaheuristic
methods that try to overcome some of the disadvantages of
metaheuristic algorithms such as: trapping into local optima
due to unsuccessful exploitations, slow convergence, and
incomplete exploration of the search space. The hybrid meta-
heuristic algorithms obtain a near-optimal solution and are
shown to have a better trade-off between the exploration
and exploitation quality of an algorithm [73]. In [74], hybrid
SFLA and PSO are performed to solve static reconfiguration
with objectives of reducing power losses, improving voltage
stability, and reducing switching numbers.

Hybrid metaheuristics methods are also widely applied to
solve the dynamic DNR problem. In [75], reconfiguration
was performed for 24 hours. To solve this complex optimiza-
tion problem, a hybrid algorithm, which is a combination of
the improved particle swarm and the artificial bee colony
is proposed. This study considers the power losses and it
uses the hourly pattern of electric vehicles and distribution
generations. In [76], a hybrid evolutionary algorithm based
on a combination of the PSO and modified SFLA is proposed.
In [38], a hybrid evolutionary algorithm based on a com-
bination of PSO and Grey Wolf optimization algorithms is
proposed. In this work, eight time intervals with eight differ-
ent load profiles are considered for dynamic reconfiguration.
In [77], the exchange market algorithm (EMA) and wild
goats algorithm (WGA) are combined to solve the dynamic
reconfiguration problem with an objective function of power
losses. In this study, the load profile changes hourly, and the
optimum configuration of each hour is independent of the
others.

2) HYBRID METHODS BASED ON HEURISTIC RULES

This class of methods combines heuristic methods with other
popular methods. In [78], a heuristic approach based on
the Successive Branch-exchange Algorithm and a stochas-
tic approach based on the Kruskal Algorithm is combined
with the GA for static reconfiguration. The proposed hybrid
method has fast convergence for large distribution networks
and can find a nearly optimal value for the power losses.
In [79], first, a heuristic method based on optimal power
flow is conducted for the reduction of the search space. Then,
a PSO is implemented to find the optimal configuration with
minimum power losses.
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TABLE 1. Review of different methodologies and their objectives for static DNRs.

Types of Optimization Objective . s
Reference nz]e[:)tho d mlc): thodology fu nJc tions Main achievements Case study
New MILP formulation to reduce
Teshome [51] MILP Power losses the deviation between the linear 136 bus DN
model and exact losses
16-Bus Test System
IEEE 33 bus
Classical Power losses Reconfiguration simultancous DG IEEE 69 bus
Gallego [50] methods MILP Voltage 1 ¢ 83 bus DN
deviation placemen 119 bus DN
136 bus DN
202 bus DN
Jabr [53] MIQP Power losses Comp roml;fﬁll/iliiz’yand MIQP 1833513;158%1\;]
. Power losses in ~ Proposing optimal flow pattern for Modified [EEE 16 bus
Yinpeng. Qu [59] Optimal flow pattern IEEE 37 bus
unbalanced DN unbalanced networks
1096 bus DN
Power losses

voltage sag

Yadaiah.Ch [61] Ig/ellztet:iogrsl Branch exchange . THD . Proposing branch e?(ch.ange for IEEE 33 bus
heuristic rules Minimization power quality indices 25 bus unbalanced DN
of System
unbalance

Other heuristic

Gomes [64] methods based on Power losses Proposing a new heuristic method IEEE 33. l?us
Optimal power flow based on optimum power flow Brazilian utility DN
Power losses . IEEE 33 bus
Duan [92] GA Reliabilit Proposing enhanced GA IEEE 69 bus
Y 136 bus DN
. Power losses S . IEEE 33 bus
Sayadi [93] PSO THD Considering nonlinear loads Real 77 bus
IEEE 33 bus
. . . IEEE 69 bus
Hizarci [94] PSO Power losses Proposing enhanced PSO 84 bus Taiwan power
company
Power losses S .
Asrari [95] SFLA voltage sag Considering Pareto frontier for 136 bus DN
o THD multi-objective
Mo o
. Harmony Search . IEEE 33 bus
Dias Santos [96] (HS) Power losses Proposing enhanced HS 84-bus DN
119-bus DN
. . IEEE 33 bus
dos Santos [97 Harmony Search Power losses Propos1‘ng radial method 84-bus DN
(HS) Proposing enhanced HS
posing 118-bus DN
Power losses
voltage stability
. Artificial Bee Colony index Considering hybrid energy system
Nasiraghdam [98] (ABC Cost of ener; (PV/wind turbine/fuel cell) sizin, IEEE 33 bus
gy g
Minimization
total emission
Teaching Learning- Proposing a new hybrid method
Quaderi [99] Based Optimization V]Z)(ﬂzezlorsjgsle that compared with other iggg 2; EE:
(TLBO) & HS eep metaheuristic methods
Grey Wolf Optimizer Opté?:?ﬁ%g;fénii:faféiglng IEEE 33-bus
El-salam[100] (GWO) & PSO Power losses ! senerat IEEE 69-bus
DNR simultaneous sizing and
o Actual 78-bus
siting DGs
. . Power losses
Hybrid Improved Analytical N
Tolabi[101] metaheuristic (IA) & Bees V(;é?dg:rli(r)zgle Reconﬁguratll(;rclesl;rrelxtaneous DG IEEE 33 bus
methods Algorithm (BA) . P
balancing
Power losses
Voltage R U
.. o Considering voltage stability index IEEE 33 bus
Azizivahed[74] SFLA&PSO Sti?llrlrlltbiirz)dfex related to the short circuit capacity IEEE 95-bus
switching
Kumar [102] Cuckoo Search Power losses Proposing a new hybrid method IEEE 33 bus
(CS)& GWO reaches the better optimal solution IEEE 69 bus
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TABLE 1. (Continued.) Review of different methodologies and their objectives for static DNRs.

Voltage

deviation

Gravitational Search

Power losses

Optimal sizing and location of DG

Ramakrishna[103] Algorithm Voltage imul f . IEEE 33 bus
(GSA)&Tabu search deviation simultaneous reconfiguration
Chaotic Particle
Swarm Optimization Proposing a new hybrid method
Azad-Farsani[104] (CPSO) ‘&Teachlng- Power losses that compared with other IEEE 33 bus
Learning-Based . 70-Bus DN
Optimization metaheuristic methods
(TLBO)
Modified Tabu Reconfiguration simultaneous IEEE 33 bus
Abd-El- Scarch (MTS) & Power losses capacitor allocation in an IEEE 119 bus
Hakeem[105] Harper Sphere Search nbalanced network IEEE 123 bus unbalanced
(HSSA) " W DN
The heuristic method Proposing a hybrid heuristic IEEE 16 bus
Silva[79] based on optimal Power losses method using reduction of search IEEE 33 bus
Other hvbrid power flow & PSO space IEEE 69 bus
Y . Power losses
methods The heuristic method Minimization IEEE 33 bus
Jakus [78] based on branch of network Proposing a new hybrid algorithm 1760 bus DN
exchange &GA 4400 bus DN

loading index

Hybrid methods based on heuristic rules can be suitable for
multi-period dynamic reconfiguration. In [44], an improved
fireworks algorithm taking into consideration heuristic rules
for the reduction of power losses is presented, which can
simultaneously improve the solving speed of the DNR and
avoid falling into a local optimum configuration or producing
many infeasible solutions. The essence of the heuristic rule in
this method is to find the most promising branch for reducing
the power loss of each loop, thereby filtering out numerous
poor solutions. In this study, loads in 24 hours are clustered.
Load clustering can transform a 24-hour time-varying recon-
figuration into a few load reconfiguration clusters, which can
greatly reduce the number of computations.

3) HYBRID METHODS BASED ON LINEARIZATION

Some methods combine linearization techniques with other
methods to become more advantageous. In these methods,
in part of the approach, several linearizing techniques are
proposed to convert the complex DNR problem into an MILP
or MIQP model [55].

In [43], nonlinear dynamic reconfiguration is transferred
into a mixed integer second-order cone programming (MIS-
OCP). A combination of a modified binary PSO and CPLEX
solver is used to solve the problem. BPSO takes the switch
states as random swarms and embedded CPLEX solves the
problem. In this study, the calculation dimension of dynamic
reconfiguration is also decreased with fuzzy c-means (FCM)
clustering. FCM performs the clustering based on a fuzzy
membership matrix.

Table 1 shows a summary table of different methodologies
proposed for the static reconfiguration problem.

E. MACHINE LEARNING METHODS

Machine learning methods are a category of artificial intel-
ligence that enable computers to think and learn on their
own. The trained computers can perform actions with low
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calculations. Owing to their low online computational bur-
den, machine learning techniques are mainly applied to
dynamic reconfiguration problems. The research studies can
be generally classified into methods based on ANN and the
methods using the Reinforcement Learning (RL) concept.

1) METHODS BASED ON ANN

An artificial neural network (ANN) is a machine learning
approach imitating the structure and functions of human brain
neurons [80]. ANN is an adaptive system that learns from data
by using interconnected nodes or neurons in a layered struc-
ture. Each neuron in each layer is connected to the neurons
of the next layer through links, each with a certain weight.
The output of each neuron is computed by applying some
non-linear function on the sum of its inputs. The weights have
to be determined by a training algorithm and they represent
the information being used to solve a problem. ANNs can be
trained to recognize patterns, classify data, and forecast future
events. In reconfiguration, a well-trained ANN can provide
a set of optimal topologies for each load pattern. The most
desirable feature of ANN in the DNR problem is its capa-
bility to provide real-time optimal configurations without
executing an extensive iterative procedure [81]. ANN-based
DNR methods take into consideration active and reactive
demand of loads as the inputs and optimal configuration as
the output [82]. In [83] a tree layer ANN is proposed to reduce
power losses in a DNR. In this study, loads are classified by
fuzzy c-means clustering to reduce the size of the ANN and
the computational burden.

2) REINFORCEMENT LEARNING

Recently, some papers, especially in the field of dynamic
reconfiguration of distribution networks, have focused par-
ticularly on the use of reinforcement learning, for online
network reconfiguration. These methods are shown to be able
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to perform reconfiguration in very short intervals, leading to
a considerable reduction in power losses.

Reinforcement learning has many benefits: it can adapt
to changing environments, make complex decisions, learn
autonomously, and continuously optimize strategies based
on feedback. These advantages, combined with its proven
potential for loss reduction, indicate its significance for future
studies. Therefore, in the following, the reinforcement learn-
ing method for DNR will be explained in more detail.

RL refers to a class of machine learning techniques in
which an agent learns a policy that solves an optimal sequen-
tial decision-making problem. The resolution is made by
assuming that a software agent interacts with the problem,
called in RL the environment, and gets a reward from it every
time it applies an action to this latter one. The final purpose of
an RL agent is to find the optimum solution through simple
numerical calculations with different input data. RL methods
are defined with two modules: learning and execution [84].
First, often using simulations and recorded past data, the
RL agent is trained within a learning module. The process
of learning is time-consuming due to using a large amount
of data. Secondly, in the execution phase, the trained agent
can find the best action for a new set of input data fast and
with minimum computations. The main advantage of RL in
comparison to metaheuristic methods is the reduction of the
online computational burden which makes RL suitable for
online reconfiguration [85]. Therefore, RL techniques are
naturally well-suited for solving the dynamics reconfigura-
tion problem since they can find optimal configurations with
low calculation in short periods.

The main components of the DNR problem with RL are as
follows:

Agent: distribution system operators can be considered the
agents of a DNR. The purpose is to train agents which can
make automatic decisions in different situations.

Environment: the power distribution network is the envi-
ronment of DNR problem.

Action: at each step, an agent can take an action from a
set of defined actions. Opening or closing switches can be
defined as a set of actions for DNR problems in RL.

State: the observation of the distribution network consti-
tutes the state. Various input data including load demand,
power of DGs, frequency of switch operation, and current
topology configuration are all a part of the state. Interaction
between environment and action can update the state.

Reward: The reward is similar to the objective func-
tion in metaheuristic optimization problems. In most DNR
problems, the cost of operation including the cost of power
losses, the cost of switching action, and other operating costs,
are considered within the rewards.

The agent in state S;, with action A;, reaches reward Ry 1 =
r(St, Ar), and the environment changes to S;1, at each dis-
crete time step . The process ends when t=terminal state.
The goal of the RL is to train an agent to find the opti-
mal policy which means the best action in a specific state
S;. The action value function can help to find the optimal
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FIGURE 7. Reinforcement learning framework in dynamic distribution
network reconfiguration.

policy. Fig. 7 shows the reinforcement learning framework
in dynamic distribution network reconfiguration.

RL methods applied to the DNR problem can be either
on-policy or off-policy. On-policy methods learn to improve
and evaluate the policy that is used to take actions. It is costly
and risky to apply an insufficiently trained control policy on
real networks [86]. In contrast, off-policy methods improve a
policy independently of the actions taken by the agent. In the
reconfiguration problem, the agent should be trained with
historical data. In some cases, historical data is insufficient for
training. Therefore, considering the time series of active and
reactive loads and generating configuration, several synthetic
operational experiences are created [87].

For the DNR problem, off-policy methods are more suit-
able because they can use historical data or synthetic data and
have a much higher sample efficiency [85], [88].

One of the most widely used RL algorithms is Q-learning,
which was first introduced by Watkins and Dayan [89].
In Q-learning, the action-value function Q(S;, A;) updates
iteratively to reach the optimal action-value function [90] and
optimal control policy. In large distribution networks with a
large dimension of state and action space, learning the exact
Q-function is impossible. In these cases, the action-value
function Q(S;,A;) can be approximated with a neural
network.

In [91], a Noisy Net deep Q-learning network (DQN) is
implemented to solve dynamic DNR problems based on RL.

In this study, a compromise has been made between differ-
ent types of DQN such as Nature-DQN, Double-DQN, and
NoisyNet-DQN. The main disadvantage of methods based on
RL is related to their difficulty and time-consuming learning
phase, especially for large DNs that have a large number of
normally open switches and a wide search space.

Table 2 shows a summary of different methodologies pro-
posed for the dynamic reconfiguration problem. Considering
switching costs and integrations between the hours lead to the
optimal configuration of different hours depending on each
other. Therefore 24 hours in the dynamic reconfiguration of
one day should be considered together in the optimization
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TABLE 2. Review of different methodologies and their objectives for dynamic DNRs.

Considering
integration N .
Reference Types of between hours Optimization Objective functions 'Mam Case study
method and switching methodology achievements
cost
. Power losses Considering Modified
v
Zhai [55] MIQCQP switching costs unbalance network IEEE 34 bus
Considering
Classical Stochastic Energy not supplied uncertainty IEEERLz? bus
Santos [106] methods x MILP Cost of emission Considering DG Portuguese
Cos of switching and Energy Storage g
network
Systems
Guo[107] v MIQP Power losses switching C0n.51der1'ng IEEE 33 bus
cost electric vehicles
Branch Use hash table and IEEE 33 bus
exchange with Power losses matrix shifting and 84 bus Taiwan
Liu[36] v considering Switchine cost interval merger to power
matrix shift g reduce the company
Methods based operation calculation burden IEEE 117 bus
on heuristic rules Minimum
spanning tree- Pronosing a new 116 bus DN
Mosbah|[35] x based Power losses he i)istic %nethod IEEE 33 bus
Kruskal’s Y IEEE 84 bus
algorithm
: Considering 10
Rahmani- Cost of losses .
v -
Andebili[42] GA Switching cost forward-looking 167 bus DN
hours
Yearly power losses .
Asrari[45] v Fuzzy-based Switching cost Parallel compgtmg 119-bus DN
parallel GA o Load clustering
Voltage deviation
Power loss
Switching cost
cost of purchasing power
Esmaeili[25] Metaheuristic x PSO from DG Considering IEEE 33 bus
methods . cost ot.” ) demand response
purchasing/selling active
power from/to day-ahead
wholesale market
Xu[39] x Quantum PSO Power losses Considering DG IEEE 33 bus
Operational costs considering plug-in
Improved GA  including switching cost, Vggirlli ?;gg{:/)
Jangdoost[72] v with radial cost of power losses, and and distributed IEEE33 bus
checking cost of energy not . .
supplicd (ENS) wind generation
(RDG)
Improved PSO Operation cost .
Lotfi[108] x & modified Reliability Cfi‘i(’;‘i‘;‘i Z:f(‘m 95 bus DN
SFLA Voltage stability index P
Considering DG,
Energy loss electrical vehicles,
Noruzi Azghandi[75] x Imp;)\:];i g SO Operational cost and demand 95 bus DN
Energy not supplied. response
Hybrid application
metaheuristic operation cost, power
Azizivahed [38] methods v PSO & GwO 105 energy not supplied - DNR with flexible o5\
considering switching electricity price
cost
Exchange .
market Parallel processing IEEE 15 bus
Jafari[77] < Algorithm Active power loss method for IEEE 33 bus
g Reliability indexes reducing the IEEE 69 bus
(EMA) & y &
WGA running time IEEE 85-bus
Gao[43] v .BPS.O & Operation costs Clustering periods 148 bus DN
. Linearization Load balancing 297 bus DN
Other hybrid I a
. methods mprove Clustering loads IEEE 33 bus
Ji[44] v fireworks Power losses . few ol IEEE 119 b
algorithm into a few classes 9 bus
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TABLE 2. (Continued.) Review of different methodologies and their objectives for dynamic DNRs.

considering 84 bus Taiwan
heuristic rules power
company
Nafisi [109] v GA & Branch Cogt oflosses Cor‘151der1-ng Real 77 bus
exchange Switching cost microgrid
Proposing a simple
Vlachogiannis [110] x RL .(Q Power losses Q learr_nng an.d IEEE 33 bus
learning) comparison with
other algorithms
Power loss S
Malekshah [111] v R{; ;r]i?sp)Q Voltage deviation Cr(;rllis;tc)lﬁrilng 11113511551{35 13138 t;:lss
g Reliability index ty
. . Comparison of
Wang[91] ]li/le zcmhige v RL d(img-l\let Power loss different IEEE 33 bus
g & P Voltage profile reinforcement IEEE 69 bus
Methods learning) . .
learning technique
RL (Monte Considerin
Zhao[112] x Carlo tree Power losses . g IEEE 14 bus
uncertainty of DG
search)
RIL(Batch- ‘ IEEE 16 bus
Gao[86] v constrained Cost of power losses and Proposing a new IEEE 33 bus
RL) switching cost RL algorithm IEEE 70 bus

IEEE 119 bus

to avoid frequent switching operations that lead to additional
costs.

V. GENERAL COMPARISON OF THE METHODS

The static reconfiguration problem is often solved to find
an optimal configuration for a long study period consider-
ing constant values for loads and generations. Hence, for
static reconfiguration, the accuracy of the algorithm has a
higher priority compared to its computational time. There-
fore, the methods with higher accuracy are more suitable for
static reconfiguration, even if they have a high computational
time. Among the methods, classical methods, due to some
approximation in linearization, and heuristic methods, due
to trapping in local optima have not been favoured widely
by the researchers. The researches on static DNRs are more
focused on metaheuristic and hybrid metaheuristic methods
due to their ease of implementation for various objectives and
also their satisfactory accuracy.

In contrast to static DNR, dynamic reconfiguration should
be performed online and within a short time period. Assessing
switching costs and integration between hours in dynamic
reconfiguration makes the search space much wider than
in a static reconfiguration problem. Therefore, the meth-
ods that have a good speed and less computational burden
are more appropriate for dynamic reconfiguration. Among
the methods, classical methods, some hybrid methods, and
machine learning methods have presented superior computa-
tional speeds.

Classical methods have a low calculation burden but, lin-
earization of various objectives and constraints together with
the consideration of integrations between hours is performed
with many approximations in this class of methods. Although
hybrid methods usually have more calculations, to perform
dynamic DNR with this class of methods, researchers reduce
search space by clustering loads and using longer time
intervals. Some of the most popular methods for dynamic
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reconfiguration are the methods based on machine learning
approaches. Although these methods have a considerable
offline learning time, a trained agent can obtain the opti-
mal configuration in a short time and with few online
calculations. Therefore, these methods are more suitable for
online dynamic reconfiguration. The main challenge for this
approach is the difficulty of training for a large network with
a large number of variables.

VI. STATE OF THE ART

Given the considerably higher benefits of dynamic recon-
figuration, it appears that future research in this field will
predominantly concentrate on dynamic reconfiguration. The
development of efficient algorithms capable of handling
large-scale networks, the implementation of machine learn-
ing methods, and the exploration of hybrid approaches
represent potential areas for future investigation. Future
challenges in DNR may involve integrating dynamic recon-
figuration with other controllable devices and resources in
the distribution network, including soft open points, electric
vehicles, energy storage systems, and distributed generation
resources. Moreover, future research can be conducted for
intelligent coordination strategies to optimize the utilization
of these resources alongside dynamic reconfiguration.

VIi. CONCLUSION

A DNR is one of the most popular approaches that opera-
tors perform to control and improve power system indices,
such as voltage profile. DNR methods can be categorized
into dynamic and static approaches. A static reconfiguration
presents a fixed topology for planning or long-term operation.
On the other hand, dynamic reconfiguration presents optimal
configurations for short-term operation, such as an hour,
taking into consideration the dynamics of loads, generation,
prices, etc. This paper presents a methodological framework
for categorization the techniques proposed in the literature
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TABLE 3. Main advantages and disadvantages of metaheuristic methods.

Algorithm Main advantages Mam.
shortcomings
. o Applicable for discrete and . .
Gen?nc continuous parameters nghly. time
Algorithm o More chance to find the consuming for
(GA) lobal ontima i d large and complex
Holland (1975) globaloptima lor a wide problems

variety of problems

Particle Swarm o Simplicity of
Optimization implementation .
(PSO) e Fast convergence C;):;elrgu;igrgzr?e
Eberhart & e Few parameters P
Kennedy (1995) to adjust
Simulated The final optimum
N . depends on the
Annealing o Simplicity of S
. . initial
(SA) implementation .
. . . configuration
Kirkpatrick . Rapid Hi .
ighly time
(1983) .
consuming
Tabl(lTSSe)arch Difficult to
Glover and e Low computational burden M implement
X any parameters
McMillan to adiust
(1986) J
Ant Colony
Optimization o Simplicity of Uncertain
(ACO) implementation convergence time
Dorigo (1992)

Harmony . Unnecessary
search (HS) * Fewer ad_]listable iterations without
Geem (2001) parameters improvement

Artificial Bee
Colony Trapping in local
(ABC) e Fast convergence p;) tifn um
Karaboga & P
Basturk (2007)

Biology

« Genetic Algorithm (GA)

« Particle Swarm Optimization (PSO)

* Grey Wolf Optimizer (GWO)

* Ant Colony Optimization (ACO)

« Whale Optimization Algorithm (WOA)
« Shuffled Frog Leaping Algorithm (SFLA)
« Artificial Bee Colony (ABC)

« Firefly Algorithm (FA)

 Cuckoo Search (CS)

* Ant Lion Optimizer (ALO)

Social-Based
* Imperialist

Competitive
Algorithm (ICA)

Music ysics-Based Non-Metaphor

« Tabu Search (TS)
« Cross Entropy (CE)

« Harmony Search + Simulated Annealing
(HS) (SA)
Bang-Big
ch (BB-BC)

FIGURE 8. Classification of metaheuristic methods according to their
source of inspiration.

on static and dynamic reconfiguration. A large number of
the papers have been reviewed and the methods are grouped
into five groups: classical methods, heuristic methods, meta-
heuristic methods, hybrid methods, and machine learning
methods. The paper provides a detailed review and compari-
son of methods within each group from different aspects.
Classical methods mostly solve the problem by transform-
ing it into a second-order or first-order problem. Heuristic
methods use special features of the problem to find optimal
solutions. Metaheuristic methods such as GA and PSO rely on
iterative optimization algorithms based on an abstraction of
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nature to find the optimal configuration. Hybrid methods are
a combination of different methods to increase their advan-
tages and overcome their limitations. The methods based
on machine learning have an online training phase which
enables them to make quick online decisions. This class of
methods is more suitable for dynamic reconfiguration. A gen-
eral comparison of the methods shows that metaheuristic
methods have turned into the most popular class of methods
for static reconfiguration due to their good accuracy and ease
of implementation with various objectives. On the other hand,
machine learning methods are more effective for dynamic
reconfigurations due to their capabilities for performing fast
online calculations.

APPENDIX
Metaheuristic methods can be categorized according to their
source of inspiration. Fig. 8 shows that most of the meta-
heuristic methods originate from the biological behaviour of
humans and animals.

Table 3 compares the main advantages and shortcomings
of the most popular metaheuristic methods in the context of
the DNR problems.
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