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ABSTRACT The percentage of passing courses is dependent on the assistance provided to students.
To ensure the effectiveness of these efforts, identifying students at risk of course failure as early as possible
is crucial. The list of students at risk can be generated through academic performance prediction based
on historical data. However, the number of students failing (7%) is significantly lower than the number
succeeding (93%), resulting in a class imbalance that hampers performance. A widely adopted technique for
addressing class imbalance issues is synthetic sample oversampling. Many oversampling techniques neglect
discrete features, whereas the existing technique for discrete features treats all features uniformly and does
not select samples as a basis for generating synthetic data. This limitation is capable of introducing noise and
borderline samples. As a result, this study introduced a novel discrete feature oversampling technique called
GLoW SMOTE-D. This technique accelerated the improvement of minority sample learning by performing
multiple selections and multiple weighting in order to effectively reduce noise. Experimental results showed
that this technique significantly enhanced the performance of students’ failure in the course prediction model
when compared to various other techniques across a range of performance measures and classifiers.

INDEX TERMS Discrete, imbalanced dataset, oversampling, students’ failure.

I. INTRODUCTION
The academic success of students is very important in shap-
ing the quality of higher education and its perception by
the public. Students indirectly serve as advocates for higher
education because the information they share with friends,
family, or the community can positively or negatively impact
the reputation of these institutions. Consequently, it is nec-
essary for higher education to enhance the quality of their
students. One effective technique for achieving this goal is by
increasing the percentage of students who successfully pass
courses. This can be accomplished by offering support and
assistance outside class to those who are at risk of failing
courses [1], [2], [3]. Efforts to improve the percentage of
passing courses by providing additional support outside the
classroom have been carried out by Khan et al. [2]. The
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result showed that mentoring outside the classroom setting
contributed to an increased percentage of passing courses [2].

To ensure that this support is both targeted and optimized,
students at risk of failure need to be identified as early as
possible [4]. This can be accomplished through the prediction
of students’ academic performance in their courses.

Prediction models rely on historical data on students’ per-
formance in courses. However, a significant imbalance often
exists between the number of students who pass and those
who fail. Data about failing students is scarcer than that
of successful individuals, creating a class imbalance issue.
In binary class imbalances, the category with fewer instances
is termed the minority sample (positive sample), whereas
the other is labeled the majority (negative sample) [5], [6],
[7], [8]. This substantial disparity in sample sizes severely
impacts the predictive capacity of the minority sample, lead-
ing to less reliable prediction [5], [6], [8], [9], [10], [12], [13],
[14]. This bias toward the majority sample is due to classifiers
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favoring it [12], [14], [15]. In the context of predicting failure
in courses, it is vital to prioritize the predictive ability of the
minority sample over the majority. Neglecting the prediction
accuracy of minority samples results in an unusable list of
students at risk of failure generated by the model due to a
high number of misclassified minority samples.

Numerous studies have been conducted to address class
imbalance issues and enhance the performance of minority
samples. One effective technique to enhance the performance
of minority samples is by increasing their learning capabil-
ities through a technique called oversampling [5], [8], [9],
[10], [11], [12]. Conceptually, oversampling is the process of
increasing the number of samples, generally minority sam-
ples [6], [7], [8], [12], [14], [16].

In some scenarios, transforming continuous features into
discrete ones through a process known as binning can help
mitigate noise [17]. This transformation simplifies themining
process, rendering it more efficient and comprehensible [17],
and often leading to improved performance [14], [17], [18].
This insight serves as a motivation for this study to explore
datasets with discrete features. However, the number of over-
sampling techniques applicable to discrete features is limited.

Random Over Sampling (ROS), Synthetic Minority Over-
sampling TEchnique-Nominal (SMOTE-N), and SMOTE—
Encoded Nominal and Continuous (SMOTE-ENC) are three
oversampling techniques that can be utilized for discrete
features. In ROS, minority samples are randomly dupli-
cated to create synthetic samples. However, SMOTE-N and
SMOTE-ENC generate synthetic samples for each minority
sample based on the closest distance, with equal weighting for
each feature. These techniques for generating synthetic sam-
ples may introduce noise whereas the uniform weighting can
lead to non-representative samples, which can cause potential
losses.

This study aims to enhance the performance of predicting
students’ failure in the course model. A prediction model
is developed using a dataset comprising discrete features.
Performance enhancement of minority samples is achieved
through the application of the proposed synthetic data over-
sampling technique known as Global and Local Weighting
on SMOTE with Discrete features (GLoW SMOTE-D). This
study introduces several novel aspects:

1. Positive samples serving as the foundation for generat-
ing synthetic samples are obtained through two selection
processes. The initial selection relies on predicted
results, with a focus on positive samples, specifically the
challenging ones that have been misclassified. To miti-
gate noise, a secondary selection is performed based on
the number of majority samples within the k-Nearest
Neighbors (kNN). Based on the available information,
no existing oversampling technique for discrete features
has implemented this selection process.

2. To address variations in correlation between individual
features and the target class, two types of weight-
ings are applied. The first is known as global weight,

which is calculated using the entire dataset. However,
relying solely on kNN for generating synthetic sam-
ples renders global weights less representative [19].
An adjustment is made to the global weight value
based on n-Nearest Neighbors (nNN) to produce the
second weight, known as local weight. These local
weights are used in identifying the kNN, forming the
basis for synthetic sample generation. It is important to
acknowledge that no oversampling technique for dis-
crete features has incorporated this weighting technique.
Whereas AWH-SMOTE considers weighted features to
determine kNN, these weights are calculated using the
entire dataset, making them less representative.

3. The proposed oversampling technique is applied to a
primary dataset for assessing students’ academic perfor-
mance in courses. Each of the proposed oversampling
techniques has only been tested using publicly available
data and their real-world benefits remain less evident.

The remainder of this paper is structured into four sec-
tions, with Section II presenting an overview of related work.
Section III provides a detailed explanation of the proposed
oversampling technique. Section IV explores the application
of this technique in predicting students’ failure in courses,
offering analysis and discussion. Finally, Section V presents
conclusions and outlines potential avenues for future explo-
ration.

II. RELATED WORKS
In this section, several studies on predicting student failure in
courses and techniques for oversampling synthetic data are
presented.

A. PREDICTION MODEL FOR STUDENT FAILURE IN
COURSES
The outcomes of predicting student failure in courses can
be used to design interventions for supporting students at
risk, in order to increase the percentage of passing courses.
In reference to [2], a predictive model was developed to iden-
tify students at risk of failing the Phonetics and Phonology
courses at Buraimi University College (BUC) in the Sultanate
of Oman. This model used the academic performance data
of participants in the Phonetics and Phonology courses over
three semesters as a foundation for prediction. Prediction was
generated at the end of the sixth week, following the first test
score, which was included as one of the key features of the
predictive model. Consequently, an impressive accuracy rate
of 86.1% and an excellent precision of 92.7% were achieved.
Moreover, the model was successfully applied to a course
with 25 participants, revealing that five students were indeed
at risk of failing the course. These five students received
additional support outside of regular class hours from both
their instructors and academic advisors. The end-of-semester
evaluation revealed that four out of the five students made
substantial progress and completed the course.
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TABLE 1. Comparison with other related works on prediction times and
oversampling techniques used.

Akçapınar et al. [20] conducted predictive analysis for stu-
dents’ failure in the Computer Hardware courses, considering
multiple stages of prediction—specifically, at the end of the
third, sixth, ninth, twelfth, and fourteenth weeks. The features
used in this study were related to students’ engagement with
the LearningManagement System. It was found that accuracy
improved as the sample size was increased at each prediction
stage.

Table 1 shows a comparison between this study and
others in terms of predicting student failure in courses.
This research involves making predictions before the course
begins, allowing timely interventions for at-risk students
to maximize benefits. To improve prediction model per-
formance on minority data, a synthetic data oversampling
process is incorporated during preprocessing.

B. OVERSAMPLING TECHNIQUES
ROS is known as the most straightforward technique as it
randomly duplicates minority samples until a desired balance
level is achieved [21]. However, this replication can lead to
lower variance in the final samples compared to the initial
ones, potentially causing overfitting issues [7], [8], [9], [10],
[14], [21], [22]. To solve this problem, an alternative over-
sampling technique was devised to create synthetic samples.

One prominent synthetic oversampling technique is the
Synthetic Minority Oversampling Technique (SMOTE),
developed by Chawla et al. [9]. In SMOTE, new minor-
ity samples are generated by interpolating linearly between
adjacent minority samples in the feature space. This tech-
nique expands the decision area, making it less precise,
but it also frequently introduces noise [21] and borderline
samples [23]. To address these issues, various advanced
oversampling techniques were developed, including Border-
line SMOTE [5], Advanced SMOTE (A-SMOTE) [23], Safe
level SMOTE [10], The Adaptive Synthetic Sampling Tech-
nique for Imbalanced Learning (ADASYN) [11], Attribute
Weighted and kNNHub on SMOTE (AWH-SMOTE) [8], and
Constrained Oversampling [21]. These techniques overcome
these limitations by selecting positive samples as the basis for
generating synthetic samples. The selection is often based on
the number of majority samples in the kNN.

Most oversampling techniques assign equal weight to all
features, but in some cases, the existing features have dif-
ferent correlations with the target class. Treating all features
equally when finding nearest neighbors can result in non-

representative neighbors, leading to losses [12]. To address
this issue, [8] proposed a technique called AWH-SMOTE.
AWH-SMOTE mitigates differences in correlation among
features by assigning distinct weights to each existing fea-
ture. To enhance learning capabilities, synthetic samples are
generated in regions with a higher concentration of negative
samples. Whereas weights are calculated based on the entire
dataset, the generation of synthetic samples relies solely on
kNN, resulting in less representative weights.
These various oversampling techniques have proven their

ability to enhance the performance of the prediction model.
However, it is important to note that these techniques pre-
dominantly focus on continuous features [24]. In practical
scenarios, datasets sometimes consist of categorical features,
and applying the mentioned techniques to datasets with such
features can lead to failures [24].

The SMOTE-N is an oversampling technique tailored for
handling discrete features. In SMOTE-N, synthetic samples
are generated from each positive sample, similar to the orig-
inal SMOTE technique. However, the feature set of these
synthetic samples is created based on majority voting of the
positive sample features and their kNN [9], determined using
the Value Difference Metric (VDM) for distance calculation.
It is important to note that SMOTE-N shares a similar limita-
tion with SMOTE, potentially introducing noise into the data.

Another oversampling technique designed to address dis-
crete features is SMOTE-ENC, pioneered by Mukherjee and
Khushi [24]. In this technique, prior to generating synthetic
samples, each discrete feature goes through numerical encod-
ing. A higher numerical value signifies a stronger association
with the minority class [24]. This encoding is derived from
the principles of Pearson’s chi-squared test. The generation
of synthetic samples is then based on the kNN technique.
Continuous features within synthetic samples are generated
in relation to SMOTE technique, while discrete features fol-
low the same technique as SMOTE-N. The performance of
the proposed technique is evaluated using five public datasets,
showing good prediction results.

SMOTE-N and SMOTE-ENC generate synthetic samples
from each positive sample using kNN technique, which can
introduce noise and borderline samples. Additionally, assign-
ing equal weight to each feature during the nearest neighbor
search can yield non-representative neighbors, potentially
leading to losses.

Table 2 shows the comparison of the oversampling tech-
niques of this study and other related works. The proposed
technique focuses on discrete features and assigns varying
weights to each feature based on the correlation with the tar-
get class. Positive samples are selected to generate synthetic
samples to reduce noise.

III. A NEW OVERSAMPLING METHOD: GLOW ON
DISCRETE FEATURE OVERSAMPLING
The main objective of this study was to predict academic per-
formance in courses and identify students at risk of failure to
facilitate the implementation of timely preventive measures.
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TABLE 2. Comparison with other related works on specification of
oversampling techniques.

A substantial class imbalance issue existed, with significantly
fewer failing students compared to those who succeeded. This
imbalance could detrimentally affect the performance of the
predictive model, particularly for the minority sample, which
constituted the main focus of the study. As a result, there is a
need to rectify the distribution of target classes.

To address the class imbalance problem, synthetic data
oversampling was used in this investigation. The proposed
oversampling technique, namedGLoWSMOTE-D,was visu-
ally shown in Fig. 1, and comprised three key stages, namely
extraction of the misclassified minority sample set, computa-
tion of global weights, and synthetic minority oversampling.

A. THE EXTRACTION OF THE MISCLASSIFIED MINORITY
SAMPLE SET
The process of generating synthetic data started with the
acquisition of a misclassified minority sample set, accom-
plished using the Decision Tree technique—referred to as the
base learner. Using a 10-fold cross-validation technique, this
base learner yielded ten sets of inaccurately predicted data.
The final misclassified minority sample set used for synthetic
data generation combined these ten sets from each fold.

B. GLOBAL WEIGHT CALCULATION
Given that each feature possesses distinct correlations with
the target class, it became essential to assign unique weights
based on these correlations. This weight assignment signif-
icantly influenced the performance of kNN classification

FIGURE 1. Steps of GLoW SMOTE-D.

model [8]. The computation of feature weights followed
the Weights Optimizing Distance algorithm proposed by
Wojna [25], described in Algorithm 1. These weight compu-
tations comprised the entire dataset, termed global weights,
and relied on theMisclassification Ratio—ametric represent-
ing the ratio between the sums of distances to the nearest
neighbors ρ(x, nearest(x)) for misclassified samples and all
training objects [19], [25].

Algorithm 1Weight Optimizing Distance
Utrn = training dataset
dec(x) = class label of x

for each attribute wi = 1.0
modifier = 0.9
convergence = 0.9
repeat l times

Strn = a random training sample from Utrn
Stst = a random test sample from Utrn
MR =

∑
x∈Stst : dec(x)̸=dec(nearest(x)) ρ(x,nearest(x))∑

x∈Stst ρ(x,nearest(x))
for each attribute ai

MR(ai) =

∑
x∈Stst : dec(x)̸=dec(nearest(x)) ρi(xi,nearest(x)i)∑

x∈Stst ρi(xi,nearest(x)i)
END for
for each attribute ai

if MR(ai) > MR then wi = wi + modifier
END for
modifier = modifier ∗ convergence

END repeat

When representing samples as discrete value vectors x =

{x1, · · · , xm}, where m is the number of features, the dis-
tance between two samples x = {x1, · · · , xm}, and y =

{y1, · · · , ym}, is defined by (1).

ρ(x, y) =

m∑
i=1

wi×ρi(xi, yi) (1)
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where ρi(xi, yi) is a measure of similarity between two fea-
ture values and wi represents feature weight whose value is
updated during the global weight calculation process. The
first time wi are initialized with 1 and two discrete values xi
and yi are considered to be similar when they imply similar
decision distribution. The value of ρi(xi, yi) is calculated
using the VDM as seen in (2) [19].

ρi(xi, yi) =

C∑
c=1

∣∣Pi, xi, c − Pi, yi, c
∣∣ =

C∑
c=1

∣∣∣∣Ni, xi, cNi, xi
−
Ni, yi, c
Ni, yi

∣∣∣∣
(2)

where C is the number of target class labels.

C. SYNTHETIC MINORITY OVERSAMPLING
In the Synthetic Minority Oversampling phase, the insight
provided by Skowron and Wojna [19] suggested that creating
a global model from existing data was often infeasible due
to the intricate nature of real-world phenomena. Instead,
Skowron and Wojna [19] proposed the use of a local model
based on test samples, a technique seamlessly incorporated
into this study for oversampling purposes.

Normalization of global weights was applied to construct
the local model (distance function) as shown in (3). For each
minority sample with an incorrect prediction (x), a local
model was constructed by selecting its nNN (N (x, n)). Local
weight calculations based on N (x, n) were then executed,
leveraging Algorithm 1 to derive these weights, with initial
values drawn from global weights.

Zi =
wi
m∑
i=1

wi

(3)

Oversampling for sample x comprises the selection of kNN
from N (x, n), with normalized local weights guiding this
process.When all kNN possess class labels differing from the
class label of x, x is categorized as noise [5], [10], rendering
it ineligible for synthetic sample generation.

In cases where x is not classified as noise, the features
of the synthetic sample are generated based on the mode
between x and its kNN. In scenarios with multiple modes,
random selection is implemented. The quantity of syn-
thetic positive samples produced is adaptable, determined by
the defined mPerc parameter—specifying the percentage of
minority samples relative to majority samples post-synthetic
sample generation.

The produced synthetic sample combines all individual
synthetic samples, with the specific process described in
Algorithm 2.

IV. EXPERIMENT
The steps taken in this study were in line with the flowchart
shown in Fig. 2. The focus of the study was to develop
an oversampling technique to enhance the performance of
students’ failure prediction model for enrolled courses.

FIGURE 2. Research methodology.

A. DATASET
The dataset used comprised 3,712 samples from 246 students
at a reputable private university in Surabaya, Indonesia. These
students gained admission into the university for the past
three years, from 2019 to 2021. Each sample included 21 fea-
tures consisting of demographic information, high school
academic records, and higher education performance.

Demographic and academic performance datawere the two
primary types of features widely used and were acknowl-
edged for their substantial impact in predicting student
academic performance [26], [27]. As influential factors,
these features offered benefits in improving prediction model
performance, as well as motivating the incorporation of
demographic data and academic performance as dataset fea-
tures. However, it was essential to recognize that features
considered significant in one study might not necessarily
maintain the same influence when applied to a different
dataset. Therefore, this study used feature selection to iden-
tify features more correlated with the target class.

After data preprocessing, the dataset was refined to contain
2,530 samples with 13 selected features. Among these, 2,346
samples were labeled as ‘‘Pass’’ (92.73%), while 184 samples
were considered ‘‘Failed’’ (7.27%). The balance level for
this dataset was 12.75, calculated as the ratio of majority to
minority samples.

B. PREPROCESSING
The initial phase included tasks such as filling in missing
features, eliminating irrelevant ones, and removing samples
with infeasible missing data. Additionally, continuous fea-
tures went through binning, and all features were discretized.
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Algorithm 2 GLow SMOTE-D
m = the number of features in the dataset
SCleaned = preprocessing result dataset
Input:

Smin = dataset containing incorrectly predicted minority
samples

z = normalized global weights
mPerc = the percentage of the number of minority samples

to the majority samples after the generation of
synthetic samples

k = the number of nearest neighbors that will be used to
generate synthetic data (k ≤ n)

n = the number of nearest neighbors that will be used to
form a local model

Process:
1 for i = 1: number of samples in Smin
2 x = the i-th sample from Smin
3 N (x, n) = the set of n nearest neighbors of x based on ρ

and z
4 wx = local weighted VDM metric induced from the

neighborhood N (x, n)
5 zx = normalization result of wx
6 S(x, k) = the set of k nearest neighbors of x based on ρ

and zx
7 if x is not noise then
8 x is stored in the notNoise list
9 END if
10 END for
11 nMinority = the number of synthetic minority samples

generated from each notNoise member based on mPerc
12 for i = 1: number of samples in notNoise
13 for j = 1: nMinority
14 for l = 1: m
15 Synij l = mode(xil , S(x, k)il )
16 END for
17 END for
18 END for
19 SBalanced = Merger SCleaned and Syn
Output:

SBalance = balanced dataset

The results of this discretization process were subsequently
used in the feature selection stage.

Feature selection relied on the Chi-square technique and
the selected features were shown in Table 3. The dataset
derived from this feature selection was termed the ‘‘cleaned
dataset.’’ Subsequently, this cleaned dataset was used to
generate synthetic samples using the GLoW SMOTE-D
algorithm. The combination of these synthetic samples with
the original dataset resulted in a new dataset, which was used
to evaluate the performance of the oversampling technique.

C. MODEL DEVELOPMENT AND EVALUATION
To assess the effectiveness of the oversampling technique in
predicting students’ failure in courses, three established clas-
sification techniques—DT, Naïve Bayes (NB), and Support
Vector Machine (SVM)—were used. Training and testing
were executed using a 10-fold cross-validation technique.
The dataset was divided into ten equally sized partitions or
folds. One-fold was allocated for testing, while the remaining
nine were used for training. This process was iterated ten

times, with each repetition using a different fold for testing.
Prediction model performance metrics were calculated based
on average values.

While total accuracy is a commonly used performance
metric for prediction models, it often leads to misunderstand-
ings in class-imbalanced datasets [4], [20]. In these cases,
high accuracy can be achieved even when numerous minority
samples are misclassified. Consequently, alternative mea-
sures were adopted, including recall, precision, F-measure,
and Area Under the Receiver Operating Characteristic Curve
(AUC).

The recall, precision, and F-measure metrics assessed
prediction model performance from the minority sample per-
spective. Recall measured completeness, precision assessed
exactness, and F-measure combined both completeness and
exactness into a single value [2]. In predicting student failure,
prioritizing the performance of minority samples was crucial.
As a result, these three metrics were considered more appro-
priate for this exploration.

The Receiver Operating Characteristic (ROC) curve is a
graphical representation illustrating the balance between the
True Positive Rate (TPR) and False Positive Rate (FPR) of
a classifier across varying threshold values [9], [14], [23].
The key characteristic of ROC curve was its resilience to test
data imbalance [14], making it a crucial metric for evaluating
imbalanced datasets. Meanwhile, AUC is a metric used in
measuring the performance of ROC curve [9]. Based on the
imbalanced nature of the dataset, AUC metric was particu-
larly considered for use.

The computation of accuracy, recall, precision, and
F-measure relied on the confusion matrix derived from the
prediction process. In Table 4, True Positive (TP) repre-
sented correctly predicted positive samples, True Negative
(TN) signified correctly predicted negative samples, False
Positive (FP) reflected negative samples incorrectly classified
as positive and False Negative (FN) denoted positive samples
incorrectly classified as negative.

Accuracy, recall, precision, and F-measure values were
calculated using (4) to (7). Greater values for recall, precision,
and F-measure signified improved model performance for
minority samples, while accuracy for themajority samplewas
determined using (8). In this scenario, (5) and (9) were used
to calculate TPR and FPR, respectively. Model performance
relied on the AUC metric, with a broader AUC indicating
superior model performance.

Accuracy =
TP + TN

TP + FN + FP + TN
(4)

Recall = TPR = ACC+
=

TP
TP + FN

(5)

Precision =
TP

TP + FP
(6)

F − measure =
2 × Recall × Precision
Recall + Precision

(7)
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TABLE 3. Predictor variables used.

TABLE 4. Confusion matrix for binary class problem.

Acc−
=

TN
FP + TN

(8)

FPR =
FP

FP + TN
(9)

To evaluate the performance of the proposed technique,
a comparison was made with four oversampling techniques,
namely the original dataset without oversampling (origin),
ROS, SMOTE-N, and SMOTE-ENC. The selection of these
three oversampling techniques for comparison was based on
the distinctive focus of SMOTE-N on discrete features, while
ROS and SMOTE-ENC could be applied to discrete features.
Other oversampling techniques were unsuitable for discrete
features because they concentrated on continuous features
and used Euclidean distance calculations.

Statistical tests were conducted to facilitate the statistical
analysis of experimental results. Two nonparametric statis-
tical tests, namely Friedman Rank Test and Holm Post Hoc
Tests [23], were used for hypothesis testing. Specifically, the
Friedman Test determined whether there was a statistically
significant difference between the mean performance values
of prediction models from the four oversampling techniques.
The null hypothesis posited that the mean performance values
of prediction models from the four oversampling techniques
were all equal. Meanwhile, the alternative hypothesis sug-
gested that at least one population mean was different. In case
the Friedman Test rejected the null hypothesis, the Holm Post
Hoc Test would be applied to show that themean performance
value of the prediction model from GLoW SMOTE-D dif-
fered from the others. These tests were applied to the five
performance metrics used in this study.

D. RESULT
In this study, consideration was given to four distinct minority
sample rates, including 30%, 50%, 70%, and 100%. The
minority sample rate signified the proportion of minority
samples relative to the majority samples after generat-
ing synthetic samples. For each minority sample rate, the
application of five oversampling techniques, namely origin,
ROS, SMOTE-N, SMOTE-ENC, andGLoWSMOTE-D, was
added to the existing dataset. With these oversampling tech-
niques, predictions of student failure in courses were carried
out using three classifiers including DT, NB, and SVM.
A detailed account of the prediction model performance was
shown in Table 6, while a clearer performance comparison at
each minority sample rate was shown in Fig. 3 to Fig. 5.

In this study, the proposed technique was the top-ranking
method, as shown in Table 5. The table showed that the
technique had the lowest average ranking among oversam-
pling techniques, indicating superior performance compared
to others. The ranking was determined by evaluating each
oversampling technique’s performance across various classi-
fiers and minority rates.

Hypothesis testing results, using the Friedman Test on
five performance metrics, showed a difference in mean
performance values among oversampling techniques. Con-
sequently, multiple comparisons were conducted using the
Holm Post Hoc Test to identify the oversampling technique
rejecting the hypothesis of equal mean performance values.
In this test, the p-value of each pair of oversampling tech-
niques was compared with that of Holm adjusted p-value.
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TABLE 5. Performance comparison for the five oversampling technique and three classifiers on minority sample rate 30%, 50%, 70%, and 100%.

The hypothesis of equal mean performance values rejection
occurred if the adjusted p-value was less than alpha. Both

hypothesis tests used a 5% alpha level, and the results of the
Holm Post Hoc Test were shown in Table 7.
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FIGURE 3. Experimental results using DT (a) Accuracy (b) Recall (c) Precision (d) F- measure (e) AUC (f) Acc −.

TABLE 6. The average rank obtained by each oversampling technique in
the friedman test.

E. DISCUSSION
This study showed that the accuracy rates of the original data
were high. However, when scrutinized individually for each
class, accuracy for the majority class (Acc−) was exceedingly
high, with some even achieving 100%, and the minority
class (Acc+) was low, with select results even reaching zero
(Fig. 3a to Fig. 5a and Fig. 3f to Fig. 5f). This observation
showed the robust learning abilities of the majority sam-
ples, compared with the challenges faced by the minority

TABLE 7. Holm post Hoc test results with GLoW SMOTE-D as control
technique.

samples. As the minority sample rate increased, there was
a tendency for the learning abilities of the minority samples
to improve. However, this often coincided with a decline in
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FIGURE 4. Experimental results using NB (a) Accuracy (b) Recall (c) Precision (d) F- measure (e) AUC (f) Acc −.

the learning abilities of the majority samples. These findings
validated and strengthened previous studies conducted by
Liu et al. [21]. The inconsistency observed could be attributed
to the inclusion of certain synthetic minority samples as
noise within the majority class, leading to misclassification.
On the other hand, the incorporation of a noise selection
process and feature selection criteria during the creation of
synthetic minority samples mitigated the noise’s impact on
the majority domain. This presented a distinct advantage to
GLoW SMOTE-D, curbing a high decline in accuracy for the
majority samples when compared to ROS, SMOTE-N, and
SMOTE-ENC as shown in Fig. 3f to Fig. 5f.

The oversampling technique developed was initiated by
selecting positive samples with limited learning abilities
for training. Specifically, the training consisted of assign-
ing weights based on the correlation level with the target
class within the nearest neighbor group. This accelerated

the augmentation of the minority samples’ learning capaci-
ties in comparison to the alternative oversampling technique,
a phenomenon borne out by the recall, precision, F-measure,
and AUC values in Fig. 3 to Fig. 5. The expansion of the
decision area for minority samples improved heterogeneity
and reduced noise, supporting performance of the predictive
model. However, ROS omitted consideration of such expan-
sion, terminating in diminished recall, precision, F-measure,
and AUC values.

In the original dataset, DT exhibited pre-eminence in terms
of accuracy and precision but in other performance measures,
NB took the lead. According to the application of over-
sampling with varied techniques and minority sample rates,
DT consistently outperformed NB and SVM.

Performance trends shown by DT, NB, and SVM were
the same and the original technique produced the highest
accuracy. As theminority sample rate increased to 30%, accu-
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FIGURE 5. Experimental results using SVM (a) Accuracy (b) Recall (c) Precision (d) F- measure (e) AUC (f) Acc −.

racy exhibited a decrement, but it subsequently exhibited an
ascending trajectory with further increments in the minority
sample rate. However, recall, precision, F-measure, and AUC
values were at their lowest for the original technique. After
enhancing the minority sample rates, there was a tendency
for performance values to increase.

Further statistical analysis showed the dominance of
GLoW SMOTE-D performance over other techniques.
GLoW SMOTE-D secured the top ranking in all perfor-
mance metrics, as seen in Table 5. Despite the recall ranking
in Table 5 showing occasional less dominance in some
classifiers and minority rates, the recall ranking of GLoW
SMOTE-D still outperformed other oversampling techniques.
This conclusion was supported by the Holm Post Hoc Test
results, showing a significant difference in mean performance
between GLoW SMOTE-D and other techniques across all
metrics.

Enhancing the performance of minority samples is cru-
cial in effectively predicting students’ failure in courses.
As more individuals at risk of failing courses became iden-
tifiable, accurate prediction offered a valuable window to
reduce failure rates. This was achieved through proactive
measures taken by both students and lecturers. However, even
a slight decline in the performance of the majority samples
could also yield benefits. When those who had the potential
to succeed were predicted to fail, it opened up opportuni-
ties for them to improve their abilities. These individuals
could receive guidance and support from their lecturers or
take initiative. This led to an increase in the percentage
of students passing their courses and an improvement in
academic performance. On the other hand, it was crucial
to emphasize that all of these positive outcomes depended
on strong initiatives and cooperation between students and
lecturers.
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V. CONCLUSION
This study aimed to enhance the performance of students’
failure prediction models in courses. This improvement
was achieved through the introduction of a novel oversam-
pling technique, GLoW SMOTE-D, specifically designed
to address class-imbalanced datasets. The techniques were
carried out in three crucial stages, namely the extraction of the
misclassified minority sample set, the computation of global
weights, and the execution of synthetic minority oversam-
pling. This selection of minor samples to be oversampled
and weighted enhanced the learning capabilities among the
minority samples while minimizing noise infiltration into the
majority area. Moreover, when synthetic data was generated
using GLoW SMOTE-D, it expanded the decision bound-
aries for minority samples, leading to increased diversity, and
decreased noise. As a result, GLoW SMOTE-D exhibited
superior performance in terms of metrics such as accuracy,
recall, precision, F-measure, AUC, andAcc− when compared
to ROS, SMOTE N, and SMOTE ENC across different clas-
sifiers.

Further analysis revealed that, under ideal conditions, the
identification of more students at risk of predictable fail-
ure enhanced the total pass rates. The misidentification of
students with the potential to succeed and the provision of
support contributed to improved academic performance.

The proposed oversampling technique focused primarily
on discrete features and comprised higher computational
costs compared to alternative techniques. This implies that
there is still an opportunity to develop the proposed oversam-
pling technique in the future. Opportunities for improvement
in the Misclassified Minority Sample Set search process
were identified. Currently, this set is generated using the DT
method. In future research, several classification algorithms
will be integrated to mitigate the variance introduced by the
DT method Additionally, the time-consuming weight calcu-
lation process presented an avenue for developing a more
efficient weighting technique.

REFERENCES
[1] O. Daramola, O. Emebo, I. Afolabi, and C. Ayo, ‘‘Implementation of an

intelligent course advisory expert system,’’ Int. J. Adv. Res. Artif. Intell.,
vol. 3, no. 5, pp. 6–12, May 2014, doi: 10.14569/ijarai.2014.030502.

[2] I. Khan, A. R. Ahmad, N. Jabeur, and M. N. Mahdi, ‘‘An artificial intel-
ligence approach to monitor student performance and devise preventive
measures,’’ Smart Learn. Environ., vol. 8, no. 1, p. 27, Sep. 2021, doi:
10.1186/s40561-021-00161-y.

[3] H. A. Mengash, ‘‘Using data mining techniques to predict stu-
dent performance to support decision making in university admis-
sion systems,’’ IEEE Access, vol. 8, pp. 55462–55470, 2020, doi:
10.1109/ACCESS.2020.2981905.

[4] L. M. A. Zohair, ‘‘Prediction of student’s performance by modelling small
dataset size,’’ Int. J. Educ. Technol. Higher Educ., vol. 16, no. 1, p. 18,
Aug. 2019, doi: 10.1186/s41239-019-0160-3.

[5] H. Han, W. Wang, and B. Mao, ‘‘Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,’’ in Proc. Int. Conf.
Intell. Comput. (ICIC), Hefei, China: Springer, 2005, pp. 878–887, doi:
https://doi.org/10.1007/11538059_91.

[6] V. S. Spelmen and R. Porkodi, ‘‘A review on handling imbal-
anced data,’’ in Proc. Int. Conf. Current Trends Converging Tech-
nol. (ICCTCT). Coimbatore, India: IEEE, Mar. 2018, pp. 1–11, doi:
10.1109/ICCTCT.2018.8551020.

[7] N. K. Mishra and P. K. Singh, ‘‘Feature construction and smote-
based imbalance handling for multi-label learning,’’ Inf. Sci., vol. 563,
pp. 342–357, Jul. 2021, doi: 10.1016/j.ins.2021.03.001.

[8] T. Fahrudin, J. L. Buliali, and C. Fatichah, ‘‘Enhancing the performance
of smote algorithm by using attribute weighting scheme and new selec-
tive sampling method for imbalanced data set,’’ Int. J. Innov. Comput.
Inf. Control, vol. 15, no. 2, pp. 423–444, Apr. 2019, doi: 10.24507/
ijicic.15.02.423.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.

[10] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, ‘‘Safe-
Level-SMOTE: Safe-level-synthetic minority over-sampling technique
for handling the class imbalanced problem,’’ in Proc. 13th Pacific–
Asia Conf. Knowl. Discovery Data Mining (PAKDD), Bangkok,
Thailand: Springer, Apr. 2009, pp. 475–482, doi: 10.1007/978-3-
642-01307-2_43.

[11] H. He, Y. Bai, E. A. Garcia, and S. Li, ‘‘ADASYN: Adaptive syn-
thetic sampling approach for imbalanced learning,’’ in Proc. IEEE
Int. Joint Conf. Neural Netw., IEEE World Congr. Comput. Intell.
Hong Kong: IEEE, Jun. 2008, pp. 1322–1328, doi: 10.1109/IJCNN.2008.
4633969.

[12] S. Cinaroglu, ‘‘The impact of oversampling with ‘ubSMOTE’ on the
performance of machine learning classifiers in prediction of catastrophic
health expenditures,’’ Oper. Res. Health Care, vol. 27, Dec. 2020,
Art. no. 100275, doi: 10.1016/j.orhc.2020.100275.

[13] M. R. Ayyagari, ‘‘Classification of imbalanced datasets using
one-class SVM, k-Nearest neighbors and CART algorithm,’’ Int.
J. Adv. Comput. Sci. Appl., vol. 11, no. 11, pp. 1–5, Nov. 2020, doi:
10.14569/IJACSA.2020.0111101.

[14] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data
Mining, 2nd ed. New York, NY, USA: Pearson Education, 2019.

[15] M. Roknizadeh and H. M. Naeen, ‘‘Hybrid ensemble optimized algorithm
based on genetic programming for imbalanced data classification,’’ 2021,
arXiv:2106.01176.

[16] K. Li, B. Ren, T. Guan, J. Wang, J. Yu, K. Wang, and J. Huang, ‘‘A hybrid
cluster-borderline SMOTE method for imbalanced data of rock groutabil-
ity classification,’’ Bull. Eng. Geol. Environ., vol. 81, no. 1, pp. 1–15,
Jan. 2022, doi: 10.1007/s10064-021-02523-9.

[17] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. Waltham, MA, USA: Morgan Kaufmann, 2012.

[18] S. T. Jishan, R. I. Rashu, N. Haque, and R. M. Rahman, ‘‘Improv-
ing accuracy of students’ final grade prediction model using optimal
equal width binning and synthetic minority over-sampling technique,’’
Decis. Anal., vol. 2, no. 1, pp. 1–25, Mar. 2015, doi: 10.1186/s40165-
014-0010-2.

[19] A. Skowron and A. Wojna, ‘‘K nearest neighbor classification with local
induction of the simple value difference metric,’’ in Proc. Int. Conf. Rough
Sets Current Trends Comput. (RSCTC). Uppsala, Sweden: Springer, 2004,
pp. 229–234, doi: 10.1007/978-3-540-25929-9_27.

[20] G. Akçapınar, A. Altun, and P. Aşkar, ‘‘Using learning analytics to
develop early-warning system for at-risk students,’’ Int. J. Educ. Tech-
nol. Higher Educ., vol. 16, no. 1, p. 40, Oct. 2019, doi: 10.1186/
s41239-019-0172-z.

[21] C. Liu, S. Jin, D. Wang, Z. Luo, J. Yu, B. Zhou, and C. Yang, ‘‘Constrained
oversampling: An oversampling approach to reduce noise generation
in imbalanced datasets with class overlapping,’’ IEEE Access, vol. 10,
pp. 91452–91465 2022, doi: 10.1109/ACCESS.2020.3018911.

[22] A. Kirshners, S. Parshutin, and H. Gorskis, ‘‘Entropy-based classifier
enhancement to handle imbalanced class problem,’’ Proc. Comput. Sci.,
vol. 104, pp. 586–591, Jan. 2017, doi: 10.1016/j.procs.2017.01.176.

[23] A. S. Hussein, T. Li, C. W. Yohannese, and K. Bashir, ‘‘A-SMOTE: A new
preprocessing approach for highly imbalanced datasets by improving
SMOTE,’’ Int. J. Comput. Intell. Syst., vol. 12, no. 2, p. 1412, Nov. 2019,
doi: 10.2991/ijcis.d.191114.002.

[24] M. Mukherjee and M. Khushi, ‘‘SMOTE-ENC: A novel SMOTE-based
method to generate synthetic data for nominal and continuous features,’’
Appl. Syst. Innov., vol. 4, no. 1, p. 18, Mar. 2021, doi: 10.3390/asi4010018.

[25] A. Wojna, ‘‘Analogy-based reasoning in classifier construction,’’
Ph.D. dissertation, Dept. Math. Inform. Mech., Warsaw Univ., Warsaw,
Poland, 2016. [Online]. Available: https://www.researchgate.net/
publication/238650300

8900 VOLUME 12, 2024

http://dx.doi.org/10.14569/ijarai.2014.030502
http://dx.doi.org/10.1186/s40561-021-00161-y
http://dx.doi.org/10.1109/ACCESS.2020.2981905
http://dx.doi.org/10.1186/s41239-019-0160-3
http://dx.doi.org/https://doi.org/10.1007/11538059_91
http://dx.doi.org/10.1109/ICCTCT.2018.8551020
http://dx.doi.org/10.1016/j.ins.2021.03.001
http://dx.doi.org/10.24507/ijicic.15.02.423
http://dx.doi.org/10.24507/ijicic.15.02.423
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/978-3-642-01307-2_43
http://dx.doi.org/10.1007/978-3-642-01307-2_43
http://dx.doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/10.1109/IJCNN.2008.4633969
http://dx.doi.org/10.1016/j.orhc.2020.100275
http://dx.doi.org/10.14569/IJACSA.2020.0111101
http://dx.doi.org/10.1007/s10064-021-02523-9
http://dx.doi.org/10.1186/s40165-014-0010-2
http://dx.doi.org/10.1186/s40165-014-0010-2
http://dx.doi.org/10.1007/978-3-540-25929-9_27
http://dx.doi.org/10.1186/s41239-019-0172-z
http://dx.doi.org/10.1186/s41239-019-0172-z
http://dx.doi.org/10.1109/ACCESS.2020.3018911
http://dx.doi.org/10.1016/j.procs.2017.01.176
http://dx.doi.org/10.2991/ijcis.d.191114.002
http://dx.doi.org/10.3390/asi4010018


S. Limanto et al.: GLoW SMOTE-D: Oversampling Technique to Improve Prediction Model Performance

[26] E. Tjandra, S. S. Kusumawardani, and R. Ferdiana, ‘‘Student performance
prediction in higher education: A comprehensive review,’’ in Proc. Int.
Conf. Informat., Technol., Eng. (InCITE ). NewYork, NY, USA: AIP, 2022,
pp. 1–9, doi: 10.1063/5.0080187.

[27] E. Alyahyan and D. Düştegör, ‘‘Predicting academic success in higher
education: Literature review and best practices,’’ Int. J. Educ. Technol.
Higher Educ., vol. 17, no. 1, pp. 1–21, Feb. 2020, doi: 10.1186/s41239-
020-0177-7.

SUSANA LIMANTO received the S.T. degree
from Universitas Surabaya, Indonesia, in 1995,
and the M.Sc. degree from Institut Teknologi
Sepuluh Nopember (ITS), Indonesia, in 2005,
where she is currently pursuing the Ph.D. degree
with the Department of Informatics. She joined
Universitas Surabaya, in 1997, where she is cur-
rently a Lecturer with the Informatics Engineering
Study Program. Her primary research interests
include information systems, machine learning,
and optimization.

JOKO LIANTO BULIALI (Member, IEEE)
received the bachelor’s degree from Institut
Teknologi Sepuluh Nopember (ITS), Indonesia,
in 1991, and the M.Sc. and Ph.D. degrees from
the University of Manchester Institute of Science
and Technology (UMIST), England, in 1995 and
1998, respectively. He is currently a Lecturer with
the Informatics Department, ITS. His primary
research interests include modeling and simula-
tion, optimization, and data analytics. He actively

engages in informatics research and serves as a reviewer for several journals
and conferences. He is an active member of ACM and Indonesian Associa-
tion of Higher Education in Informatics and Computing.

AHMAD SAIKHU received the bachelor’s degree
from the Statistics Department, Institut Teknologi
Sepuluh Nopember (ITS), Indonesia, in 1994, the
M.T. degree from the Informatics Department,
ITS, in 2000, and the Ph.D. degree from the Com-
puter Science Department, ITS, in 2019. He has
been a Lecturer with the Informatics Department,
ITS, since 2006. His primary research interests
include data mining and time series. He actively
engages in informatics research and serves as a

reviewer for several journals and conferences.

VOLUME 12, 2024 8901

http://dx.doi.org/10.1063/5.0080187
http://dx.doi.org/10.1186/s41239-020-0177-7
http://dx.doi.org/10.1186/s41239-020-0177-7

