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ABSTRACT Diabetic ketoacidosis (DKA) is a serious complication that affects millions of individuals
globally and presents significant health complications. Hyperchloremia, an electrolyte imbalance
characterized by high levels of chloride in the blood, may result in gastrointestinal problems, kidney damage,
and even death, especially in DKA patients. Early detection and treatment of hyperchloremia are of utmost
importance in the management of DKA. This study explores the potential of the bootstrap aggregating
ensemble with random subspaces machine learning approach to predict the occurrence of hyperchloremia,
providing a basis for early intervention and improved patient outcomes. We tested our approach with the
retrospective MIMIC-III database containing 1177 DKA patients and compared it with previous studies
with an area under the curve (AUC) of 100%. Our approach showed significant performance outperforming
other methods. The combination of this approach may enhance the early detection and timely intervention
of hyperchloremia cases, ultimately leading to improved patient outcomes and a more effective management
of DKA-associated complications. Our work aims to contribute to the development of decision support tools
for healthcare professionals, assisting them in making informed decisions for DKA patients, with a focus on
preventing and managing hyperchloremia.

INDEX TERMS Boosting aggregating or bagging classifier, diabetic ketoacidosis (DKA), hyperchloremia,
machine learning, predictive modeling.

I. INTRODUCTION
Diabetes, a metabolic disorder, disrupts the regulation of
blood glucose levels which can lead to both short-term
and long-term health complications, and in severe cases,

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

even death if not effectively managed [1], [2], [3], [4], [5].
This condition is broadly categorized into two types: type 1
diabetes (TY1D) and type 2 diabetes (TY2D). The pancreas
plays a vital role in producing insulin and serves as a key
regulator for blood sugar levels. Insulin acts as a major
energy source for muscles and various tissues, facilitating the
entry of blood sugar into the body’s cells [6]. This process
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is particularly significant in understanding both TY1D and
TY2D as disruptions in insulin production or its effectiveness
can lead to distinct metabolic imbalances and complications
associated with each type. Both TY1D and TY2D diabetes
are chronic diseases that affect millions of people worldwide
and can lead to long-term health complications such as heart
disease, nerve damage, and kidney failure if early detection
and treatment are not initiated upon diagnosis. Diabetes is
estimated to affect about 537 million adults worldwide, with
a global prevalence of 10.5 percent among adults aged 20 to
79 years [7]. The number is predicted to rise to 643 million by
2030 and 783 million by 2045, while about 1.5 million deaths
are directly attributed to diabetes annually [7], [8].

Diabetic ketoacidosis (DKA) is a severe complication
of diabetes, a health condition characterized by inadequate
insulin production or an excessive presence of ketones
in the blood [9], [10], [11], [12], [13]. The diagnosis of
Diabetic Ketoacidosis (DKA) involves considering values
such as serum ketones at 3 mmol/L or higher, urine
ketone strips at 2+ or above, serum bicarbonate less than
15 mmol/L, and blood glucose levels exceeding 11 mmol/L.
Insufficient insulin prompts the body to break down fat
for energy, affecting organ functions [6], [9], [14]. This
process produces ketones, acidic compounds that accumulate
in the bloodstream and lead to diabetic ketoacidosis (DKA)
if untreated [15], [16], [17]. Symptoms of DKA include
excessive thirst, frequent urination, vomiting, abdominal
pain, weakness, shortness of breath, nausea, and fruity-
scented breath, and can appear within 24 hours [6], [9].
DKA commonly affects individuals with TY1D or TY2D
diabetes [18], [19], [20]. Treatment for DKA involves
replenishing lost fluids to reduce blood sugar levels,
restoring essential electrolytes for proper nerve, muscle,
heart, and brain function, administering insulin injections to
halt ketone production, and addressing underlying causes,
such as infections, by eliminating their sources using
antibiotics, antifungal, or antiviral medications [21]. The
use of saline for resuscitation in DKA patients can worsen
electrolyte imbalances [22], specifically leading to the
development of hyperchloremia. Recent studies have shown
that hyperchloremia can affect various organ systems and
may contribute to adverse outcomes [23], [24], [25]. It can
lead to renal vasoconstriction, decreased glomerular filtration
rate, and impaired renal function. In a similar vein, hyper-
chloremia can also impact cardiac contractility, promote
systemic inflammation, and potentially prolong the duration
of DKA [23], [26], [27], [28].

Several authors have explored the prevalence of hyper-
chloremia in DKA management and have explored different
modeling techniques to predict its likelihood. Some of
these methods used a variety of models ranging from
statistical models [28], [29], [30] and artificial intelligence
and machine learning techniques [31], [32], [33], [34].
Statistical models use observed data and assumptions for
estimating and analyzing relationships, making predictions,

and drawing inferences about a phenomenon of interest.
A statistical approach for determining the prevalence of
hyperchloremia in DKA was proposed by Toledo et al. [35].
In particular, the study employed the Wilcoxon test for
comparing non-parametric quantitative outcome measures,
and the Fisher’s exact test for comparing categorical outcome
measures. Another study by Goad et al. [29] employed Cox
regression analysis to examine the relationship between peak
serum chloride levels and the time to resolution of diabetic
ketoacidosis (DKA) while controlling for other potential risk
factors for a prolonged duration of DKA and insulin infusion.
The Cox statistical analysis revealed that peak serum chloride
was independently associated with a prolonged time to DKA
resolution.

Artificial intelligence and machine learning (ML) tools
have also been increasingly used to analyze healthcare data,
including electronic health records (EHR) [36], [37], [38],
[39], [40]. Machine learning has emerged as a powerful tool
with significant implications for healthcare [41], [42], [43],
[44]. By analyzing large-scale datasets, machine learning
algorithms can uncover hidden relationships and patterns that
may not be readily apparent through traditional statistical
approaches. This enables the identification of novel risk
factors that contribute to the development, progression,
or severity of diseases. By understanding these risk factors,
healthcare professionals can intervene earlier, implement
preventive measures, and provide targeted interventions to
improve patient outcomes. Furthermore, there has been a
shift in the perception of machine learning models from
being considered ‘‘black-box’’ approaches to ones that can
provide interpretable results [45], [46], [47]. In the past,
the inner workings of complex machine learning models
were often challenging to interpret, hindering their adoption
in critical healthcare decision-making processes [48], [49],
[50]. However, recent advances in model explainability have
allowed researchers to shed light on how machine learning
models arrive at their predictions [46], [51], [52].

In the context of predicting hyperchloremia in DKA
(diabetic ketoacidosis) patients, the use of machine learning
is limited, and predictive performance remains poor due to
several factors, including the complexity of the condition, the
multifactorial nature of electrolyte imbalances, the variability
in patient responses to treatment, the heterogeneity of patient
populations, and the challenges in obtaining large, high-
quality datasets that are representative of the general DKA
patient population. Similarly, the interpretation of these
predictive models and the factors influencing hyperchloremia
in DKA patients remain largely unknown. To address this
challenge, we introduce a bootstrap aggregating ensemble
with random subspaces to diversify the models’ exposure
to the training data, both in terms of the samples and the
features used. This method operates by generating numerous
subsets from the original dataset through bootstrap sampling,
allowing each model in the ensemble to train on slightly
different data points. This approach aims to improve model
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accuracy by reducing the likelihood of overfitting to noise in
the data and by ensuring that the ensemble does not become
overly dependent on any particular feature, which is critical
in medical datasets where non-linear interactions between
features can be important.

In this paper, we propose the use of ensemble machine
learning techniques to develop a predictive model for
determining the likelihood of hyperchloremia occurring
during the management of DKA. By leveraging the power
of the ensemble machine learning algorithms and analyzing
relevant clinical data, we seek to identify key factors and
patterns that can predict the occurrence of hyperchloremia in
DKA patients. The primary contributions of this study are as
follows:

1) Development of an ensemble predictive model: We
present an ensemble-based predictive model using
bagging and random subspaces, specifically tailored to
address the challenge of predicting hyperchloremia in
patients with DKA.

2) Identification of risk factors: We identify and analyze
various potential risk factors associated with the
development of hyperchloremia in DKA patients.

3) Advance machine learning applications in DKA man-
agement: This study contributes towards the advance-
ment of machine learning applications in the field of
DKA management.

The remainder of the manuscript is organized as follows:
Section II describes the proposed methods for data collection,
pre-processing, and the models used. Section III presents the
experimental results. In Section IV, the discussion of this
paper is presented. Finally, Section V concludes the study and
provides future directions.

II. RELATED WORK
Many studies have applied machine learning techniques
in the detection and management of hyperchloremia and
DKA complications. Many of these studies utilized publicly
available datasets to measure the DKA effect. For example,
Liu et al. [53] utilized the logistic regression (LR), multi-
layer perceptron (MLP), Random Forest (RF), and eXtreme
gradient boosting (XGBoost) for the predicting hyper-
chloremia and validating their performance with distinct
demographic information, especially with race, gender and
insurance subgroups in the MIMIC-III dataset. The XGBoost
achieved the highest performance in terms of AUC at
0.797%. Thongprayoon et al. [31] applied unsupervised
machine learning using the consensus cluster analysis (CCA)
to evaluate mortality risk factors among hyperchloremic
patients and categorized them into clusters. The study
presented the efficacy of an unsupervised learning task,
which aided in categorizing patients with varying risks of
mortality. Furthermore, the study motivated towards a more
focused follow-up approach for cases where mortality risk
may be high. In another study, Yeh et al. [54] explored four
classifiers, including MLP, RF, ridge regression (RR), and
XGBoost, to predict hyperchloremia in critically ill patients.

The results showed that the machine learning techniques
helped clinicians effectively manage patients at high risk of
hyperchloremia complications, potentially improving patient
outcomes.

Peng et al. [55] developed a predictive model using neural
networks (NN), LR, RF, Naive Bayes (NB), and MLP for
mortality prediction in ICU-admitted patients within a 28-
day period. The study’s findings were consistent with prior
research, emphasizing chloride as a prominent contributor to
unfavorable outcomes. Fan et al. [56] applied the univariate
analysis and machine learning methods using artificial
neural networks (ANN), Bayesian networks (BN), chi-square
automatic interaction detection (CHAID), classification and
regression trees (CRT), quick unbiased efficient statistical
tree (QUEST), discriminate, and ensemble (XF) to predict
complication and poor glycemic control risks in TY2D.
Predicting hyperchloremia is not limited to adult patient
diagnosis. Eid et al. [57] examined various machine learn-
ing classifiers, including Decision Trees (DT), RF, KNN,
XGBoost, Rule Induction Algorithm (CN2), and AdaBoost,
to predict DKA cases in pediatric patients, achieving an AUC
of 97%. Williams et al. [58] extended the Long-Short Term
Memory (LSTM) to predict a 180-day risk of DKA-related
hospitalization for youth with TY1D.

III. METHODOLOGY
This section aims to offer a detailed account of the dataset
including the approach taken for data collection and different
methods used for data preprocessing and machine learning
models.

A. DATA COLLECTION
This study utilized the MIMIC-III dataset [59], a large, freely
available health dataset containing information about patients
admitted to the Beth Israel Medical Center between 2001 and
2012. The dataset includes information about patients’ demo-
graphics, laboratory results, procedures, caregiver notes,
imaging results, and mortality information, including dis-
charge details. Our study involved a retrospective cohort of
1177 patients admitted during this period. Out of these cases,
978 (83%) were classified as normochloremia, while
199 (17%) were classified as hyperchloremia. The peak
chloride levels in the blood are measured in milliequivalents
per liter (mEq/L). The normal range for blood chloride is
typically between 96 and 106 mEq/L; however, these values
can vary slightly depending on the laboratory reference
standards. A chloride level of 107 mEq/L is slightly above
the normal range.

Demographic information, such as age, gender, BMI,
diabetes types (TY1D and TY2D), and Apache scores were
collected for each patient. Laboratory values, including
chloride levels and admission creatinine levels, along with
other features, were used to assess and monitor various
aspects of patient health. Fluid administration and clinical
outcomes were also considered to evaluate the impact of
intravenous fluid therapy on patient well-being.
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B. DATA PREPROCESSING
In this study, we implemented two preprocessing pipelines to
ensure the data was suitable for the application of machine
learning algorithms. The first preprocessing pipeline focused
on handling missing data and initial feature extraction.
Missing data are a common issue in healthcare datasets,
which can interfere with the reliability and performance of
machine learning models [60], [61]. The technique of using
imputation techniques helped ensure that the imputed values
were reflective of the underlying data distribution and did not
introduce bias into the analysis. Given the high-dimensional
nature of the clinical data, feature extraction was a crucial
step in reducing dimensionality and improving the efficiency
of our machine learning models. This process involved the
extraction of relevant features based on their correlation with
the outcome variable (Chloride).

The second preprocessing pipeline involved feature scaling
and further feature extraction. Feature scaling was con-
ducted to standardize the range of the continuous features.
This process is critical when applying machine learning
algorithms that are sensitive to the scale of the features,
such as support vector machines (SVM) and k-nearest
neighbors (KNN) [62]. The methods employed for feature
scaling included standardization and normalization. After the
feature scaling process, we carried out additional feature
extraction to enrich the data representation and glean
further pertinent information for further analysis. Owing to
the data imbalance, we performed the Synthetic Minority
Over-sampling Technique (SMOTE) [63], a technique used in
the field of machine learning and data mining to address the
class imbalance problem. We utilize the boosting ensemble
method with KNN as the base learner for the ensemble task.
The random subspace method was applied to randomly select
subsets of features for each iteration, enhancing diversity
among the ensemble members and potentially improving
generalization capabilities. Further, to ensure the robustness
and generalizability of the models, we employed K-fold
cross-validation with 10 splits. This validation technique
provides an unbiased evaluation of their performance on
unseen data, which is crucial for assessing the true predictive
power of the ensemble method.

The final step in our data preprocessing involved the
choice of hyperparameters for training our machine learning
models. The selection of optimal hyperparameters is crucial
in ensuring the performance of machine learning models.
In this study, we systematically explored a range of potential
hyperparameters and identified the combination that yielded
the best model performance. These preprocessing steps
laid the groundwork for the successful application of
machine learning techniques to predict the likelihood of
hyperchloremia in DKA patients.

C. MACHINE LEARNING ALGORITHMS
In this section, we discussed a short review of the seven
machine learning classification algorithms used for this

project. These algorithms include Support Vector Machines,
K-nearest Neighbour, Logistic Regression, Random Forest,
Extreme Gradient Boost, and the Bootstrap Aggregating
Ensemble method with Random Subspaces.

1) SUPPORT VECTOR MACHINES
Support Vector Machines (SVMs) are traditional machine
learning algorithms commonly employed for classification
and regression tasks on numeric or text data [64]. SVMs
aim to find an optimal hyperplane that separates different
classes of data points or predicts a continuous output value, all
while maximizing the margin between them. When provided
with a training dataset containing numeric features and
corresponding class labels, SVMs attempt to learn a decision
boundary that best fits the data. This decision boundary,
or function, is represented by a hyperplane in a high-
dimensional space [65], [66]. To train an SVM model on
numeric data, we followed these steps: data preprocessing,
model formulation, kernel trick application, training, and
prediction. The decision function for SVM classification can
be represented as:

f (x) = sign

(∑
i

αiyiK (xi, x)+ b

)
(1)

where f (x) represents the predicted class label for a new
data point x, αi are the learned coefficients (support vector
weights), yi are the corresponding class labels of the training
data, K (xi, x) is the kernel function, and b is the bias term.
Meanwhile, the sign function helps determine the direction
and polarity of the prediction, enabling SVMs to classify
new data points based on the learned hyperplane or decision
boundary.

2) K-NEAREST NEIGHBOUR
Given a dataset with numeric features and corresponding
class labels, the K-nearest Neighbour (KNN) algorithm
classifies a new data point by considering its K nearest
neighbors based on a distance metric (e.g., Euclidean
distance) [64]. The majority class among the K nearest
neighbors determines the class label assigned to the new data
point [64], [65], [66]. The formula for KNN classification can
be represented as follows:

ŷ = argmax
yi

(
K∑
i=1

δ(yi, y)

)
(2)

where ŷ represents the predicted class label for the new data
point, yi denotes the class label of the i-th nearest neighbor,
y is a specific class label, and δ(yi, y) is a function that
returns 1 if yi is equal to y and 0 otherwise. In simpler
terms, the formula finds the class label that appears most
frequently among the K nearest neighbors. The new data
point is assigned that majority class label as its predicted
class.
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3) LOGISTIC REGRESSION
Logistic Regression (LR) is a popular machine learn-
ing algorithm used for binary classification on numeric
datasets [64]. It models the relationship between the inde-
pendent variables (features) and the probability of the binary
outcome using the logistic function. Given a numeric dataset
with features X and corresponding binary labels y, the
logistic regression algorithm estimates the parameters (θ) of
a logistic function to predict the probability of the positive
class (y = 1). The logistic function (also known as the
sigmoid function) transforms the linear combination of the
features and parameters into a value between 0 and 1. It is
represented as:

σ (z) =
1

1+ e−z
(3)

where z = θTX is the linear combination of the features
and parameters. The logistic regression formula calculates the
probability of the positive class as:

P(y = 1 | X; θ ) =
1

1+ e−θTX
(4)

To train our logistic regression model, the parameters θ are
estimated by maximizing the likelihood of the observed data.
This is usually achieved through optimization algorithms
such as gradient descent or Newton’smethod. Once themodel
is trained, it can predict the probability of the positive class
for new data points. Subsequently, a threshold is set to convert
these probabilities into binary class labels.

4) RANDOM FOREST
Random Forest (RF) is an ensemble learning algorithm that
combines multiple decision trees to make predictions [40],
[67]. Although RF is a combination of multiple decision
trees, we explain its prediction process using an aggregated
formula. The formula for the prediction can be represented as
follows:

ŷ = MajorityVote(ŷ1, ŷ2, . . . , ŷn) (5)

where ŷ represents the predicted class label or numerical
value for a new data point. ŷ1, ŷ2, . . . , ŷn are the predicted
class labels or numerical values from the individual decision
trees within the RF ensemble.MajorityVote is a function that
selects the most frequent class label or computes the average
among the predictions of the individual decision trees.

In essence, RF combines the predictions of multiple
decision trees to make a final prediction. For classification
tasks, the class label that occurs most frequently across
the ensemble is selected as the predicted class label. For
regression tasks, the predicted numerical values from the
individual trees are averaged to obtain the final prediction.

5) EXTREME GRADIENT BOOST
ExtremeGradient Boosting (XGBoost) is a gradient-boosting
algorithm commonly used for numeric datasets [37], [68],
[69]. XGBoost is an ensemble learning algorithm that

combines weak prediction models, typically decision trees,
into a better predictive model. It iteratively trains models,
learning from the mistakes of previous models to make more
accurate predictions.

The formula for XGBoost can be represented as follows:

ŷi =
K∑
k=1

fk (xi) =
K∑
k=1

wkhk (xi) (6)

where ŷi represents the predicted value for a specific data
point xi. K is the number of weak prediction models
(decision trees) used in the ensemble. fk (xi) represents the
prediction of the k − th weak model for the data point xi.
wk represents the weight associated with the k − th weak
model. hk (xi) represents the prediction made by the k − th
weak model for the data point xi. XGBoost trains weak
models sequentially, with each subsequent model attempting
to correct the mistakes made by the previous models. The
final prediction for a data point is the sum of the predictions of
all weakmodels weighted by their respective weights. During
the training process, XGBoost minimizes a loss function
that quantifies the errors made by the ensemble. Common
loss functions include squared error loss for regression and
logistic loss for binary classification.

6) BOOTSTRAP AGGREGATING ENSEMBLE WITH RANDOM
SUBSPACES
The Bootstrap aggregating method, also known as bagging,
was introduced by Leo Breiman [70] in his influential work
titled ‘‘Bagging Predictors’’. The study described that the
bagging ensemble was designed to improve the stability
and accuracy of machine learning models. The method
involves training multiple instances of the same learning
algorithm on different subsets of the training data, then
aggregating their predictions to produce a more robust and
accurate model. It can be applied to both classification
and regression problems [71], [72], [73]. For classification
problems, it functions as a majority voting scheme, while for
regression tasks, it involves averaging predictions.

To create better ensembles, Panov and Džeroski [74]
proposed a combination of bagging and random subspaces to
resample the training set and generate random independent
bootstrap replicates, which can be applied to any base-
level algorithm. Their work argued that this approach
performs better than the random forest algorithm in terms
of both accuracy and diversity of the constituent learners.
Through empirical experiments, they demonstrated that their
combined method outperforms traditional random forests
on a variety of datasets, especially when handling high-
dimensional data. The proposed approach is outlined in
Algorithm 1.

The algorithm constructs an ensemble of models by
integrating bootstrap aggregating (bagging) with the random
subspace method. It takes a training dataset D, generates
M different bootstrap samples each with N instances, and
selects k features for each model. Each of the M base
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Algorithm 1 Bootstrap Aggregating Ensemble With
Random Subspaces
Data: Training dataset D, Number of base modelsM ,

Number of features to select k , Number of
samples N

Result: Ensemble Model consisting of M base models
for m← 1 to M do

Dm← Randomly select N samples from D with
replacement (Bootstrap sampling)
Fm← Randomly select k features from the
feature set
Train base model Bm on Dm using only features
Fm

end
Function EnsemblePrediction(x):

Data: Test instance x
Result: Predicted outcome for x
Initialize an empty list predictions
for m← 1 to M do

ym← Predict outcome for x using model Bm
with features Fm
Append ym to predictions

end
return Combine predictions using majority voting

models is trained on its unique combination of instances and
features. This process captures various aspects of the data
and promotes model diversity. When making predictions, the
algorithm aggregates individual predictions from all models
using majority voting.

D. LOCAL INTERPRETABLE MODEL-AGNOSTIC
EXPLANATIONS
Local Interpretable Model-Agnostic Explanations (LIME)
is a technique that provides local explanations for the
predictions of any black-box machine learning model [75],
[76]. LIME aims to explain the predictions of a model by
generating interpretable explanations in the local neighbor-
hood of a specific instance. The formula for LIME can be
represented as follows:

φ(x) = argmin
g∈G

L(f , g, πx)+�(g) (7)

where φ(x) represents the interpretable explanation for the
instance x. g is an interpretable model that approximates the
behavior of the black-boxmodel within a local neighborhood.
f is the black-box model to be explained. L(f , g, πx) is
the loss function that measures the discrepancy between the
predictions of the black-box model f and the interpretable
model g on the instance x, weighted by the proximitymeasure
πx . �(g) is a complexity penalty term that encourages the
interpretable model g to be simpler and more interpretable.
LIME generates explanations by optimizing the above
formula to find an interpretable model that explains the

behavior of the black-box model within a local neighborhood
of the instance x.

E. PERFORMANCE EVALUATION
To assess the performance of our model in terms of accuracy,
speed, resource utilization, and other relevant metrics,
we elaborate on common techniques and metrics employed
for evaluating the performance of the machine learning
models. These include hyperparameter tuning, AUC-ROC,
accuracy, specificity, and sensitivity. The formulas in this part
were adapted from [32], [36], and [39].

1) HYPERPARAMETER TUNING
Hyperparameters are parameters that are not learned by
the model but are set before training. We assessed various
hyperparameter configurations using the grid search tech-
nique to identify the optimal set for enhancing our model’s
performance.

2) AUC-ROC
The Area under the Receiver Operating Characteristic (ROC)
Curve is a graphical representation of a binary classifier’s
performance at various classification thresholds. ROC plots
the true positive rate (TPR) against the false positive rate
(FPR). The area under the ROC curve (AUC-ROC) is
commonly used as a metric to compare and evaluate different
models. The True Positive Rate (TPR) and False Positive Rate
(FPR) are calculated using the following formulas:

TPR =
TP

TP+ FN
(8)

FPR =
FP

FP+ TN
(9)

TP (True Positives) represents the number of correctly
predicted positive instances. FN (False Negatives) represents
the number of incorrectly predicted negative instances.
FP (False Positives) represents the number of incorrectly
predicted positive instances. TN (True Negatives) represents
the number of correctly predicted negative instances.

3) ACCURACY
Accuracy measures the correctness of model predictions,
representing the ratio of correct predictions to the total
number of predictions. However, accuracy alone may be
insufficient for evaluating model performance, particularly
with imbalanced datasets. Model accuracy is calculated using
the formula:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

4) SPECIFICITY
Specificity, also known as True Negative Rate (TNR)
or Selectivity, is a performance metric commonly used
in binary classification problems to evaluate the model’s
performance [36]. We employed specificity to measure the
proportion of actual negative instances correctly identified as
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TABLE 1. Experimental evaluation of the models on the DKA dataset
without oversampling.

negative by the model. It also quantifies the model’s ability
to correctly identify the negative class, with high specificity
indicating a low rate of false positives. Equation 11 outlines
the formula for calculating the model’s specificity.

Specificity =
TN

TN + FP
(11)

5) SENSITIVITY
In binary classification, sensitivity, also known as True
Positive Rate (TPR) or Recall, measures the proportion of
actual positive instances correctly identified as positive by the
model. Sensitivity quantifies the model’s ability to correctly
identify the positive class, with high sensitivity indicating
a low rate of false negatives. The model’s sensitivity is
calculated using Equation 12

Sensitivity =
TP

TP+ FN
(12)

IV. RESULTS
The experimental results obtained from various classifiers
are presented in Tables 1 and 2, showcasing the performance
measures on the DKA dataset. These results were obtained
using the k-fold cross-validation procedure to ensure a
reliable evaluation of the classifiers. The hyperparameters
of the classifiers were carefully tuned to achieve optimal
performance.

Upon examining the results in Table 1, where the models
were trained without the SMOTE oversampling, both the
Random Forest model and the Bagging method achieved
similar accuracies of 94%. These were closely followed by
the XGBoost classifier with an accuracy of 90%, Logistic
Regression at 83%, and KNN at 76%. We believe this
performance disparity could be largely attributed to the
imbalance in the dataset.

Table 2 presents the experimental results after implement-
ing the SMOTE oversampling technique. We observed an
overall improvement in performance: the Bagging classifier
outperformed others with an accuracy of 100%, followed
closely by the random forest at 96%, the support vector
machine at 94%, logistic regression at 93%, and KNN at
86%. It is evident from these results that the application
of oversampling techniques like SMOTE can be crucial in
scenarios where dataset imbalance is a significant challenge.

In evaluating the sensitivity scores, we analyzed the
performance of each classifier both before and after imple-
menting the resampling method, as depicted in Figure 1.

TABLE 2. Experimental evaluation of the models on the DKA dataset with
oversampling.

FIGURE 1. Sensitivity before and after oversampling.

It was observed that our proposed method exhibited a
notable improvement, increasing from 90% to 99%. This
was followed by the random forest classifier, which showed
a modest rise from 93% to 95%. The XGBoost classifier
remained stable at 90% across both scenarios. Similarly,
specificity scores also demonstrated improvements across
various classifiers, as illustrated in Figure 2. Our proposed
method showed a significant increase from 92% to 99%,
closely followed by the random forest and XGBoost clas-
sifiers. However, the support vector machine exhibited a
considerable decrease, dropping from 93% to 85%.

We assessed the overall efficacy of the classifiers using
ROC-AUC scores, which illustrate the balance between the
true positive rate (sensitivity) and the false positive rate
(1 - specificity). Figures 3 and 4 demonstrate this trade-off.
In the scenario without oversampling, as shown in Figure 3,
both the random forest and our proposed method achieved
commendable performance, each scoring 93%. They were
closely followed by XGBoost with 92% and the support
vectormachinewith 90%.Upon implementing oversampling,
as presented in Figure 4, there was a notable enhancement
in performance. Our proposed methodology excelled with
a perfect score of 100%, with the random forest classifier
reaching 96%. The SVM also showed improvement at 91%.
In contrast, the logistic regression experienced a slight
decline, dropping from 84% to 83%, while the performance
of the KNN remained consistent at 82%.
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FIGURE 2. Specificity before and after oversampling.

These results underscore the effectiveness of the proposed
method and other classifiers in identifying instances of hyper-
chloremia and normochloremia in the dataset, demonstrating
their potential for clinical applications in DKA management.

A. MODEL AGNOSTIC METHOD
In this section, we use the LIME model-agnostic method to
interpret hyperchloremia predictions made by the machine
learning model applied to the DKA dataset. With LIME, our
goal is to leverage the predictive capabilities of the model and
gain valuable insights into its inner workings.

We initiate the process by training the bagging ensemble
classifier on the DKA dataset, known for its proficiency
in handling complex datasets and providing accurate pre-
dictions. Subsequently, we utilize the LIME explainer,
specifically designed for tabular data. This explainer employs
a perturbation-based approach to generate local, interpretable
models that approximate the behavior of the Random Forest
classifier near each instance. Following the fitting of the clas-
sifier to the dataset, we interpret its predictions using LIME.
For each instance, we generate an explanation highlighting
the most influential features in the decision-making process.
These explanations are then visualized in Figures 5 and 6,
demonstrating the instance-level interpretability achieved
through LIME.

When the bar is indicated to the left (blue) of the prediction,
it signifies that the corresponding feature negatively impacts
the prediction, decreasing the probability or likelihood of the
positive class. In other words, the feature represented by the
bar contributes to the model predicting the negative class or a
lower probability of the positive class. Conversely, when the
bar is on the right (orange) of the prediction, it implies that
the feature positively impacts the prediction, increasing the
probability or likelihood of the positive class.

In Figure 5, the analysis reveals a 95% probability of
normochloremia when the Chloride level is between 0.27 and
0.05, contributing 16% to the prediction. Additionally, blood

sodium greater than −0.54 contributes 4% to the prediction,
Bicarbonate exceeding 0.56 contributes 2%, coronary heart
disease (CHD) with no myocardial infarction (MI) greater
than −0.31 contributes up to 2%, and Mean Corpuscu-
lar Hemoglobin Concentration (MCHC) greater than 70%
contributes 1%. These factors collectively contribute to
classifying the chloride level in the blood within the
normal range. In contrast, Figure 6 presents a different
scenario where the instance is classified as hyperchloremia
with a predictive probability of 75%. This classification is
influenced by specific conditions: Chloride value exceeding
0.59 contributes 49% to the prediction, Bicarbonate less than
or equal to−0.64 contributes 8%, Blood calcium less than or
equal to−0.62, partial pressure of carbon dioxide in the blood
less than −0.59 contributes 2%, and temperature less than
or equal to −0.64. When these conditions hold, the model
predicts hyperchloremia as the likely classification.

These findings illustrate how various combinations of
features influence the classification outcome, underscor-
ing the significance of individual features in determining
whether an instance is classified as normochloremia or
hyperchloremia. The observations depicted in Figures 5 and 6
offer valuable insights into the model’s decision-making
process, contributing to a more comprehensive understanding
of the factors driving the classification results.

V. DISCUSSION
Hyperchloremia is a common complication in the manage-
ment of DKA, carrying significant implications for patient
outcomes [77]. The ability to predict the likelihood of its
occurrence, as demonstrated in this study, can lead to more
informed and proactive management strategies, potentially
reducing the incidence and improving patient outcomes.
Our research has illuminated the complex interplay between
various factors in the onset and management of DKA,
with a particular focus on hyperchloremia. Through the
application of machine learning techniques, we have gained
a better understanding of these relationships and devel-
oped a promising predictive and explainable method for
hyperchloremia.

One significant outcome of our correlation analysis was the
negative association between age and DKA. This association
is well-documented in the literature, where DKA can
affect both younger and older individuals [56], [57]. This
finding has profound implications for the management of
DKA, suggesting that age is not a determinant of DKA
manifestation, despite the higher mortality rate observed in
older patients [78], [79].

Our study also revealed that chloride is a crucial marker
for DKA. This finding holds significant implications for
predicting and managing hyperchloremia in DKA patients,
indicating that individuals with elevated chloride levels upon
admission are more likely to experience higher peak chloride
levels during treatment. This aligns with a recent study that
emphasized the importance of early chloride monitoring in
DKA management [29].
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FIGURE 3. ROC-AUC of the classifiers without oversampling.

FIGURE 4. ROC-AUC of the classifiers with oversampling.

Regarding predictive models, the utilization of various
machine learning classifiers has underscored their potential
in predicting hyperchloremia with varying levels of accu-
racy. Notably, our proposed method, along with random
forest and extreme gradient boost classifiers, exhibited
superior performance. These results align with a growing
body of evidence suggesting that machine learning holds
immense potential in improving clinical decision-making
and disease prediction [37], [39], [80]. For the inter-
pretability of our model, we employed LIME, an approach

that provides interpretable and faithful explanations of
machine learning classifiers. LIME revealed the complex
interactions of features within our model, offering valuable
insights into the factors contributing to the prediction of
hyperchloremia.

A. COMPARISON WITH OTHER STUDIES
In Table 3, we compare our proposed study work with a
few state-of-the-art machine learning models and dataset
utilized in hyperchloremia and DKA studies and their use of
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FIGURE 5. An instance showing Normachloremia.

FIGURE 6. An instance showing Hyperchloremia.

explainability feature. Liu et al. [53] utilized LR,multi-Layer
perceptron (MLP), RF, and XGBoost and achieved an AUC
of 0.90 with explainability features. Thongprayoon et al. [31]
used consensus cluster analysis (CCA) without providing
sensitivity, specificity, or AUC values and did not incorporate
an explainer. In contrast, Yeh et al. [54] implemented MLP,
RF, ridge regression (RR), and XGBoost with a sensitivity
of 0.67 and an AUC of 0.19 but without model explainability.
Peng et al. [55] used neural networks (NN), LR, Naive Bayes
(NB), RF, and MLP, and achieved a sensitivity of 0.18, a per-
fect specificity of 1.00, and an AUC of 0.76. This model also
included explainability features. Fan et al. [56] used artificial
neural networks (ANN), Bayesian networks (BN), chi-square
automatic interaction detection (CHAID), classification and

regression trees (CRT), quick unbiased efficient statistical
tree (QUEST), discriminate (D), and ensemble (XF), achiev-
ing a sensitivity of 0.87 and an AUC of 0.90, but did
not include an explainer. Eid et al. [57] used Decision Trees
(DT), RF, KNN, XGBoost, Rule Induction Algorithm (CN2),
and AdaBoost, obtaining an AUC of 0.97, but did not provide
sensitivity or specificity values and lacked explainability
features.

The bagging ensemble with random subspaces technique
outperformed all the aforementioned techniques. While it
would be beneficial to observe how the proposed approach
performs on multiple datasets, our method demonstrated
significant improvement after employing the oversampling
technique.
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TABLE 3. Comparison with some existing methods.

VI. CONCLUSION
The application of machine learning methodologies in
managing diabetic ketoacidosis (DKA) presents a promising
approach to predicting hyperchloremia, a condition that can
exacerbate DKA and lead to undesirable outcomes. By exam-
ining an extensive array of clinical data, our research has
highlighted crucial factors and patterns that can aid in predict-
ing the occurrence of hyperchloremia in DKA patients. These
insights have the potential to guide clinicians in promptly
detecting and managing hyperchloremia, thereby enhancing
patient outcomes. Furthermore, LIME, the interpretability
technique, has proven valuable in understanding the predic-
tive power of the machine learning model we developed.

Despite the promising results, several opportunities for
future research exist. Firstly, enhancing the performance
of our machine learning model could be achieved through
the integration of more patient data and the exploration of
additional predictive algorithms. Secondly, the implementa-
tion of our predictive model within a clinical environment
requires further scrutiny, including the seamless integration
of the model into electronic health record systems. Thirdly,
we propose that future research endeavors expand the model
to forecast additional complications associated with DKA.
Lastly, we advocate for more extensive research into the
practical application of machine learning interpretability
techniques in the healthcare sector. Such advancements
could strengthen confidence in and the adoption of machine
learning models in clinical decision-making processes.
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