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ABSTRACT The parameter mismatch caused by the parameter uncertainties and unknown disturbances
degrades the performance of finite-control-set model predictive control (FCS-MPC). This paper presents
a model-free fault-tolerant predictive control (MFFTPC) method based on an extended sliding mode
observer (ESMO) for the surface-mounted permanent magnet synchronous motor (SPMSM) drive system.
First, considering parameter uncertainties and unknown disturbances, a novel ultra-local model (ULM)
is established for the PMSM drive system. Next, a finite-control-set model-free fault-tolerant predictive
current controller (FCS-MFFTPCC) is designed in the current loop, and the model-free deadbeat fault-
tolerant predictive speed controller (MFDFTPSC) is designed in the speed loop. Then, unknown parts of the
novel ULM are estimated by the designed ESMO and compensated for the errors caused by the parameter
mismatches. Thus, the presented method reduces the dependence on the precise model and eliminates the
effect caused by parameter mismatches on the MPC control performance of the SPMSM drive system.

INDEX TERMS Surface-mounted permanent magnet synchronous motor (SPMSM), ultra-local model
(ULM), model-free fault-tolerant predictive control, parameter mismatches, extended sliding mode observer
(ESMO).

I. INTRODUCTION
Permanent magnet synchronous motor (PMSM) has been
widely employed in industrial applications, e.g. electric
vehicles and rail transit, owing to its excellent dynamic
characteristics [1]. In a PMSM drive system, the conventional
proportional-integral (PI) controllers are extensively applied
because of their easy implementation. However, the perfor-
mance of the PI controller is limited for high-performance
drive systems due to the integral windup [2].

In high-precision and high-performance engineering appli-
cations, the PMSM drive system requires fast torque response
and small fluctuations [3]. The predictive control method [4]
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has some features for fast dynamic response and easy multi-
objective collaboration [5]. Therefore, it has been developed
and widely used in industrial drives. Generally speaking,
predictive control can be categorized into two groups:
deadbeat predictive control (DPC) and model predictive
control (MPC). MPC can be divided into the continuous
control set MPC (CCS-MPC) and the finite control set MPC
(FCS-MPC). FCS-MPC is a popular research topic that
corresponds with power electronic converters with discrete
switching states [6]. It evaluates each candidate state by
cost function and output the optimal state to control the
inverter [7].

However, FCS-MPC relies heavily on the precise math-
ematical model of the motor. The control performance of
the FCS-MPC method is easily affected by the parameter

8502

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-2354-0475
https://orcid.org/0000-0003-4265-9631
https://orcid.org/0000-0003-3955-4871
https://orcid.org/0000-0001-9981-436X


S. Cheng et al.: Robust Model-Free Fault-Tolerant Predictive Control for PMSM Drive System

perturbations [8], such as stator inductance variation, stator
resistance variation, and permanent magnet (PM) demag-
netization faults [9]. In practical engineering applications,
the resistance and inductance are affected by temperature
and the operating conditions [10] the PM material of the
rotor is affected by temperature, an external magnetic field,
manufacturing defects, and so on [11], thus resulting in
the demagnetization fault. The PM flux will reduce 20%
of the initial flux per 100◦C increase in the ambient
temperature [12]. The parameter perturbation brings about
the parameter mismatches of the FCS-MPC [13], which
greatly affects the performance of PMSM drive systems [14].
To retain the advantages of predictive control while solving

the shortcomings of parameter sensitivity, some researchers
have improved parameter-identification-based methods [15],
[16], [17]. This kind of method aims to correct controller
parameters by identifying motor parameters in real-time.
However, unmodeled non-linear factors, such as inverter
dead-time [15], cross-coupling of magnetic circuits [18],
will directly affect the accuracy of the identification results.
Meanwhile, complex identification algorithms will also
increase the calculation burden of predictive control [19].
The PM demagnetization fault diagnosis is the basis for

executing fault-tolerant operation of PMSM drive systems.
A data-driven diagnosis method based on motor electromag-
netic or mechanical signature analysis obtains demagnetiza-
tion fault information by using wavelet packet transform [20],
custom phase space reconstruction image [21], and dynamic
Bayesian network [22]. To avoid the selection of preset
parameters, the Ramanujan digital twin architecture is used
to detect the potential fault signatures [23]. However, these
methods are difficult to directly connect with the fault-
tolerant control, and requires a large amount of computation.
The model-based approach constructs an online observer for
PMflux linkage by dynamic data processing techniques. This
method can provide quantitative data for demagnetization
fault diagnosis and is easy to integrate with other schemes
to perform fault-tolerant control. A sliding mode-based flux
linkage observer is applied to diagnose the demagnetization
fault [24].

The model-free control (MFC) [25] proposed by Fliess
and Join provides a new solution for fault-tolerant control
of parameter perturbations in the PMSM. Compared with
model-based control strategies, the MFCmethods can reduce
the dependence of the controller on the system model,
and significantly improve the motor control performance.
The input and output information of the motor are used
to construct an ultra-local model (ULM), and then an
ULM-based MFC controller is designed. To achieve a
better demagnetization fault-tolerant control performance,
the feedback controller inMFCwas designed as a nonsingular
terminal sliding mode controller (SMC) [26] and super-
twisting SMC [27]. A model-free adaptive internal terminal
SMC with a nonlinear disturbance observer was presented
for a PMSM drive system [28]. The model-free deadbeat
predictive current control was implemented by applying the

FIGURE 1. The variation of PM flux in PMSM.

ULMof a surface-mounted PMSM (SPMSM) [29]. Although
this method has some effects on performance enhancement,
the influence of motor parameter perturbations was not
considered.

This paper presents an MFFTPC method based on ESMO
(called ESMO-based MFFTPC hereafter) to perform fault-
tolerant control for the SPMSM drive systems. It aims to
enhance the robustness and eliminate the effect of parameter
perturbations on predictive control. The main contributions
of this study are as follows:

i) By combining MFC and MPC, an MFFTPC strategy is
introduced to achieve fault-tolerant control for SPMSM
with parameter perturbation. The MFFTPC strategy
involves the double advantages of MPC and MFC.
That is, it can not only maintain the independence
of an accurate SPMSM model but also obtain higher
robustness and strong stability of SPMSM.

ii) An FCS-MFFTPCC method is designed based on the
novel ULM in the current loop, and an MFDFTPSC
method is designed based on the novel ULM in the
speed loop, respectively. That greatly enhances the
response speed of the SPMSM drive system with
parameter perturbation.

iii) The unknown parts of the novel ULM are accurately
estimated by the designed ESMO for the first time,
so that the predictive model is consistent with the
actual motor model. Unlike the conventional current-
based cost function, a voltage-based cost function is
presented to obtain the optimal voltage vector through
only calculation and comparison once.

The rest of this paper is organized as follows. Section II
introduces the novel ULM of SPMSMwith parameter pertur-
bations. Section III presents theMFFTPCmethod. Section IV
explains the configuration of the ESMO. Section V and VI
give the simulation and experimental results to validate the
effectiveness of the proposed MFFTPC method. Section VII
gives the conclusion.

II. SYSTEM DESCRIPTION
This section describes a novel ULM of SPMSM with
parameter perturbations in the d-q reference frame.

A. MATHEMATICAL MODEL OF PMSM WITH PARAMETER
PERTURBATIONS
When PM demagnetization fault occurs [30], the amplitude
of PM flux changes from ψro to ψr , and/or the direction of
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PM flux varies from 0 to γ (see Figure 1). The variations of
rotor flux are 1ψrd = ψro cos γ − ψro, 1ψrq = ψro sin γ .

Considering the motor parameter perturbations, such as
resistance variation, inductance variation [31], PM demag-
netization fault, the state equation of SPMSM in the d-q
reference frame is expressed as

did
dt

= −
Rso
Lso

id +
1
Lso

ud + ωeiq + δd

diq
dt

= −
Rso
Lso

iq +
1
Lso

uq − ωeid −
ωe

Lso
ψro + δq

(1)

where
id , iq: d- and q-axes stator current (A);
ud , uq:d- and q-axes stator voltage (V );
Lso: nominal stator inductance (H );
Rso: nominal stator resistance (�);
ψro: nominal amplitude of PM flux (Wb);
ωe: electrical angular velocity (rad/s);
δd , δq:unknown disturbances.

δd = −
1Ls

Lso (Lso +1Ls)

(
ud − Rsoid −1Rsid + Lsoωeiq

+1Lsωeiq+ωe1ψrq
)
−

1
Lso

(
1Rsid−1Lsωeiq−ωe1ψrq

)
δq = −

1Ls
Lso (Lso +1Ls)

(
uq − Rsoiq −1Rsiq − Lsoωeid

−1Lsωeid − ωeψro − ωe1ψrd )−
1
Lso

(
1Rsiq +1Lsωeid

+ωe1ψrd ) .

where 1Rs = Rs − Rso is the variation of stator resistance
and 1Ls = Ls − Lso the variation of stator inductances,
Rs and Ls are actual stator resistance and stator inductances,
respectively.

Considering parameter uncertainties and unknown distur-
bances, the mechanical equation of an SPMSM is expressed
as

dωe
dt

= −
B
J
ωe +

3
2

n2p
J
ψroiq +

np
J
(−TL +1Te +1TL + ε)

(2)

where np is the number of pole pairs; J and B are rotational
inertia and viscous friction coefficient, respectively; 1Te =
3
2np1ψrd iq, 1Te is the perturbation of electromagnetic
torque;1TL is the disturbance of the load torque; ε indicates
other unknown disturbances.

B. NOVEL ULM OF SPMSM WITH PARAMETER
PERTURBATIONS
1) THE CONVENTIONAL ULM
For a single-input single-output nonlinear system, the ULM
is expressed as [25]{

ẋ = f (x) + βu
y = x

(3)

where x, y, and u are the state variable, the system output, and
the control input, respectively; f is the unknown Lipschitz

bounded nonlinear function depending only on x, including
the bounded disturbance; β is a priori-known constant, which
is chosen to keep βu and ẋ in the same order.

2) THE NOVEL ULM
The nonlinear component, f (x), is expressed as [32]

f (x) = αx + h (4)

where α is the gain of system state; h is the unknown
nonlinear part, which satisfies Lipschitz bounded with
Lebesgue measurability.

According to (4), the nonlinear component, f , is further
divided into the linear part and nonlinear part. Therefore, the
novel ULM of system (3) can be expressed as follows{

ẋ = αx + βu+ h
y = x.

(5)

According to (1), (2), and (5), the novel ULMs of SPMSM
in the speed loop and d-q-axis current loops are designed as

ẋ = αx+ βu+ h (6)

where x =
[
id iq ωe

]T is the state variables; u =[
ud uq iq

]T is the control input; α = diag
(
αd , αq, αω

)
,

αd , αq are the designed current gains, and αω is the designed
speed gain; β = diag

(
βd , βq, βω

)
, βd , βq are the designed

voltage parameters, and βω is the designed current parameter;
h =

[
hd hq hω

]T are the unknown parts, including the
modeled part and the disturbance part of SPMSM, which
satisfy the Lipschitz bounded condition.

Remark 1. Note that, although α and β are pre-designed
coefficient matrices, even if they are not very accurate,
the control performance of the SPMSM drive system is
maintained by adjusting h. Thus, precise parameters are not
required, which is one of the advantages of MFC based on
the ULM [33].

III. DESIGN OF MFFTPC
Based on the novel ULM, an FCS-MFFTPCC in the d-q-axis
current loops, and a MFDFTPSC in the speed loop are
designed, respectively.

A. DESIGN OF FCS-MFFTPCC IN D-Q-AXIS CURRENT
LOOPS
The discrete novel ULM in the d-q-axis current loops is
derived from (6) by using the first-order forward-Euler
method

ip (k + 1)=
[
αdqi (k)+βdqudq (k)+hdq (k)

]
Tsc+i (k) (7)

where ip (k + 1) =
[
ipd (k + 1) ipq (k + 1)

]T indicates the
current predictive values at (k + 1)Tsc instant; i (k) =[
id (k) iq (k)

]T represents the current measured values at
kTsc instant; udq (k) =

[
ud (k) uq (k)

]T is the chosen
voltage vector at kTsc instant; αdq = diag

(
αd , αq

)
;
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βdq = diag
(
βd , βq

)
; hdq (k) =

[
hd (k) hq (k)

]T is the
uncertain part caused by the perturbation of motor parameters
and the nonlinearity of inverter, they are updated at every
sampling period; Tsc is the sampling time of the current loop.

The control goal is to keep the actual current close to the
reference current, and the cost function is defined as

g =
[
i∗d − ipd (k + 1)

]2
+

[
i∗q − ipq (k + 1)

]2
(8)

where i∗d and i∗q are the current references.
The computational burden increases when using (7) and (8)

to obtain indirectly the optimal voltage vector. So, it is
necessary to convert the optimization objective. The control
goal of the FCS-MFFTPCC is to make the current predictive
values accurately tracking the references i∗d and i∗q, namely,
ipd (k + 1) = i∗d , i

p
q (k + 1) = i∗q. Then, the reference voltage

predictive model is obtained

u∗
= β−1

dq

[
1
Tsc

i∗ −

(
αdq +

I
Tsc

)
i (k)− hdq (k)

]
(9)

where u∗
=

[
u∗
d u

∗
q
]T

are d- and q-axes the predictive

reference voltage; i∗ =
[
i∗d i

∗
q
]T
; I is the identity matrix.

Converting the cost function based on current into the cost
function based on voltage, the corresponding cost function is
rewritten as

g =
(
u∗
d − ud

)2
+

(
u∗
q − uq

)2
(10)

Remark 2. The predicted reference voltage is calculated
by (9) and substituted into (10) to select the optimal
voltage vector, uopt . The selected uopt which is equivalent
to the conventional predictive current method. But it is not
necessary to predict the current seven times according to (7),
only calculate (9) once to obtain uopt .

The delay compensationmethod of ‘‘two-step calculation’’
is used to solve the problem of ‘‘one-step delay’’ [34].

B. DESIGN OF MFDFTPSC IN SPEED LOOP
The discrete novel ULM in the speed loop is obtained from (6)

ωe (k + 1)=
(
hω (k)+αωωe (k)+βωiq (k)

)
Tss+ωe (k)

(11)

where Tss is the sampling period of the speed loop.
The q-axis reference current is predictively obtained by

the discrete ULM (11), and the speed tracks the reference
speed during the next control period. The reference speed
ω∗
e (k + 1) is considered as ωe (k + 1) at (k + 1)Tss instant.

Therefore, the q-axis reference current is described as

i∗q(k)=
ω∗
e (k+1)−ωe (k)−hω (k)Tss−αωωe (k)Tss

βωTss
(12)

IV. DESIGN OF ESMO TO ESTIMATE UNKNOWN PARTS
This section designs the ESMO to estimate the unknown parts
h in the novel ULM.

A. DESIGN OF ESMO
To accurately estimate unknown parts h, that is hdq in (9) and
hω in (12), the extended novel ULM of SPMSM is obtained
from (6) {

ẋ = αx+ βu+ h
ḣ = H

(13)

whereH =
[
Hd Hq Hω

]T are the variation rates of unknown
parts h =

[
hd hq hω

]T , and they are regarded as constant
in engineering.

To accurately estimate the unknown parts, the ESMO is
designed as {

˙̂x = αx̂+ βu+ ĥ+ Usmo
˙̂h = GUsmo

(14)

where x̂ is the observed value of x, x̂ =
[
îd îq ω̂e

]T
; ĥ

is the observed value of h, ĥ =
[
ĥd ĥq ĥω

]T
; Usmo =[

Udsmo Uqsmo Uωsmo
]T is sliding mode control law; G =

diag
(
Gd ,Gq,Gω

)
is parameter matrix.

Subtracting (13) from (14) gives the error dynamics

ė1 = αe1 + e2 − Usmo (15)

ė2 = H − GUsmo (16)

where e1 =
[
ed eq eω

]T , ed = id − îd , eq = iq − îq, eω =

ωe− ω̂e; e2 =
[
ehd ehq ehω

]T , ehd = hd − ĥd , ehq = hq− ĥq,
and eω = hω − ĥω.
Selecting the sliding surface to be s = e1. To improve the

observation precision of the ESMO, the exponential reaching
law is chosen as

ṡ = −ksgn (s)− λs (17)

where k = diag (k1, k2, k3) and λ = diag (λ1, λ2, λ3) are the
parameters matrix, both of them are positive.

Then, substituting (17) into (15) yields

αe1 + e2 − Usmo = −ksgn (e)− λe. (18)

Theorem 1. Consider e2 as the disturbances of Usmo and
design the sliding mode control law

Usmo = (α + λ) e1 + ksgn (e1) (19)

then, the error equations (15) and (16) are asymptotically
stable, and the error e1 converges in finite time.

Proof: Considering a Lyapunov function candidate to be

V =
1
2
eT1 e1. (20)

Differentiating Lyapunov function (20), and substitut-
ing (15) and (19) into yields

V̇ = eT1 ė1 = eT1 (−λe1 + e2 − ksgn (e1))

≤ eT1 e2 − k1 ∥ed∥ − k2
∥∥eq∥∥ − k3 ∥eω∥

≤ ∥e1∥ ∥e2∥ − k4 ∥e1∥ = ∥e1∥ (∥e2∥ − k4) (21)

where ∥·∥ is the norm of a vector, k4 = min {k1, k2, k3}.
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FIGURE 2. Discrete block diagram of the presented ESMO.

In engineering, ∥e2∥ in (21) is considered to be bounded,
namely, ∥e2∥ ≤ ξ . Thus, if k4 is chosen to be k4 ≥ ξ + η

(η > 0), then

V̇ ≤ −η ∥e1∥ < 0. (22)

holds.
This completes the proof. □
According to the equivalent principle of sliding mode, we

get ė1 = e1 = 0. Thus, equations (15) and (16) can be
simplified as

ė2 + Ge2 −H = 0. (23)

The solution of (23) is e2 = e−Gt
[
C1 +

∫
H · e−Gtdt

]
,

where C1 is a constant matrix. It is clear that the parameter
matrix G must be positive to ensure the convergence of e2,
and the convergence rate is directly related to G.

B. DISCRETIZATION OF ESMO
The discrete expression of ESMO (Fig. 2) is expressed as{
x̂ (k+1)=(I+Tsα) x̂ (k)+Ts

(
βu (k)+ĥ (k)+Usmo (k)

)
ĥ (k+1)= ĥ (k)+ TsGUsmo (k)

where x̂ (k + 1) =
[
îd (k + 1) îq (k + 1) ω̂e (k + 1)

]T
is the

predictive values at the next sampling time; ĥ (k + 1) =[
ĥd (k + 1) ĥq (k + 1) ĥω (k + 1)

]T
is the predictive values

of estimated unknown parts at the next sampling time.
Usmo (k) satisfies Usmo (k) = (α + λ) e1 (k)+ ksgn (e1 (k)),
where e1 (k) = x (k)− x̂ (k).

Remark 3. The sampling time Ts of the discrete ESMO in the
current loops is Tsc, and the sampling time Ts of the discrete
ESMO in the speed loop is Tss.

V. SIMULATION ANALYSIS
This section analyzes the performance of the presented
MFFTPC method for the SPMSM drive system using
MATLAB/Simulink, which is compared with the conven-
tional PI-MPC. The PI-MPC is termed by combining the
conventional FCS-MPC control in the current loop with the
PI control in the speed loop.

FIGURE 3. Block diagram of MFFTPC for PMSM drive.

TABLE 1. Nominal parameters of SPMSM.

TABLE 2. Performance comparison with load torque changes.

The i∗d = 0 control strategy is selected in the PMSM
drive system(Fig. 3). The nominal parameters of SPMSM
were listed in Table 1. The sampling time of current loops,
Tsc, was set as 50 µs and the sampling time of speed
loop, Tss, was set as 1.5 ms. The parameters of the novel
ULM were chosen to be αd = αq = −20, βd = βq = 1000,
αω = 13.6, and βω = 6.4 × 10−4. According to Theorem 1,
the parameters of ESMO were chosen to be k1 = k2 =

8 × 105, λ1 = λ2 = 1 × 105, Gd = Gq = 1 × 104,
k4 = 9 × 105, λ3 = 1.8 × 105, and Gω = 9 × 105.

A. SIMULATION RESULTS FOR SPMSM AT NO-LOAD AND
LOAD
The load torque was set to 0 N ·m and increased to 700 N ·m
at 0.2 s. The parameters of the motor were nominal values.

Figs. 4 and 5 show that PI-MPC has a lower speed response
than MFFTPC. When the load torque changed to 700 N · m
at 0.2 s, the q-axis current and torque controlled by MFFTPC
quickly tracked the reference value, but those controlled by
PI-MPC had overshoots.
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FIGURE 4. Simulation results of conventional PI-MPC with no-load and
load.

FIGURE 5. Simulation results of MFFTPC with no-load and load.

Table 2 summarized the setting time, overshoot, and
steady-state tracking error of the PI-MPC, MFFTPC. The
results confirm that the tracking accuracy of the presented
MFFTPC was better than that of the PI-MPC.

The unknown parts h in the novel ULM are observed by
the sliding mode observer (SMO) and the ESMO for SPMSM
with no-load and load. Fig. 6 demonstrates the observation
results of the two methods. It shows that the conventional
SMO has the chattering due to its own characteristics.

FIGURE 6. Estimated unknown parts with no-load and load.

FIGURE 7. Simulation results of conventional PI-MPC at low-speed and
high-speed.

However, the unknown part observed by ESMO is more
accurate and the chattering is smaller.

B. SIMULATION RESULTS FOR SPMSM AT LOW-SPEED
AND HIGH-SPEED
The load torque was set to 700 N·m. The initial reference
speed was set to 100 rad/s and increased to 600 rad/s at 0.2 s.
The parameters of the motor were nominal values.

Figs. 7 and 8 show that the setting time, overshoot,
and steady-state tracking error of the MFFTPC method at
low-speed and high-speed were much shorter than those
of the conventional PI-MPC. Table 3 listed the setting
time, overshoot, and steady-state tracking error. The results
confirm that the tracking accuracy of the presented MFFTPC
was better than that of the PI-MPC at low-speed and
high-speed.

Fig. 9 indicates the unknown parts h in the novel ULM are
observed by the SMO and the ESMO for SPMSM at low-
speed and high-speed. The results prove that the ESMO has
a faster convergence speed and smaller chattering compared
to the SMO at both low-speed and high-speed.
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FIGURE 8. Simulation results of MFFTPC at low-speed and high-speed.

FIGURE 9. Estimated unknown parts at low-speed and high-speed.

TABLE 3. Performance comparison at low and high speed.

C. SIMULATION RESULTS FOR SPMSM WITH PARAMETER
PERTURBATIONS
In this scenario, Rs changed from 0.02 � to 0.04 � and Ls
changed from 1 mH to 2 mH , and other motor parameters
were the same as those in subsection V-A.

Figs. 10 and 11 show that the d-q-axis current had
deviations, the speed response had overshoot when the
resistance and inductance were changed in the PI-MPC
control method. However, the the currents and speed response
of the MFFTPC method had not similar changes and were
consistent with normal conditions. When the load torque
changed to 700 N · m at 0.2 s, the current and torque
controlled by MFFTPC had overshoot, but they were less
than those controlled by PI-MPC, the speed controlled by
MFFTPC dropped less than that of PI-MPC.

FIGURE 10. Simulation results of conventional PI-MPC with variations of
resistance and inductance.

FIGURE 11. Simulation results of MFFTPC with variations of resistance
and inductance.

Table 4 summarized the setting time, overshoot, and
steady-state tracking error of the MFFTPC and PI-MPC
methods when the resistance and inductance were changed.
The results confirm that the presented MFFTPC had better
performance in the case of parameter perturbations.

Fig. 12 demonstrates the unknown parts h in the novel
ULM are observed by the SMO and the ESMO for SPMSM
with parameter perturbations. It shows that the conventional
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FIGURE 12. Estimated unknown parts with variations of resistance and
inductance.

TABLE 4. Performance comparison with variations of resistance and
inductance.

SMOhas the chattering and the ESMOhas smaller chattering.
When parameter perturbations occur, the observed values
of the unknown parts h change accordingly, and accurate
estimation of the unknown part h can update the predictive
model to match the actual model. This is also the reason
why parameter perturbations have a relatively small impact
on MFFTPC.

D. SIMULATION RESULTS FOR SPMSM WITH
DEMAGNETIZATION
The simulation conditions were the same as those in
subsection V-A. The initial amplitudeψro and deviation angle
γ of the PM were 0.892 Wb and 0◦, ψr changed to 0.446 Wb
at 0.3 s, and the deviation angle γ changed to 45◦ at 0.4 s.

Figs. 13 and 14 show that when the PM flux amplitude
decreased at 0.3 s, the recovering time of torque controlled by
PI-MPC was longer than that of the MFFTPC, and the speed
controlled by PI-MPCwas reduced.When the deviation angle
γ is set to 45◦ at 0.4 s, the recovering time of torque controlled
by MFFTPC is shorter than that of the PI-MPC, and the
speed controlled by PI-MPC was further reduced. However,
the MFFTPC had not similar changes.

Table 5 summarized the results of the steady-state tracking
error of current and speed, and recovering time of toque
by PI-MPC and MFFTPC methods. The simulation results
verify the presented method suppresses the influence of
demagnetization fault and performs the fault-tolerant control.

Fig. 15 demonstrates the unknown parts h in the novel
ULM are observed by the SMO and the ESMO for SPMSM
with demagnetization. When PM demagnetization fault
occurs, the ESMO can adjust accordingly by estimating
the unknown part h, which is more accurate in real-time
updating the predictive model for MFFTPC compared to
the SMO.

FIGURE 13. Simulation results of conventional PI-MPC with PM
demagnetization fault.

FIGURE 14. Simulation results of MFFTPC with PM demagnetization fault.

VI. EXPERIMENTAL VERIFICATION
This section presents a hardware-in-the-loop simulation
(HILS) experiment to validate the presented MFFTPC
method. The RT-LAB OP5600 is implemented the HILS
experiment of the PMSM drive system (Fig. 16). Fig. 16(b)
shows the configuration of HILS. The TMS320F2812 DSP
is the controller, and the RT-LAB OP5600 is constructed
as the PMSM and inverter, etc. The system parameters are
consistent with the simulation parameters.
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FIGURE 15. Estimated unknown parts with PM demagnetization fault.

TABLE 5. Performance comparison with PM demagnetization fault.

FIGURE 16. RT-LAB HILS.

A. EXPERIMENTAL RESULTS FOR SPMSM IN NORMAL
CONDITION
The experimental conditions were the same as those in
subsection V-A. Similar to the simulation, the load torque
is given a step reference in the steady-state process. Fig. 17
shows that after the load torque changed, the variation of
the q-axis current and torque controlled by MFFTPC were
small and can be ignored, but those are larger when using
the PI-MPC. The speed deviation also exist in PI-MPC when
load torque changed. It can be seen that the MFFTPCmethod
is obviously better than the conventional PI-MPC in normal
condition.

B. EXPERIMENTAL RESULTS FOR SPMSM WITH
PARAMETER VARIATIONS
The experimental conditions were the same as those in
subsection V-C. Fig. 18 shows a comparison of the presented
MFFTPC and the conventional PI-MPC with parameter
variations. The current, torque and speed using the PI-MPC
have deviation and overshoot (Fig. 18(a)). By contrast, the
MFFTPC method has same performance as it in normal
condition (Fig. 18(b)). Fig. 18 shows that the presented
MFFTPC exhibits the robustness to the parameter variations.

FIGURE 17. Experimental results of the d - and q-axes current, torque,
and speed with normal condition.

FIGURE 18. Experimental results of the d - and q-axes current, torque,
and speed with parameter variations.

C. EXPERIMENTAL RESULTS FOR SPMSM WITH PM
DEMAGNETIZATION FAULT
The experimental conditions were the same as those in
subsection V-D. Fig. 19 shows a comparison of the MFFTPC
and the PI-MPC method with PM demagnetization fault. It is
obvious that the variations of the PM amplitude and the
deviation angle exert an effect on torque responses in the
conventional PI-MPC method (Fig. 19(a)). The recovering
time of torque using the PI-MPC are obviously larger;
by contrast, the torque recovered smoothly by MFFTPC
method (Fig. 19(b)). In addition, it can be known from
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FIGURE 19. Experimental results of the d - and q-axes current, torque,
and speed with PM demagnetization fault.

Fig. 19 that PI-MPC has the current and speed deviation
when PM demagnetization fault occurred. Thus, compared
with the conventional PI-MPC, the proposed MFFTPC
has significantly improved fault-tolerance capability of PM
demagnetization faults.

VII. CONCLUSION
This paper presented an MFFTPC approach to eliminate the
effects of parameter mismatches caused by motor parameter
perturbations. First, we proposed a novel ULM of the current
loop and speed loops considering the parameter perturbations
for an SPMSM drive system. Next, we presented the ESMO-
based MFFTPC approach. We designed an FCS-MFFTPCC
in the current loops and a MFDFTPSC in the speed loop
based on the novel ULM. We presented the voltage-based
cost function to obtain the optimal voltage vector, which
is calculated and compared only once. Then, we designed
the discrete ESMO to timely obtain information about the
unknown part of the novel ULM. It can compensate for
the parameter mismatch error caused by the parameter
perturbation of the conventional MPC.

The simulation and experimental results show that the
presented method has better transient, steady-state per-
formance, and stronger robustness. The presented method
effectively maintained the control performance and reduced
the dependence on the accurate model of SPMSM.
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