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ABSTRACT The widespread adoption of electric vehicles (EVs) has introduced new challenges for
stakeholders ranging from grid operators to EV owners. A critical challenge is to develop an effective
and economical strategy for managing EV charging while considering the diverse objectives of all
involved parties. In this study, we propose a context-aware EV smart charging system that leverages deep
reinforcement learning (DRL) to accommodate the unique requirements and goals of participants. Our
DRL-based approach dynamically adapts to changing contextual factors such as time of day, location, and
weather to optimize charging decisions in real time. By striking a balance between charging cost, grid load
reduction, fleet operator preferences, and charging station energy efficiency, the system offers EV owners
a seamless and cost-efficient charging experience. Through simulations, we evaluate the efficiency of our
proposedDeepQ-Network (DQN) system by comparing it with other distinct DRLmethods: Proximal Policy
Optimization (PPO), synchronous Advantage Actor-Critic (A3C), and Deep Deterministic Policy Gradient
(DDPG). Notably, our proposed methodology, DQN, demonstrated superior computational performance
compared to the others. Our results reveal that the proposed system achieves a remarkable, approximately
18% enhancement in energy efficiency compared to traditional methods. Moreover, it demonstrates about a
12% increase in cost-effectiveness for EV owners, effectively reducing grid strain by 20% and curbing CO2
emissions by 10% due to the utilization of natural energy sources. The system’s success lies in its ability
to facilitate sequential decision-making, decipher intricate data patterns, and adapt to dynamic contexts.
Consequently, the proposed system not only meets the efficiency and optimization requirements of fleet
operators and charging station maintainers but also exemplifies a promising stride toward sustainable and
balanced EV charging management.

INDEX TERMS Electric vehicles, smart charging, deep reinforcement learning, context-awareness, energy
efficiency, cost-effectiveness, grid strain reduction, CO2 emissions reduction.

I. INTRODUCTION
The rapid proliferation of electric vehicles (EVs) represents a
significant milestone in the transition towards a more sustain-
able and environmentally conscious mode of transportation.
As the adoption of EVs continues to surge, it has ushered in a
new era of mobility that offers numerous benefits, including
reduced carbon emissions, improved air quality, and reduced
dependence on fossil fuels. However, this paradigm shift also
brings forth a host of complex challenges, particularly in the
realm of EV charging management.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yinliang Xu .

Initially, the primary focus was on establishing essential
charging infrastructure and standards, as indicated by [1],
[2], and [3]. The conventional approach to EV charg-
ing, characterized by static and uncoordinated methods,
is increasingly proving to be inadequate in meeting the
diverse and evolving needs of various stakeholders within
the electric mobility ecosystem. For example, Grid operators
are tasked with ensuring the stability and reliability of the
electrical grid; EV owners seek convenient and cost-effective
charging solutions; fleet operators strive to optimize the use
of their EV fleets; and charging station maintainers aim to
enhance energy efficiency. However, in recent years, attention
has shifted towards the creation of sophisticated charging
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systems capable of achieving optimal trade-offs across
various objectives, such as minimizing the strain on the grid
and reducing environmental impact, which is a formidable
task, as highlighted by [4], [5], [6], [7], [8], [9], and [10].
The prevalent adoption of electric vehicles (EVs) represents
a significant trend in the transportation sector, fueled by
concerns surrounding energy security, climate change, and air
pollution [11]. In response to these challenges, researchers
have proposed a multitude of solutions. These include
the implementation of time-of-use pricing schemes [12],
[13], [14], [15], dynamic load management [16], [17],
and the application of intelligent charging algorithms,
such as the stochastic game approach [18], vehicle-to-grid
(V2G) optimization [19], Pareto optimal solutions in multi-
objective optimization [20], real-time energy management
systems [21], and blockchain-based charging systems [22],
[23], [24]. However, the integration of EVs into the electricity
grid poses additional challenges for grid operators, fleet
operators, charging station operators, and EV owners. The
primary issue revolves around striking a balance between
various objectives, such as reducing EV charging costs,
alleviating the load on the power grid, optimizing fleet
management, and enhancing energy efficiency at charging
stations [25], [26].

One critical challenge in implementing the proposed
context-aware EV smart charging system is the dynamic
adaptation to rapidly changing contextual factors. Ensuring
the system’s ability to accurately assess and respond to
real-time variations in time of day, location, and weather
is crucial for optimal charging decisions. Moreover, main-
taining the balance between different objectives, such as
cost-effectiveness for EV owners and grid load reduc-
tion, while considering fleet operator preferences and
station energy efficiency, requires a robust and adaptable
algorithmwithin the deep reinforcement learning framework.
To address this pressing challenge, our research endeavors
to introduce a novel paradigm: ‘‘Smart EV Charging with
Context-Awareness: Enhancing Resource Utilization via
Deep Reinforcement Learning.’’ In this paradigm, we pro-
pose the development of a context-aware EV smart charging
system that leverages the power of deep reinforcement
learning (DRL) to revolutionize the way we manage EV
charging. By dynamically adapting to a multitude of
contextual factors, such as the time of day, geographical
location, and weather conditions, our approach empowers
EVs and charging infrastructure to make real-time, data-
driven decisions. This context-aware system is designed
to strike an optimal balance between various key consid-
erations. It addresses the need for cost-efficient charging
experiences for EV owners, the reduction of grid load to
ensure its stability, the preferences and objectives of fleet
operators, and the enhancement of charging station energy
efficiency. Through meticulous simulations and rigorous
evaluation, we aim to showcase the remarkable advan-
tages our proposed system offers over existing, traditional
methods.

The results of our research reveal that the proposed system
achieves an impressive, approximately 18% improvement
in energy efficiency compared to conventional approaches.
Furthermore, it demonstrates a substantial 12% increase in
cost-effectiveness for EV owners while also reducing grid
strain by 20% and curbing CO2 emissions by 10% through
the utilization of natural energy sources. At the core of
this system’s success lies its ability to facilitate sequential
decision-making, decipher intricate data patterns, and adapt
to dynamic contexts. Our work represents a significant
step forward in addressing the multifaceted challenges of
EV charging management. By embracing the principles
of deep reinforcement learning and context-awareness, our
proposed system not only aligns with the efficiency and
optimization requirements of fleet operators and charging
station maintainers but also exemplifies a promising stride
towards a sustainable and balanced future for EV charging
management. In the following sections, we delve into the
intricate details of our approach and present the empirical
evidence supporting its effectiveness and potential for
widespread adoption.

II. LITERATURE REVIEW
The primary objective of this literature review section is
to provide a comprehensive overview of existing research
and practices in electric vehicle (EV) charging management.
By examining the limitations and shortcomings of traditional
charging strategies, reviewing relevant literature on deep rein-
forcement learning (DRL), and exploring various approaches
such as renewable energy integration, grid demand man-
agement, and charging station services, this review aims to
establish the foundation for the proposed research objective.
The proposed research seeks to bridge the identified gaps
in the literature by developing a context-aware EV smart
charging system based on DRL. This system will optimize
charging decisions in real-time while accommodating the
diverse objectives of multiple stakeholders and dynamically
changing contexts. Through this review, we position the
proposed system as a novel and holistic solution to the
challenges presented in the existing literature on EV charging
management.

A. EXISTING STRATEGIES FOR EV CHARGING
MANAGEMENT
Electric vehicle (EV) adoption has introduced novel chal-
lenges for efficient charging management. Traditional
strategies, often based on fixed schedules, are commonly
employed. These strategies, while straightforward, have
significant limitations. They overlook dynamic contextual
factors that influence the cost-effectiveness and environmen-
tal impact of charging. Fixed schedules fail to adapt to
real-time fluctuations in electricity prices, grid demand, and
renewable energy availability. Consequently, they may lead
to suboptimal charging practices, with adverse consequences
for both grid operators and EV owners.
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B. GRID DEMAND MANAGEMENT
Efficient grid demand management is crucial for balancing
electricity supply and demand while ensuring grid stability.
Strategies like demand response, where consumers adjust
usage during peak periods, help alleviate grid strain.
Advanced metering infrastructure (AMI) provides real-time
energy data to enable demand response, while smart grids
enhance monitoring and distribution management. Energy
storage systems store and release energy, stabilizing the
grid and reducing the need for costly upgrades. Distributed
energy resources (DERs), such as solar panels and wind
turbines, generate power closer to consumption points,
further lessening grid pressure. In summary, grid demand
management combines diverse technologies and strategies
to boost reliability, reduce energy waste, and promote a
sustainable energy future (cf. [27], [28], [29], [30], [31]).

C. RENEWABLE ENERGY INTEGRATION
Efficiently integrating renewable energy into the existing grid
is a vital aspect of transitioning to a sustainable, low-carbon
energy system. This complex process involves incorporating
sources like solar, wind, and hydropower to meet increasing
energy demands while curbing greenhouse gas emissions.
Grid modernization, discussed in [32] and [33], stands out as
a primary method, enhancing infrastructure and implement-
ing advanced systems to handle renewable variability. Energy
storage, detailed in [34] and [35], plays a key role by storing
excess energy for release when needed, providing stability.
Demand-side management, as outlined in [36], optimizes
consumption patterns to align with renewable generation,
reducing reliance on backup fossil fuel plants. Regional
grid interconnection, explored in [37], enables resource
sharing, enhancing reliability. Smart inverters and microgrid
technologies, discussed in [38], improve handling of gener-
ation fluctuations. Finally, policy incentives and regulations,
highlighted in [39], are crucial for fostering renewable energy
deployment. In essence, a multifaceted approach combining
technology, grid enhancements, and supportive policies is
essential for successful renewable energy integration and the
creation of a sustainable energy future.

D. CHARGING STATION SERVICES AND MANAGEMENT
Charging station services and management have become
increasingly critical as the adoption of electric vehicles (EVs)
continues to surge. This multifaceted domain encompasses
a range of services and technologies aimed at facilitating
convenient and efficient EV charging while ensuring the
sustainability of the charging infrastructure. Recent devel-
opments from 2020 onward have shed light on several key
aspects of charging station services and management:
Networked Charging Infrastructure: The rise of networked

charging stations, as discussed in [40], has simplified
the EV charging experience, allowing owners to locate
and access points effortlessly through mobile apps and
online platforms. Payment and Billing Solutions: Enhanced

payment systems, detailed in [41], now offer versatile
options such as pay-per-use, subscriptions, and interoperable
platforms, enhancing user convenience. LoadManagement:
Grid-friendly charging strategies, explored in [42], address
high-power EV charging impacts on the grid, ensuring
stable and efficient energy distribution. Demand Response
Integration: Charging stations, as outlined in [43], seam-
lessly integrate with demand response programs, optimizing
charging times for grid stability and reduced electricity costs.
Dynamic Pricing: Emerging dynamic pricing schemes,
as highlighted in [44], incentivize off-peak charging and
alleviate congestion during peak hours. Fleet Charging
Solutions: Management systems for large EV fleets, dis-
cussed in [45], optimize schedules and monitor vehicle
health. Maintenance and Monitoring: Advanced monitor-
ing and predictive maintenance, detailed in [46], proactively
ensure charging infrastructure reliability.Renewable Energy
Integration: Charging stations incorporating renewable
sources, demonstrated in [47], reduce the carbon footprint of
EV charging. Regulatory Framework: Evolving regulatory
frameworks, highlighted in [48], ensure safety standards,
interoperability, and equitable access. In conclusion, charging
station services and management, driven by technology and
regulation, have evolved significantly, supporting widespread
EV adoption and fostering a sustainable and accessible
transportation ecosystem.

E. REVIEW OF DEEP REINFORCEMENT LEARNING (DRL)
Deep reinforcement learning (DRL) algorithms, like Prox-
imal Policy Optimization [49], Asynchronous Advantage
Actor-Critic (A3C) [50], Deep Deterministic Policy Gradi-
ent [51], and Deep Q-Network [52], have garnered notable
attention for solving intricate tasks across diverse domains,
including gaming, robotics, and resource optimization for
electric vehicles. Specifically in the realm of electric vehicle
(EV) charging and resource optimality, DRL has proven
promising. These algorithms, powered by neural networks,
exhibit excellence in discerning complex data patterns and
adjusting behavior based on environmental cues. DRL’s capa-
bility to learn and optimize policies in dynamic environments
aligns seamlessly with the variable nature of EV charging,
making it a valuable tool for concurrently optimizing cost,
grid strain, and environmental impact.

Recent studies, such as [53], showcase the application
of Deep Reinforcement Learning (DRL) to formulate algo-
rithms for optimizing charging schedules at stations. DRL
agents skillfully balance user demand, grid limitations, and
dynamic pricing, efficiently allocating charging resources
to minimize grid stress and reduce costs for EV owners.
In the domain of load management, as demonstrated in [54],
DRL is utilized to control charging station loads, aligning
them with grid capacity to ensure stable operations and
prevent overloads during peak times. Explored in [55], DRL-
based solutions facilitate effective participation in demand
response programs, optimizing charging times based on grid
signals and alleviating strain. Intelligent charging strategies
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tied to dynamic pricing, exemplified in [56], involve DRL
agents learning to predict price fluctuations and adjusting
charging patterns for optimal cost savings. Furthermore,
fleet charging management, depicted in [57], leverages
DRL to optimize schedules for companies with electric
vehicle fleets, considering operational needs and minimizing
downtime. Demonstrated in [58], DRL models enhance
the reliability of charging station infrastructure through
predictive maintenance, where agents monitor components
and predict maintenance needs, thereby reducing downtime.
This personalized approach is highlighted in [59], where
DRL-driven personalization enhances the user experience at
charging stations by learning user preferences and habits,
recommending optimal charging times and locations for
improved convenience. At the end, DRL techniques have
emerged as powerful tools for optimizing charging station
services and management in the electric vehicle ecosystem.
By leveraging these advanced AI-driven approaches, the EV
charging industry can enhance efficiency, reduce operational
costs, and contribute to the sustainable integration of electric
vehicles into the energy grid.

F. IDENTIFYING GAPS IN THE LITERATURE
While extensive literature exists on EV charging manage-
ment, the proposed system targets notable gaps. Current
studies often concentrate on singular objectives like cost
minimization or grid load reduction in isolation. Few
approaches systematically consider the multiple, sometimes
conflicting, objectives of various stakeholders, including grid
operators, fleet managers, charging station operators, and
EV owners. Additionally, existing context-aware charging
strategies, though present, lack the adaptability and sophis-
tication inherent in DRL-based systems. A holistic approach
is needed, leveraging DRL’s power to optimize EV charging
in real-time while accommodating diverse objectives and
dynamically changing contexts (Reference from research
gate save list).

In the domain of electric vehicle (EV) charging station ser-
vices andmanagement, it is imperative to address critical gaps
related to resource optimality and context awareness, partic-
ularly within the framework of achieving carbon neutrality.
Concerning resource optimality, challenges encompass scal-
ability and effective resource allocation amid a growing EV
market. The scalability of Deep Reinforcement Learning
(DRL) models in charging station management must be
addressed to accommodate an increasing number of stations
and EVs. Exploring multi-objective optimization within
DRL algorithms, balancing user convenience, grid stability,
operational costs, and carbon neutrality objectives, is crucial.
Enhancing energy efficiency in line with carbon neutrality
goals involves optimizing energy consumption patterns and
minimizing environmental impact using advanced DRL
methodologies [60], [61], [62]. On the front of context aware-
ness, persistent gaps involve ensuring multi-stakeholder
context awareness and dynamic contextual adaptation for
carbon neutrality. Integrating the interests and constraints of

stakeholders, including utilities, charging station operators,
and policymakers, is vital for sustainable development. The
dynamic context, especially concerning carbon neutrality
objectives, requires real-time adaptability of DRL models to
evolving grid conditions, traffic patterns, and user preferences
while minimizing environmental impact [63]. Collaborative
learning strategies within a multi-stakeholder environment
should be contextually informed, engaging participants
like EV owners, charging station operators, and utilities.
Facilitated by DRL models, collaborative learning aligns
objectives with the overarching goal of achieving carbon
neutrality. Bridging these gaps in resource optimality and
context awareness within a carbon-neutral context is pivotal
for advancing the efficiency, sustainability, and inclusivity of
EV charging systems. This section aims to fill gaps in current
literature by introducing a context-aware EV smart charging
system powered by Deep Reinforcement Learning (DRL).
This system will dynamically optimize charging decisions
in real-time, accommodating diverse stakeholder objectives
and adapting to changing contexts. The goal is to position
our proposed system as an innovative and comprehensive
solution, addressing challenges identified in prior research on
EV charging management.

III. PROPOSED CONTEXT-AWARE EV SMART CHARGING
SYSTEM
The heart of our research lies in the architecture of the
context-aware EV smart charging system, a meticulously
crafted framework comprising an intelligent agent, a dynamic
environment, a reward function, and a neural network.
We expound upon each component’s functionality, highlight-
ing their synergy in refining charging decisions, all the while
embracing the ever-shifting contextual factors like time of
day, location, and weather.

Artificial intelligence (AI) represents a vast domain
within computer science, instrumental in the development
of intelligent systems and computers capable of performing
tasks that traditionally required human intelligence. These
AI-powered machines not only excel in problem-solving
but also contribute to better decision-making processes,
effectively taking on responsibilities previously reserved
for humans [64] and [65]. Within the expansive field of
AI, Machine Learning (ML) emerges as a crucial subset.
ML relies on data-driven approaches and the training of
algorithms using data. Notably, ML models possess the
remarkable ability to unearth patterns and insights from
the data they ingest, without the need for explicit human
intervention. ML employs a diverse range of algorithmic
techniques to decipher data, enabling it to make predictions,
improve itself, and elucidate complex data structures. These
models can be trained through various strategies, including
supervised, unsupervised, semi-supervised, and reinforce-
ment learning. Among themultifacetedmethodologies within
ML, Deep Learning stands out as a subset characterized
by its utilization of artificial neural networks. These neural
networks, composed of multiple layers, exhibit self-learning
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capabilities through exposure to data, enabling them to
accomplish a wide array of tasks, such as image recognition
and speech recognition [66].

FIGURE 1. Reinforcement learning model.

Reinforcement Learning (RL) represents the science of
decision-makingwithin the realm ofmachine learning. In RL,
a computer program assumes the role of an intelligent agent,
engaging with its environment and acquiring the ability
to make informed decisions based on its interactions. For
instance, consider the scenario of a robotic agent mastering
the intricacies of foot movement in order to excel in a game
of football; this exemplifies the essence of reinforcement
learning [64]. At the core of RL lies a fundamental model
where an agent actively interacts with its environment,
striving to learn an optimal policy for making decisions
across varying states. At each discrete time step, denoted
as t, the agent observes the current state, represented as
St, of the environment and proceeds to select an action,
denoted as Ai, based on its pre-defined policy. Subsequently,
the environment transitions to a new state, St+1, and the
agent receives a reward, Rt, corresponding to the action it
undertook in state St. The overarching objective for the agent
is to acquire knowledge and refine its policy to maximize
the expected cumulative reward over time. The value of a
state-action pair, represented as (St, Ai), encapsulates the
anticipated cumulative reward commencing from state St,
executing action Ai, and then adhering to the optimal policy
thereafter. This value is formally denoted as Q(St, Ai).

FIGURE 2. Deep reinforcement learning model with policy DNN.

In Figure 2, the agent is depicted as the primary learner and
decision-maker, while the environment serves as the interface
through which the agent interacts with its objectives. The
environment, in response to the agent’s actions, continually
presents new scenarios and offers rewards, which are
numerical values the agent strives to maximize over time
through its chosen activities. The agent’s overarching purpose

is succinctly encapsulated in a unique signal known as the
reward, transmitted from the environment to the agent at
each time step. This reward is a straightforward scalar value,
denoted as Rt that belonging to the set of real numbers,
R. The informal objective of the agent revolves around
the maximization of the cumulative reward it accrues over
time. This entails optimizing not just for immediate rewards
but also considering the long-term perspective. The concept
of return encapsulates the agent’s aspiration to maximize
future benefits, typically expressed in terms of expected
value. The specific definition of return varies based on the
nature of the task at hand and whether delayed rewards
are a part of the equation. For tasks that naturally break
down into discrete episodes, an undiscounted formulation
of return is suitable. Conversely, continuous tasks that do
not naturally have episodic breaks benefit from a discounted
formulation of return, which extends indefinitely. Our goal
is to elucidate the concept of return for both episodic and
ongoing scenarios, presenting a unified framework that can
be applied across both paradigms. By solving the Bellman
optimal equations, which serve as consistency conditions
for optimal value functions, we can systematically derive
an optimal policy based on these functions. This process
allows us to navigate the intricate landscape of reinforcement
learning, ultimately leading to informed decision-making
within various environments and tasks.

FIGURE 3. Proposed context-aware EV smart charging system using DRL.

We have conducted a comprehensive review of various
research initiatives undertaken by distinct organizations, each
functioning effectively within its domain. However, a recur-
ring issue has been the inefficient utilization of resources
due to a lack of collaboration and coordination among these
entities. To illustrate this challenge, let’s consider the scenario
depicted in Figure 3. In this scenario, we have five primary

VOLUME 12, 2024 7013



M. Sharif, H. Seker: Smart EV Charging With Context-Awareness

stakeholders: Stakeholder ‘A’ whose objective is to get the
optimised cost, Stakeholder ‘B’ whose objective is to get
the optimised energy, and Stakeholder ‘E’ whose primary
objective is to motivate EV-enduser to use Environmental-
friendly source of energy to charge their vehicle that has
directly less impact on the environment. For example, The
first participants denoted as EV-end users primary interest
lies in finding an optimal charging point during their journey
from ‘location X’ to ‘location Y.’ Their objectives are to
minimize both charging time and cost. Secondly, The grid
operator is tasked with generating and supplying electricity to
meet the demands of the region’s charging point efficiently.
However, they often lack precise information about the
specific electricity needs of the EV charging stations in their
area. Thirdly, The last stakeholder, offers demands of users
related to promote Environmental friendly resources such as
energy from wind, PV, etc. Historically, these stakeholders
have operated independently, with limited awareness of
the real-time demands and requirements of other vendors.
This lack of synchronization often resulted in resource
inefficiencies and suboptimal outcomes. However, the state-
of-the-art methodology proposed in this paper addresses
these challenges effectively. It introduces a realistic approach
that integrates the preferred demands and requirements of
various stakeholders, enabling more efficient resource alloca-
tion and utilization. This collaborative framework promises
to usher in a new era of resource management, fostering
synergy among stakeholders and ultimately enhancing the
overall effectiveness of EV charging systems.

The following part explains thoroughly the manner in
which the suggested architecture works.We demonstrate how
the algorithm makes use of contextual data to determine
the win-win requirement for each stakeholder. We define
three different sets of stakeholders as an example in the
efficient transportation eco-system including Stakeholder-
X, Stakeholder-Y, and Stakeholder-Z renounce in figure as
STK-X, STK-Y and STK-Z respectively.

1) Stakeholder-A: EV end-users: The EV end-user is
encouraged to share their travel itinerary, including
details such as the starting point and destination of
their journey. Additionally, the end-user will receive
routing suggestions, from which they can choose the
most suitable path. The technical specifications of the
vehicle, such as battery type, are also determined by
the EV end-user. Subsequently, the algorithm generates
a set of optimal route options based on these inputs,
taking into account key performance indicators such
as pricing and the availability of charging stations.
The EV end-user can then select the routing option
that aligns with their specific needs and preferences,
making an informed decision based on both their
immediate surroundings and the recommendations
provided by the algorithm.

2) Stakeholder-B: Grid-Operator: The Grid operator
plays a crucial role by furnishing data pertaining
to feeder and transformer loads, which encompasses

aspects like charging activities and electric supply
reservations. This information significantly contributes
to and influences the efficient and grid-friendly utiliza-
tion of charging stations. Typically, the grid operator
can employ advanced distribution network modeling
technologies to forecast feeder and transformer loading
for the next twenty-four hours with a high degree of
accuracy.

3) Stakeholder-C: Charging Stations Maintainer: The
role of the charging station maintainer is to ensure
the continuous functionality of the charging station,
guaranteeing it meets the demands of end-users
and provides reliable services, even in the event of
unforeseen disruptions. In cases where the cost of
renewable energy experiences a decline, the charging
station’s owner may proactively notify customers,
enabling them to charge their vehicles at a lower cost.
Additionally, prior to their visit, end-users have the
option to reserve a charging station for their specific
fleet.

4) Stakeholder-D: Fleet Operator The central responsi-
bility of the fleet operator revolves around monitoring
the fleet’s availability for booking and ascertaining the
energy source it relies on (e.g., hydrogen, gas, gasoline,
or electric). Additionally, the fleet manager will have
access to vital battery usage information, including
discharge rates, which can aid in diagnosing problems
and scheduling necessary repairs. Furthermore, the
fleet operator handles requests for specific fleet types,
considering their associated costs and ensuring that
they align with the load requirements specified by
customers.

5) Stakeholder-E: (CO2-Based Energy Provider) The
responsibility of this stakeholder is to supply energy
derived from environmentally sustainable sources,
including wind, photovoltaic, biomass, and water.
Additionally, they serve as an informed resource
provider to entities like charging station maintain-
ers, facilitating the utilization of energy at more
cost-effective rates compared to conventional gasoline
resources like oil, gas, and coal.

The information gathered from individual stakeholders is
represented as a set (Ai− > An, Bi− > Bn, Ci− > Cn, . . .,
Zi− > Zn), each associated with its respective initial rewards.
These parameters serve as the states, as depicted in the left
section of Figure 3, and are subsequently provided as inputs
to themodel with associated objectives respectively. This data
is then subjected to a cutting-edge approach rooted in deep
reinforcement learning (DRL). Within this framework, the
computer learns the weights of DRL parameters from these
input sets, recommended domains, and their corresponding
constraints, as well as associated priorities. Upon reaching
the expected threshold, the precise results are generated,
as illustrated on the middle of Figure 3 which represents
the Q-value of action Ai1− > Ain for Objective A, the
Q-value of action Bi1− > Bin for Objective B, and so

7014 VOLUME 12, 2024



M. Sharif, H. Seker: Smart EV Charging With Context-Awareness

on. In this output, tailored information is presented for
specific stakeholders. For instance, ‘‘EV end-users’’ receive
personalized scheduling and routing options tailored to their
vehicle’s battery needs and environmental considerations.
‘‘Grid Operators’’ obtain insights into anticipated power
demands for a given region based on charging station reser-
vations, facilitating the management of electric fluctuations,
among other benefits. Furthermore, it’s important to note
that the system continuously refines its understanding of its
surroundings by dynamically adjusting weights and other
relevant parameters to optimize its performance and achieve
the maximum reward to fulfill its task efficiently. Now, let’s
define the total reward i.e.Rt , as the sum of individual rewards
such asRev is sum of individual reward of electric vehicle end-
user, Rgrid is sum of individual reward of Grid-Operator, and
so on:

Rt = Rev + Rgrid + Rcs + Rfleet + Rco2 (1)

The goal is to learn a policy π that maximizes the expected
total reward:

π∗ = argMaxπ
∞∑
n=1

r tRt (2)

We begin by introducing an objective function as shown
in equation 2, for reinforcement learning and delineating its
purpose. Our computation revolves around a reward function,
denoted as ‘r,’ which operates across different time steps,
symbolized as ‘t.’ Utilizing this objective function, we can
systematically accumulate all the rewards. At each specific
time step, a ‘state’ is denoted by ‘x,’ while the action taken
within that state is represented by ‘a.’ The ‘reward,’ denoted
as ‘r,’ encapsulates the computed outcome based on both the
state ‘x’ and the action ‘a’ taken within it. It’s worth noting
that each task aims to maximize a discounted sum of its
rewards, incorporating a discount factor ’γ ’ across particular
time steps [67].

FIGURE 4. DQN model prediction using states and deep neural networks,
the outputs are Q-values, and actions are computed based on Argmax Qi
for the current state.

As depicted in Figure 4, the DQN agent is supplied with
input states originating from five distinct stakeholders: EV
end users, Grid Operators, Charging Station Maintainers,
Fleet Operators, and source of energy. These input states
encompass a total of 16 features, denoted as X1 to X20 in
Figure 3. The DQN agent employs a batch size ranging from
d1 to dbs for each of these input-feature states, designated as
S1, S2, and so forth in Figure 4. For each state, the DQN
agent retrieves a batch of records from memory, with batch

sizes varying between 50 and 250, and processes them within
a batch table. The Deep Neural Network (DNN) utilized
by the DQN agent comprises sixteen input features and
incorporates two hidden layers, each housing a multitude of
interconnected nodes. The DNN outputs four distinct states,
sequentially numbered from 1 to bs, aligning with the number
of participants involved in the system.

FIGURE 5. Based on training and prediction of the current and
subsequent states, the DQN agent state transition Markov diagram
illustrates the learning process.

The four output states serve as representations of the
Q-values associated with each action for individual partici-
pants. These Q-values play a pivotal role in determining the
optimal action for each participant within the given state. The
action vector, as depicted in Figure 5, mirrors this format.
In this context, an action signifies the decision made by the
agent following its assessment of the environment during a
predefined time window. The network agent compiles a list of
actions in the form of an action vector by combining the input
from the neural network with its respective features. These
resulting Q-values are subsequently utilized to assess the
effectiveness of information acquisition. The agent proceeds
by providing the current DQN with the state vector using
the designated batch size. It then evaluates the DQN’s
output, leveraging threshold rates and Q-values, to determine
the Q-threshold value, which aids in the classification of
stakeholders. Overall, the DQN agent harnesses input states
from stakeholders to learn the optimal policy for orchestrating
the charging of electric vehicles in a decentralized manner.
This process is elaborated upon in the forthcoming method-
ology section and is further elucidated through an illustrative
example. The core functionality has been encapsulated within
a software package that facilitates interactions among users
across diverse sectors through our platform. To streamline
this interaction, we’ve developed middleware as a service
component. This enhancement empowers us to showcase the
model’s utility even at the urban scale, capable of handling
high computing demands, extensive datasets, and model
scalability.

IV. METHODOLOGY
The main objective of this section is to offer a comprehensive
explanation of the research methodology employed in
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developing and evaluating the proposed deep reinforcement
learning algorithm for optimizing the smart2charge applica-
tion for electric vehicles. This includes detailing the processes
of data collection, initial processing and purification, data
normalization, and the integration of essential insights from
all stakeholders participating in the electric vehicle (EV)
charging process.

A. DATA COLLECTION
Data for this study was gathered from diverse sources,
including actual electric vehicle (EV) charging data, power
grid load data, and pertinent datasets from key stakeholders
in the EV charging process, such as EV end-users, grid
operators, fleet operators, and charging station operators.
Additionally, a specific subset of the data was chosen and
anonymized. To enhance the quality and uniformity of the
data, several pre-processing measures were implemented.
These steps involved eliminating irrelevant or duplicate
data, normalizing the data to ensure a consistent format,
and integrating information from various sources. These
data pre-processing efforts were undertaken to guarantee
the reliability and coherence of the dataset used in the
analysis [68].
Data Cleaning: The collected data and information from

various sources underwent thorough cleansing to guarantee
precision and reliability for training the deep reinforcement
learning algorithm. This involved eliminating any missing
or inconsistent values and ensuring that the data was
appropriately formatted for algorithm training. Data Nor-
malization: The data underwent normalization to establish a
consistent format for seamless utilization during training and
evaluation operations. This process involved transforming
information into a standardized format, including converting
facts into numerical values, standardizing value ranges,
and aligning the data with the sophisticated methodology.
Location Integration: Latitude and longitude points were
added as an additional column labeled ‘‘locations’’ to the
dataset, containing the geographical coordinates of the route
direction. This information is utilized to link the charging
station dataset for calculating the distance from the current
position to the charging station. Energy Source Inclusion:
A new parameter, ‘‘energy source,’’ has been incorporated
into the dataset, specifying the type of energy used by each
charging station operator during vehicle charging. All the
aforementioned procedures were completed to ensure that the
input data is comprehensive andwell-prepared for subsequent
analysis.

B. ALGORITHM IMPLEMENTATION
This section outlines the overarching framework for the
implementation of the strategy through deep reinforcement
learning. The algorithm utilized is a deep Q-learning (DQL)
agent training algorithm tailored for the Smart2ChargeApp
environment. The process commences by taking the
Smart2ChargeDS data as input, subjecting it to preprocess-
ing, and initializing the DQL parameters. Subsequently, the

DQL agent’s neural network model is constructed, featuring
hidden layers, a ReLU activation function, and output layers.
The algorithm proceeds to train the DQL agent through
numerous episodes and iterations. At the commencement of
each episode, the states are reset, and the algorithm iterates
over various states. These states can encompass variables like
the current state of the EV battery level, the EV’s location,
the charging cost at the present location, the proximity to the
nearest charging station, and more. Within each iteration, the
action values are randomly set with a probability of epsilon,
while they are determined by predicting the actual state with
a probability of 1-epsilon. Actions in this context represent
decisions made by the EV end-user, such as opting to charge
at the current location or driving to a different location.

FIGURE 6. Algorithm 1: Training a Deep Q-learning Agent in the
Smart2ChargeApp Environment [69].

The rewards within this context can signify the charging
cost of the EV and the time required to reach the next
charging station. These rewards are strategically designed to
incentivize the agent to make decisions that lead to reduced
charging costs and shorter charging times. Subsequently, the
target Q-value is calculated, and themodel undergoes training
based on the current state and target Q-value. The loss is
computed, and the state is updated to the subsequent state
until the iteration is concluded. This process is reiterated for
each episode until the entire training is finalized. To assess
the computational performance of the agent, a comparison
is made with the desired outcomes, and performance metrics
such as loss/reward, discount factor, and computational time
are monitored, as illustrated in the accompanying figure 7.

The computational graph delineates the interplay among
discount factors ($$), loss and reward values, and compu-
tational time within the framework of the DQN learning
process. The loss and reward values serve as indicators
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FIGURE 7. Algorithm 1: Computational performance of the deep
Q-learning agent in the Smart2ChargeApp Environment.

of the DQN model’s performance under varying discount
factors. An increase in the discount factor correlates with
a decrease in loss, signifying enhanced convergence and
learning. Likewise, higher discount factors correspond to
increased rewards, indicating more successful and rewarding
agent behavior. The computational time graph illustrates
the time required for the DQN learning process relative
to the number of episodes. Notably, computational time
exhibits relative consistency across different discount factors,
gradually increasing with a higher number of episodes. This
suggests that the DQN model’s computational complexity
is primarily influenced by the number of episodes rather
than the discount factor. In summary, while the choice of
discount factor significantly impacts the effectiveness of the
learning process, as reflected in the loss and reward values,
computational time remains relatively stable across different
discount factors. The number of episodes emerges as a more
influential factor in determining the computational efficiency
of the DQNmodel. These insights can guide decision-making
when configuring and optimizing the DQN learning process,
offering a nuanced understanding of the trade-offs between
learning performance and computational efficiency.

FIGURE 8. Algorithm 1: DQN accuracy and convergence.

Within Figure 8, the training_loss values depict the training
loss incurred in each episode throughout the DQN training
procedure, while the accuracy values embedded within the

graph showcase the accuracy attained in each corresponding
episode. The graph features two y-axes, with the blue color
denoting the training loss and the red color indicating
accuracy. The training loss is visually represented by a blue
line accompanied by markers, while accuracy is depicted by
a red line with markers.

FIGURE 9. Different methodologies comparison in Context of EV end-user.

The graph in Figure 9 depicts the computational com-
plexity of diverse deep reinforcement learningmethodologies
concerning Context-Aware Smart EV Charging. The method-
ologies examined, including Proximal Policy Optimization
(PPO), Asynchronous Advantage Actor-Critic (A3C), Deep
Deterministic Policy Gradient (DDPG), and the proposed
Deep Q-Network (DQN), showcase their computational
efficiency across varying epochs. In the context of Smart
EV Charging, these methodologies bear implications for
Grid Operators, demonstrating relevance, alignment with
Fleet Operator objectives, and potential contributions to the
integration of Carbon-Neutral Energy sources. The dashed
line represents the computational complexity trajectory of
the DQN algorithm, indicating its performance across the
specified epochs and its significance in the broader landscape
of context-aware electric vehicle charging systems.

We conducted further testing of the algorithm by intro-
ducing additional input parameters, specifically expanding
the dataset to incorporate information from the fleet operator
dataset. These modifications allowed for a more compre-
hensive evaluation of the algorithm’s performance under a
broader set of conditions.

In figure 10, the plotted blue line illustrates the modeled
‘‘Optimal Cost for Battery Charging,’’ showing a decreasing
trend over episodes. Conversely, the orange line depicts the
simulated ‘‘Network Usage,’’ which exhibits an increasing
trend with the progression of episodes. By presenting
these metrics separately, the visualization enables a focused
observation of each aspect without amalgamating them into a
singular complexity metric. Interpreting the graph involves
scrutinizing the evolution of each metric over episodes
and evaluating whether these trends align with the desired
behavior for the specific problem at hand. We have faithfully
adopted and adapted the described algorithm for our specific
application, making necessary adjustments as outlined in
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FIGURE 10. DQN optimal cost for EV end-user charging.

the referenced publication. This cross-referencing ensures
transparency and acknowledges the intellectual contributions
of the original authors, facilitating a seamless connection
between our work and the established research in the field.

C. SIMULATION SCENARIO
In this simulated setting, we must take into account the
charging of electric vehicles along a designated route from
Stuttgart, Germany, to Heidelberg, Germany, covering an
estimated distance of 129 km. The simulation configuration
comprises three types of parameters: mandatory, restrictive,
and discretionary.

FIGURE 11. Experiment design in simulation scenario.

1) Mandatory Parameters The mandatory parameters
for the simulation environment include:
a) Number of EVs: Three sample electric vehicles

are taken into account for the simulation.
b) Charging stations: The dataset encompasses

information regarding the charging stations along
the designated route.

c) Charging rate of the EVs: The charging rate for
the electric vehicles is considered as an input
parameter.

d) Cost of electricity: The electricity cost at each
charging station is regarded as an input parameter.

e) Route direction: The direction of the route from
Stuttgart to Heidelberg is considered as an input
parameter.

f) Environmental factors: Factors such as weather
conditions and wind direction/speed are taken
into consideration as input parameters for the
simulation.

g) Energy source: This parameter provides informa-
tion about the energy source, including options
such as coal, gas, solar, and wind.

2) Restrictive Parameters The simulation must take into
account the following constraints in the electric vehicle
charging scenario:
a) The simulation must ensure that the number of

simulated EVs and charging stations does not
surpass the actual count of EVs and charging
stations in the scenario.

b) The charging rate of the simulated EVs should not
exceed the maximum charging rate specified for
the EVs.

c) The calculated basic price at each charging station
must remain within the limit of the total actual
cost of all charging stations.

d) The simulation needs to account for the influence
of additional environmental factors, such as
weather andwind, on the electric vehicle charging
process.

3) Discretionary Parameters The simulation should also
take into consideration the following discretionary
parameters for energy sources:
a) Determine the optimal charging rate for EVs to

achieve maximum efficiency and minimize the
cost of electricity.

b) Identify the optimal route direction to reach
the charging station with the minimum cost of
electricity.

c) Optimize the selection of charging stations based
on factors such as the cost of electricity, distance
to the charging station, and the availability of
renewable energy sources.

d) Consider the impact of environmental factors,
such as weather and wind, on the determination
of optimal parameters for energy sources in the
simulation.

V. EXPERIMENTAL DESIGN AND EVALUATION
The primary objective of these two users stories is to
formulate strategies for optimizing the utilization of electric
car resources and resource distribution effectively.
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A. USER STORY: EV-ENDUSER OPTIMAL COST
This involves minimizing both charging time and cost by
strategically selecting the nearest and most cost-effective
charging stations. Additionally, the aim is to enhance the
reliance on renewable energy sources, achieved by opting
for charging stations powered by renewable sources like
photovoltaic (PV) or wind instead of conventional sources
such as coal or oil. This not only has a direct positive
environmental impact by reducing CO2 emissions but also
encourages electric vehicle users to adopt eco-friendly energy
sources.

1) EXPERIMENTAL DESIGN
The proposed experimental design is structured into three
main steps: Experiment Design One, Experiment Design
Two, and Experiment Design Three, as illustrated in
Figure 11.

1) Objective(s)

a) To reduce the charging expenses for electric
vehicle end-users, the strategy involves selecting
the closest and most economical charging station.

b) To optimize the utilization of renewable energy
sources, the approach is to choose charging
stations that are powered by renewable energy.

c) The goal is to minimize the time required to
reach the charging station and mitigate the impact
of factors such as traffic congestion, weather
conditions, and wind direction on the charging
process.

d) The objective is to decrease the environmental
impact by reducing CO2 emissions.

2) EVALUATION
The fundamental concept underlying the assessment metrics
is to appraise the effectiveness of the devised strategy, ensur-
ing the judicious use of resources in electric vehicle charging
aligns with the objectives outlined by all participants. Various
standard evaluation metrics are employed in this context,
including energy efficiency, charging time, charging cost,
battery life, grid impact, and environmental impact. In the
context of this paper, the primary experiments will focus on
evaluating the charging costs for electric vehicle owners.

1) Experiment Design One: Imagine there are three
charging stations accessible to the electric vehicle
end-user, labeled A, B, and C. Station A relies on
renewable energy, charging $0.15 per kilowatt-hour.
Station B is powered by conventional energy, charging
$0.20 per kilowatt-hour, while station C, also relying
on conventional energy, charges $0.10 per kilowatt-
hour. Considering the electric vehicle has a range of
100 miles and necessitates 20 kilowatt-hours of energy
for a complete charge, the charging costs at each station
can be computed as follows:

• Station A: The cost of charging is calculated as
20 kilowatt-hoursmultiplied by $0.15 per kilowatt-
hour, resulting in $3.00.

• Station B: The charging cost is determined by mul-
tiplying 20 kilowatt-hours by $0.20 per kilowatt-
hour, equaling $4.00.

• Station C: Charging expenses are computed as
20 kilowatt-hoursmultiplied by $0.10 per kilowatt-
hour, yielding $2.00.

FIGURE 12. Simulation of EV without constraints and optional
parameters.

Based on the provided inputs see figure 12, the
above computation indicates that charging station C
offers the most economical rates per kilowatt-hour.
Consequently, it emerges as the optimal choice for
the electric vehicle end-user when considering the
charging of their electric car. It’s important to note
that this calculation does not address any constraints or
optional parameters. For instance, if the electric vehicle
cannot reach station C due to range limitations, stations
B or A may become more cost-effective alternatives.

FIGURE 13. Optimal cost calculation for experiment Design 1.

In summary, these calculations do not account for
constraints or optional parameters. The charging cost is
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determined by multiplying the required kilowatt-hours
by the cost per kilowatt-hour of the charging station.
In this example, station C is identified as the most
cost-effective charging option for the electric vehicle
end-user.

2) Experiment Design Two: Assume there are three
charging stations accessible to the electric vehicle end-
user, denoted as A, B, and C. Station A is powered by
renewable energy and charges $0.15 per kilowatt-hour,
station B relies on conventional energy and charges
$0.20 per kilowatt-hour, while station C, also powered
by conventional energy, charges $0.10 per kilowatt-
hour. Given that the electric vehicle has a range of
80 miles and needs 20 kilowatt-hours of energy for a
complete charge, the charging costs at each station can
be computed as follows:

• Station A: The cost of charging is calculated as
20 kilowatt-hoursmultiplied by $0.15 per kilowatt-
hour, resulting in $3.00.

• Station B: The charging cost is determined by mul-
tiplying 20 kilowatt-hours by $0.20 per kilowatt-
hour, equaling $4.00.

• Station C: Charging expenses are computed as
20 kilowatt-hoursmultiplied by $0.10 per kilowatt-
hour, yielding $2.00.

FIGURE 14. Simulation of EV with constraints and without optional
parameters.

In this scenario see figure 14, given the electric
vehicle’s 80-mile range, it can only reach charging
stations B or C, excluding station A. Considering the
earlier calculations and the restricted vehicle range,
station C emerges as the most economical choice with
the lowest cost per kilowatt-hour, making it the optimal
and cost-effective option for the electric vehicle end-
user.
In summary, despite the constraints considered in this
scenario, the charging cost can still be determined by
multiplying the required kilowatt-hours by the cost
per kilowatt-hour of the charging station. Therefore,
station C stands out as the most cost-effective charging

FIGURE 15. Optimal cost calculation for experiment Design 2.

solution for the electric vehicle end-user. Nevertheless,
this calculation has not taken into account optional
input values, including the influence of factors such
as traffic congestion, weather conditions, and wind
direction. These aspects will be addressed in our
upcoming experiments.

3) Experiment Design Three: Assume the consideration
factors such as traffic congestion, weather conditions,
and wind direction. The calculation for charging time
at each station is as follows:

• Station A: Charging time is determined by multi-
plying 20 kilowatt-hours by 1 hour per kilowatt-
hour, resulting in 20 hours.

• Station B: The charging time is calculated as
20 kilowatt-hours multiplied by 1.2 hours per
kilowatt-hour, totaling 24 hours.

• Station C: Charging time is computed by multiply-
ing 20 kilowatt-hours by 0.9 hours per kilowatt-
hour, yielding 18 hours.

Next, the overall charging cost at each station can be
computed as follows:

• Station A: The total cost is calculated by multi-
plying 20 hours by $0.15 per hour, adding $3.00,
resulting in $6.00.

• Station B: The total cost is determined by multi-
plying 24 hours by $0.20 per hour, adding $4.00,
totaling $8.80.

• Station C: The total cost is computed by multi-
plying 18 hours by $0.10 per hour, adding $2.00,
yielding $3.80.

In this instance, station C continues to offer the
lowest total charging cost, with the added advantage
of the shortest travel time and minimal impact from
factors like traffic congestion, weather conditions, and
wind direction. However, aligning with the goal of
minimizing charging costs for the electric vehicle
end-user and maximizing the use of renewable energy,
station A remains the optimal choice. Station A utilizes
renewable energy, resulting in a total cost of $6.00,
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FIGURE 16. Simulation of EV with constraints and optional parameters.

which is lower than station B that relies on conventional
energy, incurring a total cost of $8.80.

FIGURE 17. Optimal cost calculation for experiment Design 3.

From an environmental perspective, station A stands
out as the most eco-friendly option due to its use
of renewable energy sources. Incorporating sources
like solar PV and wind can significantly decrease
CO2 emissions, reducing the environmental footprint
of EV charging. In conclusion, considering charging
costs, reliance on renewable energy, travel time to the
charging station, and the impact of external factors,
station A emerges as the optimal solution for both the
electric vehicle end-user and the environment.

B. USER STORY: OPTIMIZING EV FLEET CHARGING FOR
TIMELY DELIVERIES
Suppose Alice, an industrious fleet operator, is responsible
for the efficient management of an electric vehicle (EV)
fleet dedicated to a bustling delivery service. Her primary
challenge lies in orchestrating the charging process for these
EVs in a manner that minimizes operational costs and,
most crucially, ensures punctual deliveries. To fulfill these

objectives, Alice seeks a solution that not only streamlines
the charging process for her fleet but also contributes to
the seamless execution of deliveries, guaranteeing customer
satisfaction and cost-efficiency in her operations.

1) In the Baseline Simulation,Alice employs a fixed
charging schedule for all her EVs, irrespective of
the time of day or prevailing weather conditions.
Charging intervals are uniform, with no consideration
for variations in electricity prices or grid demand. For
example, In this scenario, all EVs follow the same
charging pattern, regardless of external factors. They
charge at a rate of 50 kWh per hour for a fixed
duration of 8 hours. The charging cost per kWh remains
consistent at $0.10. This approach simplifies charging
management but overlooks opportunities to optimize
cost and efficiency based on real-time factors.However,
Alice recognizes the limitations of this fixed strategy
and aims to enhance her charging operations by
adopting a more dynamic and context-aware approach,
as outlined in the Proposed Simulation.

2) In the Simple Time-Based Model Simulation, Alice
considers charging during off-peak hours to capitalize
on lower electricity prices. Charging costs are calcu-
lated based on off-peak rates of $0.08 per kWh. For
instance, charging a vehicle with a 60 kWh battery
during off-peak hours would cost $4.80. This strategy
aims to reduce charging expenses when electricity
demand is lower.

3) In the Grid Demand-Aware Model Simulation,
To contribute to grid stability, Alice schedules EV
charging during times of lower grid demand. This
model aligns with both cost efficiency and grid
reliability. By strategically selecting times of lower
demand, Alice not only optimizes costs but also
supports the stability of the electricity grid.

4) In the Renewable Energy-Aware Model Simulation,
Alice prioritizes charging when renewable energy
sources, such as solar power, are at their peak
generation. Charging is aligned with times when solar
energy is available at 30%, ensuring a greener andmore
sustainable approach. This strategy reduces reliance on
non-renewable energy sources.

5) In the Proposed Simulation:Context-Aware DRL
Charging, represents the implementation of a
context-aware EV smart charging system, underpinned
by deep reinforcement learning (DRL). This advanced
strategy takes into account dynamic contextual
factors, including time of day, weather forecasts,
and fluctuating electricity prices. Charging speeds
are adapted based on station load, and predictions
regarding available solar energy are factored in. For
example: In this scenario, the Proposed Simulation
considers real-time contextual data. During peak hours
when electricity prices are at $0.15 per kWh, charging
occurs at a rate of 40 kWh per hour, aiming for
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maximum cost efficiency. During off-peak hours with
rates at $0.08 per kWh, charging speeds increase to
60 kWh per hour. Moreover, the simulation accounts
for solar energy predictions. If solar energy is predicted
to be available at 30% during the day, it adjusts
charging schedules to prioritize renewable energy
sources when feasible.These dynamic adaptations lead
to differentiated charging costs, where during peak
hours, the cost per kWh is $0.15, and during off-peak
hours, it is $0.08, contributing to optimized charging
expenses and greater overall efficiency.

TABLE 1. Different simulation methodology comparison.

FIGURE 18. Graph(s) simulation methodology comparison.

The proposed simulation, based on deep reinforcement
learning (DRL) and context-aware charging, emerges as
the most advanced and effective strategy. It outperforms
other approaches by dynamically adjusting charging rates
and schedules to minimize costs, maximize sustainability,
and support grid stability. While the grid demand-aware
model also offers a balanced approach, the DRL-based
strategy excels in optimizing efficiency comprehensively.
Alice should consider implementing the context-aware DRL
charging system to achieve the best results in enhancing her
EV fleet’s charging efficiency while minimizing operational
costs and ensuring timely deliveries.

C. METRICS
In this section, we conduct a comprehensive analysis of
each charging approach by evaluating its performance across
key metrics. These metrics include energy efficiency, cost-
effectiveness, grid strain, and CO2 emissions. By assessing

each approach’s impact on these critical factors, we gain
valuable insights into their effectiveness and sustainability.
This comparison will assist in making an informed decision
about which charging approach aligns best with Alice’s goals
of optimizing fleet efficiency, reducing operational costs,
and minimizing environmental impact. Let’s proceed with
a detailed examination of each metric across the various
charging approaches:

1) Energy Efficiency (kWh): This metric represents
the total energy consumed by the fleet. Lower
values indicate better efficiency. In this context,
the DRL-based approach consumes the least energy
(7,500 kWh), followed by the renewable energy-
aware model, indicating that these approaches optimize
energy utilization.

FIGURE 19. Energy efficiency (kWh) metric simulation.

2) Cost-Effectiveness ($): Total charging cost is rep-
resented in dollars. Lower costs indicate better
cost-effectiveness. The DRL-based approach incurs
the lowest cost ($750), followed by the renewable
energy-aware model, highlighting their cost-saving
capabilities.

FIGURE 20. Cost-Effectiveness ($) metric simulation.

3) Grid Strain (kW): Grid strain reflects the peak
demand on the electricity grid. Lower values indicate
reduced strain on the grid. The DRL-based approach
and the renewable energy-aware model both contribute
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to lower grid strain, with the DRL approach achieving
the lowest (18 kW).

FIGURE 21. Grid strain (kW) metric simulation.

4) CO2 Emissions (tons): This metric estimates the
CO2 emissions based on the energy sources used.
Lower emissions represent a more environmentally
friendly approach. The DRL-based approach and the
renewable energy-aware model result in the lowest
emissions, with the DRL approach emitting the least
CO2 (3.2 tons).

FIGURE 22. CO2 emissions (tons) metric simulation.

After a comprehensive analysis of various charging
approaches across key metrics, it becomes clear that each
approach offers a unique balance of advantages and trade-
offs. The choice of the most suitable charging approach
should align closely with Alice’s specific operational pri-
orities and sustainability objectives. When considering the
metrics of energy efficiency, cost-effectiveness, grid strain,
and CO2 emissions, it’s apparent that the ‘‘Proposed Simu-
lation (DRL)’’ stands out as the most versatile and effective
approach. This approach, driven by deep reinforcement
learning, excels in energy efficiency, minimizes operational
costs, reduces grid strain, and lowers environmental impact
through lower CO2 emissions. However, it’s essential to note
that the choice of charging approach may vary depending on
the specific context and objectives of different fleet operators.

Ultimately, Alice’s decision should prioritize her goals of
optimizing operational efficiency, minimizing costs, and
reducing environmental impact. The Proposed Simulation
(DRL) offers a well-rounded solution to achieve these
objectives, but the final selection should be tailored to the
unique requirements of Alice’s fleet management.

VI. DISCUSSION OF THE RESULTS
The objective of the ‘‘Discussion of the Results’’ section is
to comprehensively assess the performance and efficiency
of electric vehicle (EV) charging stations from two dis-
tinct perspectives: the ‘‘EV End-user Perspective’’ and the
‘‘Fleet Operator Perspective.’’ This analysis aims to provide
unique insights into the functionality, cost-effectiveness,
and environmental impact of charging stations, offering
a holistic understanding that addresses the diverse needs
and considerations of both individual EV users and fleet
operators.

A. COMPARISON: EV END-USER PERSPECTIVE
We can assess performance from the perspectives of both
electric vehicle (EV) end-users and grid operators based
on the outlined scenarios. According to the performance
analysis, the cost of charging an electric vehicle is partially
influenced by various factors, notably the charging station’s
location, energy source, and the distance between the vehicle
and the charging point. In the initial scenario, we evaluated
the charging cost for a battery-operated car at three different
charging stations, each with a unique power source and
cost per kilowatt-hour. The analysis indicated that the
station with the lowest cost per kilowatt-hour proved to be
the most cost-effective choice for EV end-users. However,
in the subsequent scenarios, we introduced constraints such
as the typical battery range and the distance between the
car and the charging station. With these limitations, the
analysis revealed that, on occasion, the most cost-effective
charging station might not necessarily have the lowest cost
per kilowatt-hour. For example, if there is a considerable
distance between the vehicle and the station, the EV might
be unable to reach the most economical station, potentially
leading the end-user to opt for a more expensive station.

According to the performance analysis conducted by the
grid operator, the total electric power needed for each
charging station is determined by the quantity and variety
of electric vehicles (EVs) utilizing the station. The findings
highlight significant variations in energy demand based on
location and time of day. For instance, a charging station situ-
ated in a densely populated area will experience considerably
higher power demand compared to one in a less populated
area. Additionally, if charging occurs during peak hours
when electricity demand is notably high, the grid operator
may need to generate more energy to meet both supply
and end-user demands. In light of these considerations,
the grid operator must take into account various factors
when planning and managing the energy supply to charging
stations. This includes the station’s location, the types of EVs
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utilizing the station, and the time of day. Such considerations
enable the grid operator to ensure a stable and efficient
energy supply to the charging stations while simultaneously
minimizing the environmental impact.

FIGURE 23. The energy source, cost, and environmental impact
comparison for the three charging stations.

Figure 23 depicts a bar graph illustrating the cost and
environmental implications of the three charging stations,
alongside the energy source utilized for electricity generation
at each station. The blue bars represent the electricity cost
at each station, the red bars depict the CO2 emissions per
kilowatt-hour of electricity, and the labels on the right side
of the graph indicate the energy source used at each station.
This graph effectively demonstrates the trade-off between
cost and environmental impact for each charging station,
emphasizing the influence of the energy source on both
factors. For instance, Station B exhibits the lowest cost but
the highest CO2 emissions, contrasting with Station A, which
has the highest cost but the lowest CO2 emissions. The choice
of energy source for electricity generation at each station
emerges as a crucial factor when assessing the environmental
impact of the charging stations.

B. COMPARISON: FLEET OPERATOR PERSPECTIVE
In this section, we comprehensively compare the performance
of various charging approaches to address the unique
challenges faced by Alice, a fleet operator managing electric
vehicles (EVs) for a delivery service. The evaluation is
based on key metrics, including energy efficiency, cost-
effectiveness, grid strain, and CO2 emissions. By analyzing
these metrics, we aim to determine the most suitable
charging strategy that optimizes operational efficiency while
minimizing costs and environmental impact. Let’s delve into
the detailed comparison of each approach:

1) Energy Efficiency
In the baseline simulation see figure 24, where a
fixed charging schedule is used, the fleet consumes
10,000 kWh of energy. This represents the highest
energy consumption among all approaches. It indi-
cates inefficiency due to a lack of adaptability to
contextual factors. In the Simple Time-Based Model
simulation, charging during off-peak hours, improves
energy efficiency compared to the baseline. The
fleet consumes 8,500 kWh, indicating a reduction

FIGURE 24. The energy source, cost, and environmental impact
comparison for Fleet operator.

in energy consumption due to optimized charging
times. In the Grid Demand-Aware Model simulation,
This model further improves energy efficiency, with
the fleet consuming 8,200 kWh. Charging during
times of lower grid demand leads to reduced energy
consumption. In the Renewable Energy-Aware Model
simulation, Prioritizing renewable energy sources
leads to lower energy consumption, with the fleet
consuming 7,800 kWh. It’s a more energy-efficient
approach. In the Proposed Simulation (DRL) sim-
ulation, The DRL-based approach excels in energy
efficiency, with the fleet consuming only 7,500 kWh.
This approach dynamically adapts charging strategies,
resulting in the lowest energy consumption. More-
over, the proposed simulation achieves the highest
energy efficiency, with a 12.5% improvement over the
baseline.

2) Cost-Effectiveness
In the baseline simulation see figure 24, The fixed
charging schedule incurs a cost of $1,000. It represents
the highest cost among all approaches due to its
lack of adaptability to pricing variations. In the
Simple Time-Based Model simulation, Charging dur-
ing off-peak hours reduces costs to $850, indicating
cost savings compared to the baseline. In the Grid
Demand-Aware Model simulation, This model further
reduces costs to $820, showing a balanced approach
that optimizes costs. In the Renewable Energy-Aware
Model simulation, Prioritizing renewable energy leads
to lower costs of $800, indicating both cost savings
and sustainability. In the Proposed Simulation (DRL)
simulation, The DRL-based approach is the most cost-
effective, with costs of $750, reflecting its dynamic
optimization and cost-saving capabilities. Moreover,
Proposed simulation offers the lowest charging cost and
is approximately 18.67%more cost-effective compared
to the baseline.
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3) Grid Strain
In figure 24, the baseline simulation contributes to a
peak grid demand of 30 kW. It places a significant
strain on the grid due to its inflexible charging schedule.
The Simple Time-Based Model simulation, Charging
during off-peak hours reduces grid strain to 25 kW,
contributing to grid stability. The Grid Demand-Aware
Model further reduces grid strain to 22 kW, indicating
its ability to support grid stability. The Renewable
Energy-Aware Model is Prioritizing renewable energy
leads to a grid strain of 20 kW, further minimizing
stress on the grid. Finally, the Proposed DRL-based
approach excels in minimizing grid strain, with a peak
demand of 18 kW, showcasing its grid-aware charging
capabilities. other than this, the proposed simulation
reduces peak grid demand by 10% compared to the
baseline.

4) CO2 Emissions: Proposed simulation results in the
lowest CO2 emissions, showcasing a 12% reduction
compared to the baseline see figure 24. In the baseline
simulation, The fixed charging schedule results in
estimated CO2 emissions of 5 tons, representing higher
emissions due to inefficient charging. In the Sim-
ple Time-Based Model simulation, Charging during
off-peak hours reduces emissions to 4 tons, indicating
a reduction in environmental impact. In the Grid
Demand-Aware Model simulation,This model further
reduces emissions to 3.8 tons, highlighting its sus-
tainability benefits. In the Renewable Energy-Aware
Model simulation, Prioritizing renewable energy leads
to lower emissions of 3.5 tons, making it an eco-
friendly choice. In the Proposed DRL-based simulation
approach, emits the least CO2, with emissions of
3.2 tons, reflecting its sustainability and environmen-
tally conscious charging.

C. DATA ACCURACY AND PROPOSED METHODOLOGY
Data accuracy is paramount for the proposed context-aware
EV smart charging system utilizing Deep Reinforcement
Learning (DRL). Inaccurate input data may distort the
learning process, leading to suboptimal decisions and reduced
adaptability to new contexts. Optimization performance
relies on accurate historical patterns, user behaviors, and
grid conditions for efficient resource allocation. Context-
awareness, essential for dynamic adaptation, is compromised
by inaccurate data, potentially resulting in misinformed
decisions. The robustness and reliability of the system
hinge on data accuracy, with uncertainties introduced by
inaccuracies. During training and validation, accurate data is
crucial to prevent biased models. User experience and trust
are directly influenced by data accuracy, impacting system
adoption. Ensuring the accuracy of data for DRL algorithms
is critical for the success of the proposed EV charging system.

In light of the comprehensive analysis and evaluation of
various charging approaches, it is evident that each approach
brings its unique advantages and considerations to the table.

However, when considering Alice’s goal of optimizing the
charging process for her EV fleet, the Proposed Simulation
(DRL) emerges as the most promising and well-rounded
choice. It excels in energy efficiency, cost-effectiveness,
grid strain reduction, and environmental sustainability. This
adaptive approach, powered by deep reinforcement learning,
dynamically adapts to real-time contextual factors, ensur-
ing efficient charging while minimizing operational costs
and environmental impact. By implementing the Proposed
Simulation (DRL), Alice can achieve the dual benefits
of operational efficiency and environmental responsibility,
ultimately enhancing customer satisfaction and the overall
performance of her electric vehicle fleet.

VII. CONCLUSION
In conclusion, the increased adoption of electric vehicles
(EVs) offers issues in successfully managing non-gasoline
cars. This research introduces a context-aware EV smart
charging system that optimises charging decisions using
Deep Reinforcement Learning (DRL). The performance
of the system is evaluated using the proposed approach,
DQN, through simulations and comparisons with established
methods (PPO, A3C, DDPG). The updated version takes
time and location into account, as well as trade-offs between
charging cost, grid strain reduction, fleet preferences, station
efficiency, and energy sources. Our research shows that using
natural energy sources in the proposed system improves
energy efficiency by 18% compared to standard techniques,
increases cost-effectiveness for electric vehicle (EV) owners
by 12%, reduces grid strain by 20%, and reduces CO2
emissions by 10%. However, it is critical to recognise
the study’s limitations, such as the need for additional
real-world data and evaluating the recommended approach in
a real-world situation. More study is needed to improve the
scalability and flexibility of the proposed approach, detailing
the research’s future direction.
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