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ABSTRACT Industrial processes of time delayed integrating type require sophisticated control methods
because of their non-self-regulating nature. Literature presents fractional order controllers as possible
solution to this problem and there is scope for further enhancing the performance of the existing solutions.
Though fractional order controllers are capable of outperforming their integer order counterparts, it is evident
in literature that the former controller designs are complex and hence analytical tuning procedures for
the same are scarce. Hence, this paper presents a novel predictive strategy for time-delayed integrating
processes based on two fractional-order tilt-derivative (FOTαD1−α) controllers. These controllers are
analytically designed with only two tunable parameters. These tuneables are computed using gain- and
phase-margin specifications. In contrast to the previous methods, the presented scheme is more capable of
eliminating input-load disturbances without adding complexity in terms of tunable parameters. In addition
to the investigations carried out using three difficult benchmark plant models, the present design is also
experimentally validated using a two-tank level control system to vindicate its efficacy. Through robust
stability analysis, it is shown that the suggested strategy is capable of achieving stable closed-loop responses
amid upto 50% perturbation in plant parameters.

INDEX TERMS Fractional-order tilt derivative controller, integrating processes, time delay, gain margin,
phase margin, robustness.

I. INTRODUCTION
Integrating process or non-self-regulating process generates
an unbounded output for a bounded input and may result
in actuator saturation [1]. Distillation columns, boiler steam
drums, level loops, jacketed CSTRs, batch operations, and
bioreactors are a few examples of well-known industrial
processes [2]. PID controllers and their equivalents are still
used in themajority of industrial loops because of their simple
construction and lack of intricate design [3], [4], [5]. Among
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PID variants, 2DOF PID is one of the most explored options
in recent times. An I-PD control law was recommended
to regulate an integrating process in [1] and [6]. Applying
the centroid of the stability region, the PI-PD controller
was designed in [7]. In [3], an all-PD control law based
on GM-PM criteria was explored. A PI-PD controller was
developed in [8] usingMS constraints and moment-matching.
Another PI-PD control law based on GM-PM and MS
constraints was suggested in [9]. An optimal I-PD controller
was designed in [10]. Based on frequency loop shaping and
GM-PM specifications, a 2DOF PID-PD control structure
was explored in [2].
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TABLE 1. List of abbreviations and symbols.

It is proven that integer-order controllers (IOCs) are
favourite for their simplicity in tuning, making them easier
to implement in practical applications. However, IOCs
fall short in their performance. Recent years have seen
a substantial increase in the popularity of fractional-order
PID (FOPID) controllers due to their capacity to enhance
performance and robustness compared to PID [11], [12],
[13]. Trivedi and Padhy [14] used an indirect FOC based on
the IMC method. A FO PI-PD control rule was developed
for stable and unstable systems in [15]. The quadrotor
drones can be controlled as a double integrating system
with high nonlinearity in nature using a simple PIλ − D
structure [16], [17]. Further, an optimal FOIλD1−λ was
designed in [18] for time-delayed integrating processes based
on a complex-root-boundary analysis. In [19], a non-singular
terminal sliding mode controller using a PID-based fractional
disturbance observer was described. The fractional-order
tilt double derivative controller (FOTDD) design reported
in [20] is based on modified IMC theory. It is extended
for unstable processes in [21]. For mitigating frequency
deviation in power system (PS), a FO integral-tilt derivative
controller with filter (FOI-TDN) was employed in [22].
To achieve load frequency control in hybrid PS, the FO

cascaded integral derivative tilt controller was designed
in [23]. For frequency control in multimicrogrid, an ITD
controller was developed in [24]. Advanced control methods
such as neural network [25] and fuzzy logic [26] involve
complex computations. In practice, simple cotrol strategy are
prefered [18].
Addressing this literature gap, the goal is to design a

FOC with a streamlined structure, requiring fewer tuning
parameters than popular FOPID. Also, the new controller
should be simple to implement in real-time applications
and offer superior performance with robustness. Among
the various subsets of PID, TID is more advantageous
due to the ‘tilt’ term extending the controller’s overall
bandwidth [27]. Also, fractional order controllers can
yield better performance-robustness trade-off [18]. Hence,
combining the merits of both tilt and fractional order
controllers is worthwhile. However, the recently reported
tri-parametric FOID controller design [18] failed to reject
input-load disturbance. It is worth mentioning that the bulk
of FOPID or TID designs reported in the literature are
complex due to the requirement of three to five tuning
parameters. Additionally, most designs do not include the
analytical or absolute tuning procedure. In some cases, the

7480 VOLUME 12, 2024



D. Das et al.: Fractional Dual-Tilt Control Scheme for Integrating Time Delay Processes

FIGURE 1. A fractional dual-tilt control scheme.

fractional order is also heuristically tuned, thereby making
the procedure complex [28]. Given the foregoing details,
the main contributions of this work can be summarised as
follows:

• By combining the merits of both tilt and fractional
order controllers, a new method of designing fractional-
order tilt-derivative (FOTαD1−α) controller with only
two tunable parameters is recommended.

• Two such FOTαD1−α controllers with identical param-
eters are employed in a predictive control structure.

• Controller parameters are analytically computed using
GM-PM specifications.

• Although the proposed predictive structure has four
tuning parameters, the servo and regulatory controllers
are identical in contrast to typical 2DOF schemes. This
makes the method further simplified with only two
tuning parameters.

• Contrary to the FOID controller design of [18], the
present scheme is capable of eliminating input-load
disturbance effectively.

• The performance and robustness of a closed-loop system
are widely acknowledged to be inversely correlated [29].
However, the present control scheme is set up in a way
that strikes a good trade-off between the two.

• The suggested design is experimentally validated on a
two-tank level control system.

The rest of this draft is arranged as follows: Proposed
predictive control structure and transfer function of con-
trollers are brought forth in Section II. Analytical design
of FOTαD1−α controllers are carried out in Section III.
Section IV is devoted to the discussion of simulation results,
whereas experimental validation of the proposed scheme
is carried out in Section V. Conclusions are presented in
Section VI.

II. CONTROL STRUCTURE AND THEORETICAL
FORMULATIONS
Figure 1 shows a Smith predictor-based proposed control
structure where P is the actual plant to be controlled and
C and Cd are the servo tracking and disturbance rejection
controllers, respectively. Here, Pm is the delay-free plant
model, r is the set-point to the system, y is the process output,
u is the control efforts generated by the controller and d is the
disturbance input. The elimination of the time delay L from

FIGURE 2. FOTαD1−α behaviours.

the closed-loop characteristic equation and also the ability to
anticipate the future value of the controlled variable using a
plant model are the main advantages of a predictive structure.
In this work, both C and Cd are identical controllers and can
be expressed as below.

C(s) =
Kt1
sα1

+ Kd1 s1−α1 (1)

Cd (s) =
Kt2
sα2

+ Kd2 s1−α2 (2)

where Kt1,2 and Kd1,2 terms denote the tilt and derivative
gains, respectively. The orders α1,2 and 1 − α1,2 are the
non-zero fractional orders and α1,2 ∈ (0, 1). As illustrated in
Figure 2, choosing α1,2 = 0 transforms C(s) into a classical
PD, whereas choosing α1,2 = 1 results in a classical PI.
Consequently, the FOTαD1−α yields a trade-off between PD
and PI control actions. Changes in set-point and disturbances
elicit two distinct responses from a control system: the
servo response, triggered by set-point adjustments, and the
regulatory response, activated in response to disturbances.
The transfer functions for the servo Gr,y(s) and regulatory
Gd,y(s) responses can be obtained from Figure 1 as:

Gr,y(s) =
KC(s)e−Ls

s+ KC(s)
(3)

Gd,y(s) =
K [s+ KC(s)(1 − e−Ls)]e−Ls

[s+ KC(s)][s+ KCd (s)e−Ls]
(4)

where, K and L denotes system gain and delay of the process
P, respectively.

Now from (4), it can be concluded that zero steady-state
error in regulatory response is possible only with Cd (s) ̸= 0.
Let us take servo and regulatory loops comprising plant P and
controller (C or Cd ). The respective maximum sensitivities
(MS1 and MS2) are the inverse of the minimal distance from
the point (−1, 0) to the Nyquist plot. Accordingly, theMS for
the servo and regulatory loops are as follows:

MS1 = max||
1

1 + P(jω)C(jω)
|| ∞ (5)

MS2 = max ||
1

1 + P(jω)Cd (jω)
|| ∞ (6)

As MS is inversely proportional to the distance from
the point (−1, 0) to the Nyquist plot, the system stability
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deteriorates with increased maximum sensitivity and vice-
versa. To ensure stability, the phase crossover frequency
(ωpcs ) must be greater than and gain crossover frequency
(ωgcs ). Similarly, for the regulatory loop, ωpcr > ωgcr . From
the crossover frequencies, the gain and phase margins for the
servo (γs and φs) and regulatory (γr and φr ) loops can be
obtained. These stability margins are related toMS as follows:

MS1 <
γs

γs − 1
, MS1 <

1

2 sin(φs
2 )

(7)

MS2 <
γr

γs − 1
, MS2 <

1

2 sin(φr
2 )

(8)

III. PROPOSED CONTROLLER DESIGN
The controller is designed based on an approximated pure
integrating model with a time delay. However, as seen
in Figure 1, the actual plant P(s) may be a higher-order
integrating type. Both the servo tracking controller (C)
and disturbance rejection controller (Cd ) are designed
independently using GM-PM specifications. As Cd will
come into existence only when there is a disturbance
affecting the system, it allows both controllers to be designed
independently.

A. DESIGN OF SERVO-TRACKING CONTROLLER
Let us consider a pure integrating plant model with a time
delay as

Pm(s)e−Ls =

(
K
s

)
e−Ls (9)

where K and L are the process gain and time delay,
respectively. Following the internal model approach [30], the
IMC controller Q(s) is written as

Q(s) = (P−
m(s))

−1F(s) = (P−
m(s))

−1 1
λ1s+ 1

(10)

where λ1 is the adjustable parameter of IMC filter F(s) and
P−
m(s) is the inverse of the invertible part of the plant model.

As per the IMC principle, the servo controllerC(s) is obtained
as

C(s) =
Q(s)

1 − Pm(s)Q(s)
. (11)

Now, putting (9) and (10) in (11), one obtains,

C(s) =
Ls+ 1

K (λ2
1s+ 2λ1)

(12)

To convert (12) into a structured form, the first-order
Maclaurin series expansion is applied as given below:

C(s) = C(0) + sC ′(0) (13)

where, C(0) =
1

2Kλ1
and C ′(0) =

L
2Kλ1

−
1
4K .

Now from (13), it can be seen that there is only one tuning
parameter. So, we can not impose both the GM and PM (γs

and φs) at a time. So, 1/sα1 term is multiplied in (13) and
hence we get

C(s) =
[
C(0) + sC ′(0)

] 1
sα1

=
C(0)
sα1

+ C ′(0)s1−α1 (14)

where, Kt1 = C(0) and Kd1 = C ′(0). As it can be
seen that this multiplication converts the controller into a
fractional-order tilt FOTα1D1−α1 . As per expression (14),
there are two unknown parameters λ1 and α1. Let us calculate
using the well-adopted GM-PM specifications. Assuming
P(s) = Gm(s)e−Ls, the GM-PM equations of the open loop
transfer function Gservo(s) = P(s)C(s) can be computed as
given below:

φs = arg[P(jωgcs )C(jωgcs )] + π (15)

|P(jωgcs )C(jωgcs )| = 1 (16)

γs =
1

|P(jωpcs )C(jωpcs )|
(17)

arg[P(jωpcs )C(jωpcs )] + π = 0 (18)

where ωpcs and ωgcs are the respective crossover frequencies
for the user-defined γs and φs. Substituting (9) and (14)
in (15)-(18), we get

φs −
π

2
+ Lωgcs +

π

2
α1 − arctan

(
C ′(0)ωgcs
C(0)

)
= 0 = F1

(19)
K

(ωgcs )1+α1

√
(C(0))2 + (C ′(0)ωgcs )2 − 1 = 0 = F2 (20)

γs −
(ωpcs )

1+α1

K
√
(C(0))2 + (C ′(0)ωpcs )2

= 0 = F3 (21)

π

2
− Lωpcs −

π

2
α1 + arctan

(
C ′(0)ωpcs
C(0)

)
= 0 = F4 (22)

As equations (19)-(22) have non-linear terms, they are
difficult to solve analytically. Therefore, MATLAB ‘fslove’
function is utilised to solve those non-linear equations
simultaneously with the following objective function,

J = min
(Kt1,Kd1,ωpcs ,ωgcs )

[F12 + F22 + F32 + F42]. (23)

It is to note that the best selection is obtained by choosing
J < σ , where σ is a very small value.

B. DESIGN OF DISTURBANCE REJECTION CONTROLLER
From Figure 1, the open loop transfer function involving the
disturbance rejection controller is written as

Gdist (s) = P(s)Cd (s) (24)

By replacing C(s) with Cd (s) and repeating the steps
from (15)-(22), Cd (s) can be designed with the same GM
and PM (γs and φs). Hence, Kt1 = Kt2, Kd1 = Kd2,
λ1 = λ2 and α1 = α2. However, suppose the disturbance
rejection performance is not satisfactory. In that case, Cd (s)
can also be designed for different GM and PM (γr and φr ),
resulting in different controller parameters from that of C(s).

7482 VOLUME 12, 2024



D. Das et al.: Fractional Dual-Tilt Control Scheme for Integrating Time Delay Processes

FIGURE 3. Steps to obtain parameters.

C. CONTROLLER TUNING SUMMARY
A step-by-step procedure to design the proposed controller
and to obtain the tuning parameters are summarized in the
flow-chart shown in Figure 3.

IV. RESULTS AND DISCUSSIONS
An investigation was conducted on three challenging
benchmarks integrating processes from the literature. The
controller is designed for GM= 3, PM= 60◦ and a derivative
filter for the D-part is selected as 1

(0.5s+1) throughout the
manuscript; however, these choices can be altered as per the
requirements.

A. EXAMPLE-1: HIGHER ORDER INTEGRATING
PROCESSES
Let us consider a higher order integrating process studied
in [6] as, P(s) =

e−2s

s(s+1)(0.5s+1)(0.25s+1) . For this process,
Peker and Kaya [6] reported an I-PD controller along with
a lead-lag filter with controller parameters as Kp = 0.2570,

FIGURE 4. Nominal responses of example-1.

Ti = 12.9525, Td = 3.2148, a = 1.3337 and c = 3.1877. For
this same process, A PID with a lead-lag filter was suggested
by Anil and Sree [31] with the following settings: Kp =
0.2370, Ti = 14.4608, Td = 1.5596, α = 0.9996 and β =
1.2888. For the proposed design, the plant is approximated
as P(s) ≈ e−3.75s/s for controller design purposes. Following
the proposed design method summarized in Figure 3, λ1,2 =

3.9574 and α1,2 = 0.1218, are obtained. The resulting
controllers are C(s) = Cd (s) =

0.1263
s0.1218

+ 0.2238s0.8782.
Dynamic responses of the proposed design are compared
with that of [6] and [31]. The simulation is run with a
variable set-point of 1 at 0 sec and another step change at
200 sec. The load disturbance occurs with d = −0.1 at
100 sec and d = +0.1 at 300 sec. Figure 4 exhibit
the nominal responses obtained using the unperturbed P(s)
mentioned above. The aforementioned figure indicates that
the proposed approach demonstrates superior servo and
regulatory responses compared to existing designs in terms
of overshoot-free responses during setpoint changes and
faster settling time while rejecting disturbances. Figure 5
illustrates the control efforts corresponding to Figure 4,
thereby showcasing a notably smooth control action for the
proposedmethod compared to its contemporaries. In contrast,
the control efforts of Anil and Sree [31] shows undesirable
initial kicks during setpoint changes. To evaluate robustness,
a 30% perturbation is simulated in the K and L of the plant
model. The resulting responses are depicted in Figure 6
along with their corresponding control efforts in Figure 7.
Robustness of the present design is evident from Figures 6
and 7 as it yields superior closed-loop performance and
smooth control action amid perturbations. Especially, it is
worth noticing that the proposed design results in less
oscillations and overshoot compared to that of Anil and Sree.
Furthermore, resilience to noise is analysed by simulating
a band-limited noise with a power of 0.001 at the output.
The outcomes, displayed in Figures 8 and 9, highlight that
the proposed design is less susceptible to noise compared to
existing designs.

B. EXAMPLE-2: NON-LINEAR JACKETED CSTR
Most chemical process industries utilised the CSTRs to mix
two or more reactants at a specific temperature while a
catalyst was present. Because of the non-linear relationship
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FIGURE 5. Nominal control efforts for example-1.

FIGURE 6. Perturbed responses with 30% increase in both process gain
and delay for example-1.

FIGURE 7. Perturbed control efforts with 30% increase in both process
gain and delay for example-1.

FIGURE 8. Responses with noise input for example-1.

between the manipulated and controlled variables, it is
difficult to control the temperature of CSTR. Figure 10
displays a schematic diagram of a CSTR. Consider a
non-linear dynamics of a Jacketed CSTR, which was recently

FIGURE 9. Control efforts with noise input for example-1.

FIGURE 10. Schematic diagram of a CSTR.

explored by Mehta et al. [18] where the isothermal chemical
reaction is illustrated as:

dC
dt

=
Q
V
(Cf − C) −

a1C
(a2C + 1)2

(25)

The process is linearized as per the prescribed parameter
settings [18] as, P(s) =

3.433e−20s

103.1s−1 ≈
0.0333
s e−20s.

A fractional-order integral derivative (FOIλD1−λ) controller
with Ki = 0.43, Kd = 10.46 and λ = 0.1127 was used
by [18] for this process. To regulate the same process,
Kumari et al. [32] have created a fractional order internal
model control (FOIMC)-proportional controller with Kp as
1 and FOIMC as 103.1s2+58.77s+2.433

(3.433+34.33s)(1+16s1.1)
. As per the present

method summarized in Figure 3, two tuning parameters are
calculated as λ1,2 = 23.3560 and α1,2 = 0.0984. With
these specifications, the controllers are designed as C(s) =

Cd (s) =
0.6429
s0.0984

+ 5.35s0.9016. Dynamic responses of the
proposed design are compared with that of [18] and [32].
The simulation is carried out with r = 4 at 0 sec and
d = −1 at 350 sec. The nominal responses are demonstrated
in Figure 11 to highlight the superior servo and regulatory
performances achieved by the proposed design compared to
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FIGURE 11. Nominal responses of example-2.

FIGURE 12. Nominal control efforts for example-2.

FIGURE 13. Perturbed responses with 30% increase in both process gain
and delay for example-2.

the existing designs. Figure 12 illustrates the corresponding
control efforts, showcasing a relatively smooth control action
than seen in existing designs. To assess robustness, a 30%
perturbation is simultaneously simulated in both process
gain and delay. The resulting responses and control efforts
are displayed in Figures 13 and 14, respectively. Observing
these figures reveals that the proposed design maintains
enhanced servo and regulatory performances with smooth
control action amid perturbations. In contrast to the proposed
design, the triparametric controller of Mehta et al. [18] fails
to reject the input load disturbances.

C. EXAMPLE-3: HEAT EXCHANGER
A temperature control loop involving the heat exchanger
is studied, as shown in Figure 15. In this shell and tube
heat exchanger, two flow lines exchange heat. This process

FIGURE 14. Perturbed control efforts with 30% increase in both process
gain and delay for example-2.

FIGURE 15. Schematic diagram of temperature control with a heat
exchanger.

was experimentally modelled in [3] as P(s) = 0.002e−3s/s.
For this process, Das et al. [9] have designed a PI-PD
controller with parameters Kp = 140.68, Td = 1.45,
Kc = 50.8647 and Ti = 2.6659. The proposed design’s
two unknown parameters are obtained as λ1,2 = 3.1114 and
α1,2 = 0.1256 as per the flow chart given in Figure 3.
With these settings, the proposed controllers are designed
as C(s) = Cd (s) =

80.3497
s0.1256

+ 116.0490s0.8744. Dynamic
responses of the proposed design are compared with the
already existing designs. The simulation is carried out with
r = 1 at 0 sec and d = −30 at 80 sec. Nominal
responses shown in Figure 16 highlights the superior servo
and regulatory performances achieved by the present design
compared to [9]. Likewise, control efforts shown in Figure 17
illustrates the relatively smooth control action achieved by the
present design. For assessing robustness, a 30% perturbation
is simulated simultaneously in both K and L. The resulting
perturbed responses and their corresponding control efforts
are displayed in Figures 18 and 19, respectively. These figures
reveal that the proposed design is robust with smooth control
action amid perturbations. In contrast, the design of [9] results
in an unstable response for the perturbed case. Overall, the
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FIGURE 16. Nominal responses of example-3.

FIGURE 17. Nominal control efforts for example-3.

FIGURE 18. Perturbed responses with 30% increase in both process gain
and delay for example-3.

FIGURE 19. Perturbed control efforts with 30% increase in both process
gain and delay for example-3.

simulation studies conducted in this sub-section reveals the
superiority of the present design over [9] in terms of both
performance and robustness.

FIGURE 20. Sensitivity plots with respect to plant parameter variations
for example-1.

FIGURE 21. Sensitivity plots with respect to plant parameter variations
for example-2.

D. ROBUSTNESS ANALYSIS
1) ROBUSTNESS CHECK USING SENSITIVITY PLOT
Although GM-PM specifications are traditional robustness
metrics, they may fail to ensure a realistic sensitivity bound.
To verify the sensitivity with respect to plant parameter
variations, one can study the desired robustness as provided
by Figures 20-22 for all the examples. In Figure 20, sensitivity
plots portraying variations in plant parameters for example-1
are displayed. Maximum sensitivity is a robustness measure
which is expected to be below 2 (or 6dB) for stable
systems [29]. The Bode magnitude plot indicates that the
system’s sensitivity remains below Ms = 2 or 6dB even
when subjected to a 40% variation in plant parameters.
Similarly, Figures 21 and 22 exhibit sensitivity plots for
plant parameter variations in examples 2 and 3, respectively.
These plots corroborate similar observations to those evident
in Figure 20. Observing these figures, it can be concluded
that the fractional dual-tilt control scheme guarantees robust
stability even for 40% variation in plant parameters.

2) ROBUSTNESS CHECK AMID DIFFERENT LEVELS OF
PERTURBATION
To verify actual perturbations to plant parameters (K and
L), the outputs are plotted for all three examples in
Figures 23 to 28. In this critical verification, perturbations
in K and L are applied separately and gradually increased
until they deliver acceptable performance. For example-1,
robustness analysis amid different levels of perturbation (in

7486 VOLUME 12, 2024
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FIGURE 22. Sensitivity plots with respect to plant parameter variations
for example-3.

FIGURE 23. Robustness analysis when perturbation in system gain K for
example-1.

FIGURE 24. Robustness analysis when perturbation in system delay L for
example-1.

system gain (K ) and system delay (L)) are presented in
Figures 23 and 24, respectively. Likewise, for example-2,
robustness assessment is carried out amid different levels of
perturbation in K and L. The resulting closed-loop responses
are shown in Figures 25 and 26. Finally, for example-3,
the robustness analysis is presented in Figures 27 and 28,
showcasing system behavior under perturbations in K and L.
The robustness check carried out in all three examples reveals
that the proposed design has the capacity to withstand up
to 50% perturbations while maintaining stable closed-loop
responses. Interestingly, the observation was true for all
examples studied. It demonstrates that the presented structure
can be robust even with large plant parameter variations. The
method has obtained comparable stability with almost no
significant changes in time responses. Thus, it depicts the

FIGURE 25. Robustness analysis when perturbation in system gain K for
example-2.

FIGURE 26. Robustness analysis when perturbation in system delay L for
example-2.

FIGURE 27. Robustness analysis when perturbation in system gain K for
example-3.

FIGURE 28. Robustness analysis when perturbation in system delay L for
example-3.

new FOTαD1−α controller can be designed robustly using
GM-PM effectively and with less computational burden.

E. COMMENTS ON STABILITY
In pursuit of optimal closed-loop stability, the scheme
FOTαD(1−α) performs superior and robust. It can provide
a favourable balance between performance and robustness.
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FIGURE 29. Experimental arrangement of a two-tank system.

FIGURE 30. Experimental Outcomes.

Additionally, introducing a ‘tilt’ term extends the overall
bandwidth and contributes to the overall performance.Within
the 2DOF framework, where uncertainties are inherent in
most industrial processes, and variations in plant parameters
are common, robust stability becomes a critical consideration.
The proposed design is meticulously developed to ensure
robust stability, considering recommended stability margins.
It is proven through rigorous assessments in three illustrative
examples. Encouragingly, the responses obtained in all cases
demonstrate high satisfaction.

V. EXPERIMENTAL VALIDATION ON A TWO-TANK
LEVEL CONTROL SYSTEM
Figure 29 shows the experimental setup of a two-tank level
control system. Here, water from the reservoir is pumped to
tank-2, and again water from tank-2 is forwarded to tank-1.
In this process, the main objective is to control the level
of tank-1 by regulating the pump voltage. Through system
identification, an analogous pure integrating time-delayed
system is estimated as P(s) =

0.1175e−3.5s

s . For the
given plant, the values of λ1,2 and α1,2 are obtained as
3.674 and 0.123, respectively, from the GM-PM constraints.
The FOTαD1−α controller transfer functions are obtained
as 1.1582

s0.1230
+ 1.9259s0.877. The experiment had a target level

set to 4 cm at 0 sec and VI cm at 150 sec. A manual
output disturbance is applied by injecting a very small
amount of water at 300 sec, and an input disturbance is
applied by opening the disturbance tap at 400 sec. The actual
output and the corresponding control signal are plotted in

FIGURE 31. Control signal.

Figures 30 and 31, respectively. Figures 30 and 31 show the
proposed design’s set-point tracking and load-disturbance
rejection capabilities. Moreover, this verification demon-
strates that the novel controller can operate in real-time with
satisfactory performance.

VI. CONCLUSION
A fractional dual-parametric robust predictive control strat-
egy was presented for integrating processes with time delays.
The new control structure involving FOTαD1−α , offered
improved set-point tracking and load disturbance rejections
onwell-known benchmark plants.With simple computational
effort, the designed parameters can be calculated to achieve a
tolerance of up to 30% or even more parametric uncertainties.
While considering the previous designs on FOCs, the present
design is relatively straightforward to apply. Also, the
effectiveness of the presented scheme was verified on the
two-tank level control system.
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