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ABSTRACT Heart sound segmentation has been shown to improve the performance of artificial intelligence
(AI)-based auscultation decision support systems increasingly viewed as a solution to compensate for eroding
auscultatory skills and the associated subjectivity. Various segmentation approaches with demonstrated
performance can be utilized for this task, but their robustness can suffer in the presence of noise. A noise-
robust heart sound segmentation algorithm was developed and its accuracy was tested using two datasets:
the CirCor DigiScope Phonocardiogram dataset and an in-house dataset – a heart murmur library collected
at the Children’s National Hospital (CNH). On the CirCor dataset, our segmentation algorithm marked the
boundaries of the primary heart sounds S1 and S2 with an accuracy of 0.28 ms and 0.29 ms, respectively, and
correctly identified the actual positive segments with a sensitivity of 97.44%. The algorithm also executed
four times faster than a logistic regression hidden semi-Markov model. On the CNH dataset, the algorithm
succeeded in 87.4% cases, achieving a 6% increase in segmentation success rate demonstrated by our
original Shannon energy-based algorithm. Accurate heart sound segmentation is critical to supporting and
accelerating AI research in cardiovascular diseases. The proposed algorithm increases the robustness of heart
sound segmentation to noise and viability for clinical use.

INDEX TERMS Auscultation, heart sound segmentation, Shannon energy, CirCor DigiScope phonocardio-
gram dataset, artificial intelligence, deep learning, stethoscope, heart murmur classification.

I. INTRODUCTION
Cardiovascular diseases remain the leading cause of death
worldwide. The World Health Organization (WHO) reported
17.9 million deaths from cardiovascular diseases in 2016 and
this number is expected to reach 23.6 million by 2030 [1], [2],
[3], [4], [5]. These diseases also carry a high financial burden,
which is projected to rise to $749 billion by 2035 [1]. Well-
honed cardiac auscultation remains a low-cost screening
tool for early detection of heart disease [6]. It is, however,
subjective and unappreciated by many practitioners [7], [8].
Davidsen et al. [9] reported a high variability in the sensitivity
and the accuracy of auscultation. Such variability leads to

The associate editor coordinating the review of this manuscript and

approving it for publication was Valentina E. Balas .

an increase in unnecessary referrals to expert cardiologists,
overuse of echocardiography and other diagnostics, and
potentially contributes to missed abnormalities [8]. In recent
years, there has been a growing interest in empowering
primary care providers, the so-called ‘‘gate-keepers’’ of the
healthcare delivery system, with advanced auscultation tools.
One way to address auscultation’s subjectivity and providers’
eroding skills is to build decision support systems, such
as artificial intelligence (AI)-based auscultation [10], [11],
[12]. Heart sound segmentation (HSS)–identification of the
primary heart sounds (S1 and S2)–is often a prerequisite in
computerized auscultation. It has been reported to be used
in many AI-based heart murmur classification pipelines [10],
[11], [12]. However, some deep-learning approaches skip
this step. This raises an interesting research question:
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what is the incremental value of segmentation in enabling
AI-based automated heart murmur identification, given that
convolutional neural networks (CNNs) are powerful feature
extraction tools? Oliveira et al. [13] showed that segmentation
boosts the performance of deep-learning algorithms for heart
murmur classification. In addition, HSS also provides a
means to increase the size of the training datasets, which
is helpful for data-intensive deep-learning algorithms. With
segmentation as a first step, classification can be performed
on individual cardiac cycles, and the majority vote or
mean absolute value can be used for a recording-level
classification [13], [14]. In the 348 open-source entries
submitted to the 2016 PhysioNet Challenge by 48 teams,
Clifford et al. [14] demonstrated that the methods that
included segmentation achieved significant improvements
in heart abnormality classification tasks. Seventeen of the
20 highest-scoring papers in the 2016 PhysioNet Challenge
used segmentation (See Table 1). More recent papers also
support this finding [10], [11], [15], [16], [17], [18], [19].
One could argue that segmentation is not the only reason why
these methods performed better, but, given that the accuracies
of the top six entries ranged within 2% despite using different
classifiers, segmentation appears to be a dominant factor.
In the context of the 2022 PhysioNet Challenge, HSS was
not the primary focus of the challenge, but it was a critical
preprocessing step for many of the algorithms submitted by
the participating teams (Table 2).
Manual segmentation is an alternative but it is not practical

in most situations given the size of the datasets required
for deep learning. Moreover, intra- and inter-observer
HSS variability would affect accuracy. Therefore, it is
imperative to develop automated segmentation techniques.
Many segmentation techniques have been proposed using
different approaches. A review of segmentation techniques
based on wavelet transform, fractal decomposition, Hilbert
transform, and Shannon energy envelogram was published
by Milani et al. [20]. The review showed that Shannon
energy envelogram-based techniques generally achieved
higher performance. Our team previously reported a heart
sound segmentation algorithm using Shannon energy envel-
ogram [15]. This algorithm was developed and tested
using heart sound recordings collected with a commercial
electronic stethoscope (Littmann Model 4100, 3M Company,
St Paul, Minnesota, USA) and curated by a clinical expert
to remove any noisy segments at the beginning or the
end of the recording. The heart sound recordings can be
corrupted by noise, including endogenous or ambient speech,
motion artifacts, and physiological sounds such as intestinal
and breath sounds, any of which could lead to incorrect
segmentation or failure. A noise-robust algorithm that could
segment a recording successfully even in the presence of
noise is therefore highly desirable. This paper presents a
noise-robust version of original HSS algorithm (referred to
as the Shannon energy-based algorithm henceforth) and its
validation using both in-house and independent third-party

datasets. The third-party dataset, hereinafter termed the
CirCor dataset, is a part of the 2022 PhysioNet challenge [21].
The remainder of this paper is organized as follows.

Section II describes the segmentation algorithms, first
the Shannon energy-based and then its proposed noise-
robust version. Section III presents the results of applying
segmentation to the two datasets. Section IV discusses
the results in the context of related work demonstrating
that the noise-robust segmentation algorithm led to better
classification performance.

II. RELATED WORK
The state-of-the-art heart sound segmentation algorithms can
be grouped into seven classes: 1) wavelet transform [56];
2) fractal decomposition [57]; 3) Hilbert transform [58];
4) hidden semi-Markov model (HSMM); 5) deep learn-
ing [59]; 6) hybrid methods [60]; 7) and Shannon energy
envelogram [61], [62]. The advantages and limitations of
these techniques are summarized in Table 3. The table
indicates that wavelet transform-based segmentation tech-
niques split the phonocardiograms into frequency bands.
They provide adequate performance, but have questionable
performance with non-stationary signals. Fractal decompo-
sition techniques do not need to split the phonocardiograms
into frequency bands, as they work on time-domain signals.
Fractal decomposition techniques can segment a heart sound
recording with murmurs. Hilbert transform-based HSS tech-
niques, like those based on wavelet transform, split the heart
sound signal into frequency bands and work with individual
bands. These techniques have an advantage over the latter
as they indicate adequate performance on both stationary
and non-stationary signals as they can detect even minimal
changes in frequencies. The performance of these techniques
on wideband signals, however, is insufficient. HSMM-based
segmentation techniques are probabilistic statistical, stochas-
tic state machines with hidden Markov processes. They are
robust to variability between testing and training datasets,
but these approaches are computationally intensive. Deep
learning techniques provide adequate performance and are
able to generalize on unseen datasets, but they require
hard-to-develop large training datasets. Several stethoscopes
can be used for data acquisition. Hardware bias from the
variability in the frequency response of stethoscopes poses
a challenge. Hybrid methods employ electrocardiography
equipment and use Q, R, and S waves for HSS. The
hardware and software requirements make hybrid methods
less practical. These electrocardiography-based segmentation
methods necessitate simultaneous recording and synchronous
processing of both the heart sound and ECG signal, which
can be inconvenient, particularly when dealing with infants
or newborn children [63]. Despite these efforts, HSS remains
especially challenging in pediatrics because of the higher
heart rate in children. Some of the reported techniques
assumed that the diastole is longer than the systole, which
does not always hold in children. Shannon energy-based

7748 VOLUME 12, 2024



Y. Arjoune et al.: Noise-Robust Heart Sound Segmentation Algorithm Based on Shannon Energy

TABLE 1. Studies on classification of cardiovascular diseases based on machine learning and deep learning, with and without heart sound segmentation.

TABLE 2. 2022 PhysioNet Challenge studies on murmur detection based on machine learning and deep learning, with and without heart sound
segmentation. The entries of the tables are ranked based on the clinical outcomes defined by the challenge.

segmentation methods provide superior segmentation accu-
racy compared with prior techniques, are computationally
efficient, diminish unwanted signal peaks, and work in
time domain [20]. They do not require splitting the signal
into frequency bands and can be used in conjunction
with other methods for adaptive thresholding. Shannon
energy-based HSS requires some threshold tuning and could
be challenging because of the sensitivity to noise. The
noise-robust segmentation algorithm presented here builds
upon our original Shannon energy algorithm and introduces
smart cropping to increase the robustness of these methods to
noise.

III. SEGMENTATION FRAMEWORK
This section describes the Shannon energy-based segmenta-
tion algorithm followed by the proposed noise-robust heart
sound segmentation technique. The general block diagram is
shown in Fig. 2.

A. SHANNON ENERGY-BASED SEGMENTATION
ALGORITHM
This algorithm uses Shannon energy to segment the primary
heart sounds S1 and S2. After preprocessing heart sound
recordings, the algorithm finds and validates the sound lobes
by applying a priori knowledge.These steps are described
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TABLE 3. Summary of the advantages and limitations of different classes of segmentation techniques.

here in brief; a detailed description of this algorithm is
available in [15].

1) PRE-PROCESSING
The first step in the phonocardiogram preprocessing is to
resample the signal to 4,000 Hz. The next step filters out
low and high frequency components not associated with
heart sounds by applying a bandpass filter with 40 Hz and
500 Hz as lower and upper cutoff frequencies. The last step
normalizes the band-pass filtered signal to [-1,1] range.

2) IDENTIFICATION OF CANDIDATE SOUND LOBES
The next step identifies candidate sound lobes, for which
the envelope signal is computed. The envelope signal Es
of the normalized band pass-filtered heart sound signal is
computed as the average Shannon energy (ASE), taken at
fixed intervals. ASE has been widely utilized for extracting
the heart sound envelope in prior studies [67], [68], [69], [70].
The ASE is computed over 20-ms sliding windows with 50%
overlap between two successive windows. Let xnorm(t) denote
the normalized bandpass filtered heart sound signal. The ASE
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FIGURE 1. Phonocardiogram showing the recording for normal heart
sounds.

is computed as,

Es =
−1
N

N∑
j=1

xnorm(j) log xnorm(j)2, (1)

where N denotes the total number of samples in a 20-ms
window. Then, the ASE is normalized over all time instants.
The normalized ASE (NASE) is given as,

NASE(t) = Es(t) − ¯Es(t), (2)

where ¯Es(t) denotes the mean of Es(t). The sound lobe
boundaries are localized by applying the threshold value of
0 on the NASE.

B. HEART SOUND LOBE VALIDATION
The localized sound lobes are validated with the goal of
removing extra sounds not corresponding to the primary heart
sounds (S1 and S2). To achieve this, two conditions are
applied, informed by a priori knowledge, on the sound lobe
duration and the interval between adjacent lobes. First, both
S1 and S2 are less than 250 ms in duration [70]. Moreover,
each of these can be split into two sounds, and when that
happens, the maximum split interval is generally no greater
than 50 ms [69], [70] and the split sound lobes have lower
intensity. To check if a split has occurred, the time interval
between two such sound lobes is tested if it is less than 50 ms,
and the root mean square (RMS) energy of one lobe is less
than 40% of the other. If the split is present, the higher-energy
sound lobe is kept. If they have similar energies, one of the
two lobes could be a murmur or noise, in which case both
sounds are retained as candidates for S1 and S2.

C. S1 AND S2 IDENTIFICATION
After validating candidate S1 and S2 sound lobes, S1 and S2
are identified sequentially using three measurements:

1) the correlation between the envelope signal (Es) of the
possible systolic interval and the (Es) of the previously
identified systolic interval,

2) the calculated cardiac cycle length, and
3) the calculated systolic interval.

the correlation is computed on the envelope instead of the
original sound signal. The correlation on the sound signal
is less reliable because the heart sounds of two adjacent

cycles can have slightly different frequencies. Moreover, the
variation in the beat-to-beat interval in pediatric patients
is generally higher than that in adult patients. The locally
estimated cardiac cycle assists the algorithm in identifying S1
and S2. The systolic interval is relatively constant compared
to the diastolic interval [4], and using this knowledge,
we robustly identify S1 and S2 (see Fig. 1). After identifying
the first pair of S1 and S2, we search for other S1-S2
pairs in both forward and backward directions. The starting
point is the sound pair with the longest interval. Generally,
the diastolic interval (S2-S1) is greater than the systolic
interval (S1-S2). From the first S1-S2 pair, the algorithm
assesses all the possible combinations among the candidates
for S1 and S2 by comparing the correlation, on the cardiac
cycle and the systolic interval, between the identified S1-S2
pair and possible S1-S2 pairs. The S1-S2 pair with the best
match to the previously identified S1-S2 pair is considered
the true S1 and S2. The process is repeated to detect
S1-S2 pairs until the start and the end of the signal are
reached.

D. NOISE-ROBUST SEGMENTATION ALGORITHM
The described Shannon energy-based algorithm works best
with curated, relatively noise-free phonocardiograms. In real-
world situations, however, phonocardiograms are often
contaminated with bands of noise either from a child crying
or rustling noise associated with themovement of stethoscope
on the chest. Furthermore, this band of noise could be
located anywhere within the recording. To improve the
algorithm’s performance on noisy phonocardiograms, the
original algorithm was enhanced to detect and crop noisy
segments and perform segmentation subsequently on the
noise-free recordings. First, outlier lobes are eliminated, and
the noise-robust algorithm finds the noise-free segments and
feeds them into the Shannon energy-based segmentation
algorithm. Subsequently, the ASE is generated from the
clean recordings. Each clean part of the signal is fed to
the segmentation routine and then the algorithm combines
the new segments with the previously found segments.
Assuming the Shannon energy envelope is used to determine
different lobes (i.e., contiguous segments of energy). A lobe
is represented by Li with a start si and an end ei:

Li = {Es[si],Es[si + 1], . . .Es[ei]} (3)

The area under each detected lobe is computed by integrating
the energy envelope within the lobe boundaries. The area
under a lobe can be approximated using a simple sum if the
envelope is discrete:

A(Li) =

ei∑
n=si

Es[n] (4)

The lobe areas are analyzed to identify outlier lobes. This is
done by comparing each lobe’s area with the average area and
standard deviation of all lobes. If there areM detected lobes,
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FIGURE 2. Noise-Robust HSS blockdiagram.

the average area Ā is:

Ā =
1
M

M∑
i=1

A(Li) (5)

A lobe Li is considered noisy if its area deviates significantly
from the average lobe area.

A higher z-score (deviation from the average) indicates a
potentially noisy lobe. Lobes with area z-scores exceeding a
predefined cutoff value (area_cutoff ) are considered as noisy
lobes. The standard deviation of the lobe area is computed as,

σA =

√√√√ 1
M

M∑
i=1

(Ai − Ā)2 (6)

where:
• Ā = Average area of lobes
• Ai = Area of the ith lobe
• M = Total number of lobes
• σA = Standard deviation of the lobe areas
A cutoff value was set to

cutoff = 2.75

The z-score is computed as,

zi =
Ai − Ā

σA
(7)

Then, we check if the lobe is an outlier: If zi > cutoff, then
the lobe is considered an outlier.

The noisy lobes are recorded for further analysis. By con-
sidering the variation in lobe areas, the algorithm aims
to accurately detect and isolate noisy lobes in the energy
envelope. These noisy lobes can potentially correspond to
artifacts, background noise, or other undesired components
in the signal. Once the algorithm removed the outlier lobes,
the clean signal is fed to the original Shannon energy-based
segmentation algorithm. The pseudocode of the algorithm is
summarized in Algorithm 1.

IV. DATA DESCRIPTION
The performance of the noise-robust segmentation algorithm
was validated on two datasets, described next.

A. CIRCOR DATASET
The first dataset was a subset of the CirCor DigiScope
Phonocardiogram dataset, released as the training dataset for
the 2022 PhysioNet challenge. We refer to this subset here as
the CirCor dataset. The CirCor dataset comprised 797 heart
sound recordings made using Littmann 3200 electronic
stethoscopes (3M Company, St Paul, Minnesota, USA) as
part of twomass screening campaigns conducted in Northeast
Brazil (cc2014 and cc2015). Each digital recording was
3 s-25 s in duration and was obtained from one of the four
common chest locations. These recordings were distributed
as recordings with murmur absent (602), with murmur
present (164), or unsure (31). The gender distribution was
408 females and 389 males; and the age distribution was
591 children, 83 infants, 39 pregnant women, 78 adolescents,

7752 VOLUME 12, 2024



Y. Arjoune et al.: Noise-Robust Heart Sound Segmentation Algorithm Based on Shannon Energy

Algorithm 1 Noise-Robust Heart Sound Segmenta-
tion
Input : Input data, Sampling frequency (Fs)
Output: S1 and S2 locations

Initialize variables and parameters;

if Data is valid then
Remove repeated numbers from the input data,
excluding zeros; if Duration of valid data is less than
3 seconds then

Set invalid to 1;
Return;

end
Apply high-pass and low-pass filtering to remove
unwanted frequencies;

Normalize filtered data;
Calculate Shannon energy envelope;
Set window size and overlap parameters for Shannon
energy calculation;

Compute Shannon energy envelope (En) of filtered data;
Set any ‘‘NaN’’ values in En to 0;
Perform noisy lobe detection using energy envelope;
Divide En into intervals;
Compute absolute minimum heights within each
interval;

Calculate modified threshold based on average of
minimum heights;

Find sound lobes (segments) based on original energy
envelope that exceed threshold;

Calculate area under each lobe;
Identify noisy lobes as outliers based on area;
Find non-noisy segments and apply segmentation
algorithm;

Identify clean, non-noisy intervals by removing noisy
lobes from the signal;

for each non-noisy interval do
Calculate duration in seconds;
if Duration is greater than 3 seconds then

Proceed with segmentation;
Prepare cleaned data by zeroing out parts
outside non-noisy interval;

Generate average Shannon energy envelope
from cleaned data;

Perform segmentation algorithm on cleaned
data within non-noisy interval;

Update variables S1_sounds, S2_sounds;
end

end
Return S1_sounds, S2_sounds,

end
else

Set invalid to 1 Return
end

and 6 young adults. The ground truth S1 and S2 segmen-
tation for these 797 recordings was initially generated by
three algorithms: HSMM [65], deep convolutional neural
networks [59], and adaptive Sojourn Time HSMM [64]. The
results of the algorithmswere examined by two expert cardiac
physiologists who provided manual annotations wherever the
algorithms disagreed. These files retained only the manual
annotations for segmentation for the sections of recordings
indicated as high-quality representative sections. The left-out

TABLE 4. The distribution of recordings by murmur type in the CNH
dataset.

sections might include both high- and low-quality sections,
as suggested by Oliviera et al. [21], but were not considered
because they lacked the ground truth.

B. CNH DATASET
The CNH dataset was compiled at Children’s National
Hospital by one of the authors (R.W.D), a cardiologist with
50 years of experience. The recordings were made using
a Littmann 4100 electronic stethoscope, and the dataset
consisted of 1174 heart sound recordings of which 211 were
innocent Still’s murmurs, 235 were normal heart sound
recordings (i.e., had no murmurs), and 728 were pathological
murmurs. A more detailed breakdown of the recordings
by murmur type is provided in Table 4. These recordings
were obtained from the same common chest locations as
those for the CirCor dataset. The ground-truth murmur
type for Still’s murmur recordings was provided by the
same cardiologist author, and that for pathological murmur
recordings was further confirmed with echocardiography.
To build the S1/S2 ground truth for segmentation of CNH
recordings, a MATLAB graphical user interface (GUI) was
developed to allow a user to interactively annotate S1 and S2
sounds. This GUI enabled navigation between different heart
sound recordings, listening to the ‘‘WAV’’ sound files, and
displaying the corresponding waveform and the spectrogram.
The GUI also enabled the cardiologist annotator to select
the location of noise in the recording or annotate it as
clean otherwise. Note that the segmentation algorithm was
developed using only a subset of the CNH dataset comprising
257 recordings (87 Still’s murmurs and 170 non-Still’s
murmurs).

C. EVALUATION METRICS
The performance of the noise-robust segmentation algorithm
was evaluated based on accuracy, sensitivity, and execution
time. The accuracywas determined by calculating the average
distance between themidpoints of ground truth S1 (or S2) and
the midpoints of the corresponding segmented S1 (or S2) in a
recording. Next, we averaged the midpoint mismatches over
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all S1s and S2s across all recordings. This metric provided the
mean separation between the ground truth and the segmented
heart sounds.

Sensitivity was assessed by verifying if the midpoint of a
segmented S1 was bracketed by the start and the end points of
the ground-truth S1. If the midpoint fell between the ground-
truth S1 start and S1 end, then the case was considered a true
positive (TP). If themidpoint was outside the said interval, the
case was noted as a false negative (FN). The same process
was repeated for S2 peaks. The false positive (FP) and true
negative (TN) cases could not be established here because the
CirCor dataset provided ground truth only for high-quality
representative parts of the heart sound recordings. Only
sensitivity, as defined below, could therefore be computed for
CirCor dataset segmentation.

Sensitivity =
TP

TP+ FN
(8)

The execution time of the noise-robust segmentation algo-
rithm is also reported to draw comparisons on the com-
putational complexity of our algorithm. Logistic regression
HSMM, one of the algorithms used to generate the ground
truth in the CirCor dataset, is considered for this comparison.
All experiments were performed on a MacBook Pro with
Apple M1 processor and 8G as memory, and we used the
built-in MATLAB functions, TIC and TOC, to estimate the
execution time. This metric is important because the final
objective could be to build the automated segmentation on
electronic stethoscopes or mobile devices typically, which
have limited computation resources. Studying the execution
time of these algorithms providevaluable insights into their
performance, resource requirements, and applicability to
real-world clinical applications.

V. RESULTS
The first subsection presents the performance evaluation
of the noise-robust segmentation algorithm on the CirCor
dataset. The second subsection presents the performance of
the noise-robust algorithm on the CNH dataset.

A. RESULTS ON CIRCOR DATASET
On the CirCor dataset, we obtained a segmentation accuracy
of 0.28 ms (+/-0.02) for S1. Considering that the typical
duration of S1 (or S2) is 250 ms, the obtained accuracy
represented a 0.11% error. Some studies have reported
shorter durations for S1 and S2 [71], [72]. For instance,
Varghees et al. reported 70-150 ms (S1) and 60-120 ms (S2)
[71] and Walsh and King [72] reported 50-150 ms (S1) and
30-100 ms (S2). Using 250 ms in our algorithm allowed
more candidates to be identified. If the shortest S1 duration
was considered, then the error would be less than 0.56%.
This demonstrated that the noise-robust algorithm had a high
accuracy regardless. The same applied to S2 segmentation as
the noise-robust algorithm provided an accuracy of 0.29 ms
(+/-0.02) assuming the S2 duration is 250 ms.

Having demonstrated the algorithm’s accuracy, the sensi-
tivity of the noise-robust algorithm is presented in Table 5.
The noise-robust algorithm had an overall sensitivity of
97.22% when evaluated with murmur-present recordings.
The sensitivity was 97.69% for recordings with no murmur.
The algorithm had a sensitivity of 95.76% when evaluated
on the ‘‘Unsure’’ murmur category. The overall sensitivity
considering all recordings was 97.44%. The noise-robust
segmentation algorithm could find more cardiac cycles than
for which the ground truth existed. Those cycles were
disregarded even though they seemed valid.

Table 6 shows the execution times of the logistic regression
HSMM and noise-robust segmentation algorithms on the
CirCor dataset. The execution time on the entire batch of
797 recordings was 870.78 s for the noise-robust segmenta-
tion algorithm. The same for the logistic regression HSMM
was 3826.56 s. On average, the noise-robust algorithm
took approximately 1.09 s to segment a recording while
logistic regression HSMM took approximately 4.80 s. The
noise-robust segmentation algorithm executed four times
faster than logistic regression HSMM.

B. RESULTS ON CNH DATASET
Having demonstrated high accuracy and sensitivity of the
noise-robust segmentation algorithm on the CirCor dataset,
our objective with the CNH dataset was to demonstrate the
robustness of the algorithm against noise in a classification
task. For this purpose, both the Shannon energy-based and
noise-robust segmentation algorithmswere testedon the CNH
data. For the analysis here, the segmentation fails for a
recording if the algorithm was not able to identify all the
heart sound cycles available. Examples of these segmentation
results are present in Figures 3 through 5.
Figure 3 (a) and (b) depict an example of a recording that

was not successfully segmented because of the noise present
at the start of the recording but was correctly segmented by
the noise-robust algorithm and its smart cropping of the noisy
segment. This recording had a loud voice (annotated in black)
at the beginning of the recording. The Shannon energy-based
algorithm took this noise as S1 that led to an incorrect
segmentation. The noise-robust algorithm detected this noise
correctly, cropped it, and then performed segmentation on
a relatively clean heart sound recording. Consequently, the
segmentation was correct (see Figure 3 (b)). In Figure 3 (c),
we demonstrate another example of failed segmentation due
to the presence of noise towards the end of the recording.
In this figure, there is an overlap between S1 and S2 around
7 s into the recording. In Figure 3 (d), the noise-robust
algorithm performed smart cropping of the noisy segments
(from around 6.5 s to 8 s) of the recording and output only
the cycles that were correctly segmented.

Figure 4 presents examples of heart sound recordings in
which both segmentation algorithms did not succeed. The
phonocardiograms shown here corresponded to S4 Gallop
(Figures (a) and (b)). S4 Gallop is a pathological murmur in
which there is an extra sound before S1. The distance of this
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TABLE 5. Sensitivity of the algorithm for S1 and S2 segmentation.

FIGURE 3. Illustration of improved segmentation using the noise-robust segmentation algorithm.

TABLE 6. Comparison of execution times of segmentation algorithms on
the CirCor dataset.

extra sound from S1 is shorter than the distance between S1
and S2. The algorithm misidentified S4 as S1 and S1 as S2,
and this led to segmentation failure for the entire recording.
It is also worth mentioning that the patient had tachycardia
with a heart rate of 140 beats per minute.

Figure 4 (c) and (d) correspond to a supravalvular aortic
stenosis (SVAS) heart murmur recordings. This condition is
a heart defect, that is a narrowing (stenosis) of the aorta,
which carries blood from the heart to the rest of the body.
The sound corresponding to this condition is a holosystolic
murmur. Holosystolic murmurs pose a challenge not only to
our algorithm but also to most other algorithms cited above
except fractal decomposition methods.

In a pooled analysis on the CNH dataset, Figure 5
shows that the Shannon energy-based algorithm successfully

segmented 956 heart sound recordings whereas it failed in
218 of them. The noise-robust algorithm, in comparison,
successfully segmented 1026 heart sound recordings and
failed in a fewer number of cases (148). The noise-robust
segmentation algorithm is an improvement over the Shannon
energy-based algorithm segmentation by 6% in that the suc-
cess rate went from 81.4% (956/1174) to 87.4% (1026/1174).

C. DISCUSSION
The subjectivity of auscultation and the practitioners’
diminishing auscultatory skills are driving the development
of computerized auscultation. Heart sound segmentation is
a critical first step for identifying primary heart sounds
and systolic and diastolic intervals that are important for
automated heart sound analysis. Recently, heart sound
segmentation has played a key role in developing artificial
intelligence-assisted auscultation.

Liu et al. [19] proposed classification of ASD, VSD,
PDA and combined CHD based on deep learning after
heart sound segmentation demonstrating high sensitivity
and specificity values. Latif et al. [73] compared several

VOLUME 12, 2024 7755



Y. Arjoune et al.: Noise-Robust Heart Sound Segmentation Algorithm Based on Shannon Energy

FIGURE 4. Examples of failed segmentation by both algorithms.

FIGURE 5. Number of segmentation failure of Shannon energy-based
algorithm versus that of the noise-robust segmentation algorithm.

recurrent neural networks (RNNs) models’ performances for
classifying heart murmurs. They divided phonocardiograms
into segments of 2, 5, and 8 complete cardiac cycles.
Then, for each segment, they extracted MFCCs and fed
them to different RNN classifiers. Other researchers skipped
completely the segmentation stage and they fed the entire
signal to deep learning classifiers. Nilanon et al. [33] split
phonocardiograms to sequential 5-s sections with a 1-s stride.

The spectrograms and MFCCs for these sections were the
input to a CNN classifier. RNNs also have been recently
embedded into end-to-end approaches without employing
segmentation first. Thomae and Dominik [74] proposed an
end-to-end deep neural network combining 1-dimensional
convolutional layers and gated recurrent unit (GRU) layers,
where the phonocardiograms were entirely fed into the
network. Although a few recent CNN-based techniques skip
this segmentation step, there are strong reasons to believe that
the performance of these models can be improved if a robust
segmentation algorithm is incorporated.

Despite the existence of some studies that reported accurate
heart sound segmentation, there is room for improving
the performance of these methods. The performance of
contemporary heart sound segmentation is still not robust and
reliable. In some studies, accurate heart segmentation was
achieved using electrocardiography. Expert segmentation is
often considered, or combination of several segmentation
algorithms has been performed to provide the ground truth for
the Physionet 2022 Challenge dataset. Even when using mul-
tiple algorithms, domain experts were needed to verify and
edit the output of the three algorithms. Expert annotation is
tedious and time consuming. In addition, reported techniques
have been mostly for adults. Segmentation of pediatric heart
sounds is more challenging because of the faster heart rate
and high variability. We aimed at developing effective and
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robust pediatric heart sound segmentation that can replace the
expert heart segmentation. Previously, an algorithm based on
Shannon energy was reported and tested on a curated dataset
where the regions of noise were manually cropped from
the phoncardiograms. The performance of this algorithm
was superior to many other approaches, but its performance
suffered when run on recordings corrupted with bursts of
noise. The algorithmmisidentified noise peaks as either S1 or
S2. This motivated the development of the described noise-
robust algorithm.

The noise-robust segmentation algorithm could decrease
segmentation failure by 32.11% compared with the Shannon
energy-based algorithm. The algorithm only failed to segment
two Still’s murmur recordings, and the failure in some
pathological murmurs such as holosystolic murmurs is not
unexpected as S1 and S2may not be distinct (havingmurmurs
that obfuscate the positions of the fundamental heart sounds).
This shows the superiority of the noise-robust algorithm in
dealing with noise contaminating the heart sound recordings.
It is thus more practical for clinical use scenarios and can
support AI research in heart murmur classification.

The noise-robust segmentation algorithm can also achieve
performance comparable to the segmentation performed by
clinical experts. The algorithm has been extensively tested
on an independent dataset collected in a different geographic
area, and the dataset includes heart sounds of infants,
children, young adults, adults, and pregnant women. In some
cases, our algorithm can provide heart sound segmentation
which could be difficult for clinicians to perform. The
noise-robust segmentation algorithm has been used for the
task of Still’s murmur identification and has allowed our
5-layer convolutional neural network model to achieve 90%
sensitivity and 98% specificity [11].

For comparison purposes, the results of some of the
recent heart sound segmentation approaches are reported
next. Renna et al. [59] proposed a CNN-based heart sound
segmentation using the 2016 PhysioNet dataset [80]. The
authors reported an average sensitivity of 93.9% in detecting
S1 and S2 sounds. On the same dataset, Gaona and Arini [75]
used Long Short-Term Memory architecture and reported
an average sensitivity of 89.5%. Liu et al. [76] proposed
a heart sound segmentation method that combines the
time-domain analysis, frequency-domain analysis and time-
frequency-domain analysis. They tested their algorithm on
an authoritative heart sound database, and they showed that
the boundary localization has a sensitivity of 100% and
accuracy (Acc) of 99.93%. Pedrosa et al. [81] developed
a segmentation algorithm based on the autocorrelation
function for pediatrics, and reported a sensitivity of 89.2%.
Gharehbaghi et al. [11] reported an algorithm that employed
both the electrocardiogram and phonocardiogram signals for
an efficient segmentation under pathological circumstances.
They reported an accuracy of 97% for S1 and 94% for S2
identification. Muqing et al. [77] proposed a convolutional
neural recurrent network-based on improved MFCC features

and reported an accuracy, sensitivity, and specificity of
98.3%, 98.7%, 98.0%, respectively. Baghel et al. [78]
proposed a CNN method for 1D time-series signals and
achieved an accuracy of 98.6%. Alafif et al. [79] proposed
heart rate recognition using CNN and utilized transfer
learning for efficient training but achieved an accuracy of
89.5% only. Xu et al. [82] proposed a HSS algorithm based
on K-Mean clustering and Wavelet transform. They reported
a recognition rate of 98.02% for S1 and of 96.76% for S2. The
performance of the proposed algorithm achieved a sensitivity
of 97.4%, which is close to these cited methods.

Besides the performance of the algorithms, the proposed
approach present several advantages. Like with the applica-
tion of DL in other medical fields, the interpretability of DL
in heart sound segmentation is limited. As DL models are
designed to handle the complexities and nuances of large
datasets, they are often too complex to comprehend or explain
their failures. Therefore, it is difficult to determine why a
given model may be producing a certain result or why it
may be missing specific nuances in the data. The relative
lack of interpretability inherent in deep learning approaches
positions the proposed HSS algorithm as a more viable can-
didate for clinical adoption compared to deep learning-based
heart sound segmentation techniques. Furthermore, the path
to obtaining the regulatory clearances/approvals of traditional
algorithms compared to deep learning-based ones could be
less challenging as regulatory bodies, such as FDA sets
a high bar to clear AI algorithms because of the lack of
interpretability. The interpretability of medical algorithms
plays a significant role in the process of obtaining FDA
clearance. The FDA evaluates these technologies not just
for their efficacy and safety, but also for the clarity and
transparency of their decision-making processes. Algorithms
that are more interpretable allow clinicians and regulators to
understand how and why specific decisions or diagnoses are
made. This transparency is crucial for trust, particularly in
high-stakesmedical decisions. Sensors and stethoscopes have
different frequency responses as we demonstrated in [83]
which could affect the performance of DL approaches and
fine-tuning may be required. However, our approach is
universal as it has been tested on datasets acquired with
different stethoscopes such as Littmann 4100, StethAid, and
others. Last but not least, medical data limitation has been a
challenge to AI development and this could limit the adoption
of deep learning-based approaches as they are data hungry
approaches.

1) SMARTPHONE APPLICATIONS
The algorithm has been effectively deployed within the
StethAid platform as an iOS mobile application, leveraging
the enhanced computational capabilities of modern smart-
phones. This algorithm has been deployed on StethAid
mobile digital auscultation platform [84]. These advance-
ments in smartphone technology facilitate the deployment
of AI-based diagnostic models, particularly for heart sound
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TABLE 7. Performance of deep learning-based HSS techniques compared to Noise-Robust HSS method.

analysis. Utilizing smartphone-based models for diagnostics
introduces a convenient and accessible approach for patient
self-monitoring. This setup significantly contributes to the
early detection of cardiac anomalies, thereby streamlining
timely medical intervention. Moreover, such mobile applica-
tions democratize healthcare access, transcending geographic
and socioeconomic barriers. They empower individuals to
conduct regular disease screenings, leveraging the ubiquity
and accessibility of smartphones.

2) LIMITATION OF STUDY
Directly comparing the performance of the proposed algo-
rithms to heart sound segmentation methods is challenging
due to several factors. Firstly, the diversity of test datasets
used for evaluation makes a direct comparison difficult.
Additionally, to fairly assess the performance of our approach
against some deep learning methods, it would be necessary
to train and test these architectures on the CirCor datasets
and CNH dataset, which may require adjusting the hyperpa-
rameters of these architectures from their original settings.
Utilizing the specified parameters without adaptation could
lead to sub-optimal performance and potentially unfair
comparisons.

3) FUTURE RESEARCH DIRECTION
Deep learning, especially convolutional neural network-
based approaches, has been explored in automated heart
sound segmentation but its full potential has not been fully
explored. Recently, a new type of DL has emerged based
on on the concept of attention. Transformers such as [85]
have achieved excellent performance on audio classification
compared with CNN, but they have not been thoroughly
explored in heart sound segmentation. An interesting research
direction could be the exploration of the performance
of transformers in automated heart sound segmentation.
An attempt in a similar task has been conducted by Cheng and
Sun [86] as they introduced an approach using a combination
of a one-dimensional convolution (1D-Conv) module and
a transformer encoder for heart sound classification and
showcased remarkable accuracy of 96.4%, 99.7%, and 95.7%
across three distinct datasets.

VI. CONCLUSION
This paper presented a noise-robust segmentation algorithm
based on Shannon energy envelogram that can segment

primary heart sounds with high accuracy and high sensi-
tivity. The algorithm also executes with high computational
efficiency. The algorithm builds on our previous algorithm,
which achieved acceptable performance but struggled in
the presence of noise. The algorithm has been validated
for automated segmentation of S1 and S2 in heart sound
recordings of pediatric patients using two datasets: a subset of
the 2022 PhysioNet Challenge dataset and locally developed
dataset. This independent dataset ensured the effectiveness
of the segmentation algorithm. The results indicated accurate
identification of S1 and S2 when the heart sound is normal,
with a murmur, with Still’s murmurs, and with a moderate
pathological murmur. The incorporation of this algorithm in
our murmur analysis led to fully automated identification
of Still’s murmur with improved sensitivity and specificity
demonstrating that an improved heart sound segmentation
contributes to an improved deep learning based-heart murmur
classification performance.
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