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ABSTRACT KnowledgeGraphs (KGs) have emerged as a powerful tool for representing semantic structured
information and enabling the development of intelligent systems. This paper focuses on the generation
of semantic maps as summarization method for KGs. We propose a strategy that utilizes centroid-based
clustering algorithms, namely Affinity Propagation and Partitioning Around Medoids (PAM), to capture the
semantic distance between nodes in the KG and generate meaningful clusters. Our experiments demonstrate
divergent results between the two clustering algorithms, with Affinity Propagation showing qualitative
coherence andmeaningfulness, while PAMperformswell in terms of internal validationmetrics.We leverage
the computed centroids to infer a main term of the semantic map, which contributes to the visually appealing
and informative representation of the KG. The combination of semantic distance capture, clustering
algorithms, and centroid-based inference facilitates a comprehensive understanding of the KG. Our findings
highlight the importance of considering both qualitative and quantitative evaluation measures in assessing
clustering results. The effectiveness of semantic maps is showcased in visualizing KGs and advancing the
field of knowledge graph visualization. The integration of centroid-based clustering algorithms, qualitative
evaluation, and inference methods offers improved clarity and interpretability for complex KG analysis.

INDEX TERMS Knowledge graphs, knowledge graph visualization, semantic distance, semantic mapping,
visual data exploration, clustering.

I. INTRODUCTION
Knowledge Graphs are considered as the fundamental build-
ing blocks for AI systems, providing the necessary foundation
for representation and reasoning capabilities to address the
imperative design requirement of involving humanity in the
loop [1]. The idea behind a Knowledge Graph (KG) is to
represent knowledge from real world in a graph structure,
where nodes represent entities of interest and edges represent
relations between these entities [2]. Recently, academic
and private organizations have constructed KGs, such as
YAGO [3], DBPedia [4], Freebase [5], NELL [6], Google
Knowledge Graph [7], Microsoft Satori [8], Facebook Entity
Graph [9], and Wikidata [10], which contain millions of

The associate editor coordinating the review of this manuscript and

approving it for publication was Walter Didimo .

entities and billions of relationships. The main applications
of KGs include the enhancement of search engines like
Google [7] or Bing [8], question answering [11], information
retrieval, recommender systems [12], [13], domain specific
KG building [14], [15], [16], and decision support in the life
sciences [17], [18], [19], [20].

Considering the continuous increase in the use of KGs
in decision-making applications, it becomes important to
compress and summarize KGs for efficient representation
of data [21]. In general, one of the applications of sum-
marizing graphs is to reduce the data volume and storage
to facilitate the process of graph visualization [22]. Visual
data exploration is considered as a hypothesis-generator
process by allowing users to gain a deep understanding of
the data [23], hence summarizing a KG is crucial to produce
an effective visual representation to understand relationships
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between entities and concepts in a domain. By representing
the information in a visual format, users can quickly identify
patterns, trends, and clusters or related information that may
be difficult to see in a text-based representation. Existing
approaches to visualize KGs are focussed on drawing the
whole structure [24] preventing data analysts to explore the
KG beyond its structural information.

Semantic maps, on the other hand, are widely used
technique to understand complex topics [25]. They involved a
categorical structuring of information in a graphic form [26].
A semantic map typically has a central word that represents
the main topic, connected to a set of keywords that groups the
remaining vocabulary. Generating a semantic map requires
identifying groups of related words. Unsupervised learning
provides clustering algorithms that classify data into one or
more classes based on similarity or distance measures [27].
In theory, applying a clustering strategy to the vocabulary
in a KG will result in groups that can be used to construct
the semantic map. Section V presents a set of experiments
validating the above notion.

The main contribution of this work is to provide a novel
approach for summarizing KGs by leveraging the power
of semantic maps. Some KG applications, such as query
answering or KG visualization, require reduced versions of
the original graphs [24], [28]. To address this challenge,
we propose a method that generates a reduced version of a
KG by creating semantic maps from the knowledge graph,
enabling users to explore and comprehend the underlying
structure and relationships of the graph in a visually intuitive
manner. In addition, we present a formal definition of the
semantic map of a KG and propose a strategy to measure the
quality of these semantic maps. To demonstrate the utility of
these semantic maps in providing a high-level view of a KG,
we conduct a survey on a group of experts that compared the
use of semantic maps with the classical visual representation
of KGs. These experiments showcase the value of semantic
maps in offering a comprehensive understanding of the KG’s
structure and relationships.

The paper is structured as follows. Section II provides
details on KGs and establishes a definition that will be
used throughout the rest of the paper. In Section III,
we review the most relevant literature related to knowledge
graph visualization, graph clustering, semantic similarly, and
semantic mapping topics. Section IV, describes the proposed
method and the algorithms necessary for generating semantic
maps of a KG. In Section V, we discuss the results obtained
from a series of experiments evaluating the method of
generating semantic maps generated from a collection of
datasets extracted fromDBPedia. Finally, SectionVI presents
concluding remarks and outlines future work.

II. FOUNDATIONS OF KNOWLEDGE GRAPHS
Some definitions describe a KG as a graph-structured
knowledge base [29]. In this work, we consider a
knowledge base a set of sentences/facts expressed in
some formal language such as description logic. In other

words, KGs consist in a collection of facts formed by
<subject,predicate,object>. These collections
are typically represented in languages, such as RDF
(Resource Description Framework) [31], OWL (Ontology
Web Language) [32], or N-Triples which is a subset of
the more complex RDF/XML syntax, is designed to be
both human-readable and machine-readable. It is a plain
text format that represents RDF statements using subject-
predicate-object triples, with each element separated bywhite
space and terminated by a period.

In the field of computer science, an ontology serves as
a descriptive model of the world, comprising a collection
of types, properties, and relationship types [33]. According
to description logic terminology, knowledge bases have two
types of axioms: a terminology box (TBox) and an assertion
box (ABox) [34], hence a KG should contain these two sets of
axioms to be considered as a knowledge base. To exemplify
the above idea, Figure 1 shows sets TBox and ABox of a
group of entities and relationships extracted from DBPe-
dia [4].1 In KGs, the ontology classes (e.g.,dbo:Book2

or dbo:Movie) correspond with the TBox and describe
concepts hierarchies, while the ontology instances cor-
respond with the ABox and describe entity instances
(e.g.,dbr:Lucasfilm or dbr:George_RR_Martin)
and their relationships. Hierarchical relationships like
‘‘is a’’ defines the connection between each pair of
concepts in TBox. For example, axioms (dbo:Book, is a,
dbo:Work) and (dbo:film, is a, dbo:Work) describe
the fact that both dbo:Book and dbo:film concepts
are descendants of the class dbo:Work. Alternatively,
in ABox, axioms also indicate the list of types that one entity
instance may have. For instance, in Figure 1, the axiom
(dbr:A_dance_of_dragons, rdf:type, dbo:Book)
indicates that resource dbr:A_dance_of_dragons is
an instance of class dbo:Book. Another type of axioms in
ABox like (dbr:George_RR_Martin, is dbo:creator_of
of, dbr:DaenerysTargaryen) and (dbr:George_
RR_Martin, is dbo:author of, dbr:A_dance_of_
dragons) indicate that the instance dbr:George_RR_
Martin has two semantic connectionswithdbr:Daenerys
Targaryen and dbr:A_dance_of_dragons entity
instances.

Let us begin by proposing a formal definition of a KG
before proceeding to describe the remaining relevant topics
associated with the semantic mapping process outlined in this
paper.
Definition 1 (Knowledge Graph): Let V the set of entities,

where each entity v ∈ V can be uniquely identified. Let
L denote the set of property labels or attributes associated
with the entities in the knowledge graph. Each label l ∈ L
represents a specific property or characteristic of an entity.
Let E the set of edges in a Knowledge GraphK . A knowledge

1https://dbpedia.org (Last visited: 2023-11-16)
2URIs mentioned in this document use the common prefixes described in

https://prefix.cc
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FIGURE 1. Small group of concepts and instances extracted from DBPedia.

graph K is defined as K = (V ,L,E), where E is a subset
of the cross product of entities and property labels defined
as V × L × V . Each member of E is referred to as a triple
(subject − property− value).

From the definition above, we can deduce that a KG can
be represented as a list of triples that capture axioms from
ABox or TBox. In this work, our focus lies on the triples that
represent axioms of the ABox set. Specifically, whenever an
entity instance is mentioned, it is associated with the subjects
of the ABox triples.

III. RELATED WORK
In this section, we present a comprehensive overview of key
topics that are fundamental to the understanding and analysis
of semantic maps of knowledge graphs. We begin by dis-
cussing some knowledge graph summarization approaches,
which aim to distill large-scale graphs into concise and
meaningful summaries, aiding in knowledge extraction and
decision-making processes. Additionally, we explore the
concept of semantic maps, which provide a visual depiction
of the relationships and interdependencies among entities in
a knowledge graph. We further examine semantic similarity
measures, which quantify the relatedness between entities
based on their semantic attributes or contextual information.
We then go through centroid-based clustering algorithms,
which leverage the concept of centroids to group similar
entities within knowledge graphs. Lastly, we describe the sig-
nificance of visual data exploration techniques on knowledge
graphs and how semantic maps of knowledge graphs can be.

A. KNOWLEDGE GRAPH SUMMARIZATION
In the context of data mining, summarization is the process of
facilitating the identification of meaningful data. The appli-
cations of graph summarization include reduction of data

volume and storage, speedup of graph algorithms and queries,
interactive analysis support, and noise elimination [22].
Recently, it has been proposed to summarize large graphs
in order to enable an efficient visualization of their content.
For example, in [35], the authors focus on summarizing
KGs by taking advantage of individual interests to generate
personalized knowledge graph summaries. In [36], Shen et al.
propose a visual analytics tool called OntoVis, which
performs both structural and semantic abstractions to offer
a summarized version of a large graph and thus being
able to visualize a simplified version of the graph. Another
related work is presented in [37], which describes the VoG
(Vocabulary-based summarization of Graphs) algorithm to
summarize and understand large graphs by constructing
and visualizing subgraph-types, such as starts, cliques, and
chains. The visual abstraction presented in [38], transforms
geo-tagged social media data into high-dimensional vectors
by utilizing a doc2vec model.

Every summarization strategy depends on selecting an
interest criteria to extract meaningful information [22].
However, to achieve a concise definition of interesting is not
an easy task. For example, the FUSE algorithm [39] proposes
a profit maximization model that seeks to find a summary
by maximizing information profit under a budget constraint.
On the other hand, VoG [37] exploits the Minimum Descrip-
tion Length (MDL) principle aimed at identifying the best
subgraphs by choosing those which savemost bits. In the case
of semantic abstraction proposed in [38], a dual-objective
blue noise sampling model is utilized to select a subset of
social media data items supporting the spatial distribution and
semantic correlation for the resulting simplified geographical
visualization. The personalized summaries of KGs described
in [35], the criteria to decide which information is interesting
for each user is determined by reviewing the users’ query

VOLUME 12, 2024 6731



P. Camarillo-Ramirez et al.: Semantic Maps for KGs: A Semantic-Based Summarization Approach

history. The work of Tasnmin et al. propose a strategy
to find equivalent entities in a KG using the context of
each RDF Molecule [40]. In terms of summary quality,
Riondato et al. [41] have proposed two quality metrics
(ℓp-reconstruction error and cut-norm error) primarily
focused on determining the error generated in the adjacency
matrix from summarized graph. However, these metrics have
not been proven with summarization techniques associated
with KGs. The semantic mapping process described in this
document can be perceived as a summarization strategy that
is aimed at minimizing the semantic distance between each
pair of entity instances in the KG as the criterion of interest.

B. SEMANTIC MAPS
A semantic map is a type of graphical representation that
shows the relationships between different concepts or words
within a particular domain or field of study [26]. The
purpose of a semantic map is to visually organize and
display the meaning and connections between various terms
or concepts, highlighting their semantic similarities and
differences. In other words, a semantic map provides a visual
representation of how different ideas or concepts are related
to each other and how they are grouped together based on
their shared meanings or semantic properties. However, there
are another mathematical representations for semantic maps
such as graph and Euclidean space [42]. Figure 2 shows
an example of a semantic map describing the topic Water.
It contains three node categories: (1) the central word (root),
(2) the set of keywords (e.g., Usages, Living things, etc.),
and (3) the vocabulary associated with each keyword, for
instance, words Cooking and Bathing are associated with
keyword Usages.

FIGURE 2. Example of a semantic map of concepts and vocabulary
associated with topics Water.

Definition 2 (Semantic Map): Let C the set of groups of
related words in the vocabulary, Ci the i− th group of related
words, kw the set of keywords representing each group of
related words, and α the main subject of the vocabulary. Let
us define a semantic map as a tree T = (α,ET ), where α

represents the root of this tree, and ET contains the set of
edges that connects all nodes of the semantic map. ET is
defined as follows: ET = (Ekw∪Ew), where Ekw = (α × kw),
and Ew = (kwi × wi)∀kwi∈k , ∀wi∈Ci .

C. SEMANTIC SIMILARITY
The semantic similarity is a metric used in Natural Processing
Language (NPL) and Information Retrieval (IR) areas [43]
that represents how related are two concepts based on their
hierarchical relations [44], [45]. In a KG, the semantic
similarity between two entities e1, e2 ∈ V is denoted as
sim(e1, e2). Intuitively, semantic distance between two words
is the most easy way to calculate semantic similarity and
it is usually determined by the path connecting two entities
in KG. Existing semantic similarities metrics are classified
in two main groups: corpus-based and knowledge-based
approaches [46]. Corpus-based similarity metrics are focused
on learning how similar are two concepts based on the infor-
mation from large corpora. Two examples of corpus-based
similarity metrics are pointwise mutual information [47],
and latent semantic analysis [48]. In contrast, knowledge-
based similarity metrics quantify the degree to which two
words are semantically related [49]. In KG, knowledge-
based approaches, semantic similarity is determined using
the information provided by the TBox. Knowledge-based
approaches include path-based metrics such as those pro-
posed byHulpuş et al. [50],Wu and Palmer [51], and Leacock
and Chodorow [52]. Other knowledge-based measures utilize
the Information Content (IC) metric like Lin [53], Jiang and
Conrath [54], and Resnik [44] metrics. IC of concepts is a
statistical measure that computes the specificity of a concept
over a corpus. Higher values of IC indicate more specific
concepts (e.g., dbo:Book) and lower values of IC are
associated with more general concepts (e.g., owl:Thing).
Hybrid knowledge-based approaches like IC-graph [55] or
Zhou et al. [56] combine IC and some other metrics to
compute how related two words are. For instance, graph-
based IC [55] uses a SPARQL query on DBPedia to compute
freqgraph(ci) and N values in the following expression:

ICgraph(ci) = −logProb(ci) (1)

where Prob(ci) =
freqgraph(ci)

N and N is the number of entities
in the KG. Let E(ci) the set of entities having as type the
concept ci, the frequency of concept ci in the KG is defined
as freqgraph(ci) = |E(ci)|.

D. CENTROID-BASED CLUSTERING
There exist several techniques to clustering data and recent
surveys summarize these clustering approaches based on
the application or the type of data to group [57]. Types of
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clustering includeCentroid-based, Density-based, Distribution-
based, and Hierarchical clustering [60].

One of the phases of the semantic mapping process is to
collocate each entity into the most appropiate cluster based
on its semantic similarity. Each resulting cluster needs a node
that represents all entities contained on it. We denote the set
of this representing nodes as the keywords of the semantic
map. Considering these keywords as centroids of clusters, the
usage of a centroid-based clustering is crucial.

The main idea of centroid-based clustering is to find
k centroids (or centers) followed by computing k sets of
data points that minimize the proximity with each center.
For instance, K-means algorithm tries to minimize the sim
of the squared distance between the data points and the
cluster’s centroid [61]. A variation of K-means is the PAM
(Partitioning Around Medoids) algorithm that minimizes
dissimilarities between points in a cluster and the centroids
[62]. The CLARA (Clustering Large Applications) algorithm
is an extension of PAM for large datasets [63]. On the other
hand, CLARANS (Clustering Large Applications based on
RANdomized Search) is a partitioning algorithm focused
on spatial data mining because it recognizes patterns and
relationships existing in spatial data such as topological
data [64]. One last centroid-based clustering algorithm is
the Affinity Propagation (AP) algorithm which consists on
a message-passing procedure that looks for broadcasting
messages of attractiveness and availability among data
points [65].

E. CLUSTER QUALITY
Literature offers two classes of clustering validation mea-
sures: external clustering validation and internal clustering
validation [58]. Internal validation metrics evaluate the
quality of a clustering algorithm based on its intrinsic
properties, while external validation methods evaluate the
quality of a clustering solution based on its agreement with
a known label of the data. Since there is no known label of
the datasets used in the experiments described in this work,
our proposal is to use internal validation measures such as
Silhouette score [62], Davies and Bouldin score [66], and
Calinski-Harabasz Index [67].
Each internal validation metric measure different aspects

of the clusters. For example, Silhouette score measures how
well each data point fits into its assigned cluster compared
to other clusters [62]. Inertia of a cluster, also known as the
within-cluster sum of squares (WSS) metric measures how
tightly packed the data points are within each cluster [61].
The goal is to minimize inertia, which is equivalent to
maximizing the distances between clusters. On the other
hand, Dunn index measures the distance between the nearest
points in different clusters and the distance between the
farthest points in each cluster [68]. Another known quality
measure is the Davies and Bouldin index which measures the
similarity between each cluster and its closest neighboring
cluster, while also considering the cluster’s internal simi-
larity [66]. Finally, Calinski and Harabasz index measures

the ratio of between-cluster variance to within-cluster
variance [67].

F. VISUAL DATA EXPLORATION OF KNOWLEDGE GRAPHS
The idea behind the visual data exploration process is to
present the data in some visual form, allowing users to draw
conclusions from the analyzed phenomena [23]. This process,
also known as the information seeking mantra, follows three
steps: overview, zoom and filter, and details-on-demand [69].
In this context, the visual representation of KGs offered by
semantic maps proposed in this paper, provides a new way
to visualize KGs. It does so by emphasizing the semantic
closeness of their entity nodes. Recent works [36], [38], [70]
have shown that visualizing a simplified version of a large
graph is an adequate alternative.

In regard to visual exploration of KGs, challenges include
context adaptation, users input [35], data heterogeneity [36],
[70], supporting diverse analysis tasks (query, combination,
filtering, etc.), and performance [24]. In this study, semantic
mapping proposal is to combine and reduce the number of
edges in the KG using the semantic similarity among its
entities to compute clusters of related entities.

Recent applications have proven useful for large graph
visualizations to understand different phenomena, such
as Bitcoin transactions [71] and online discussions [72].
For big knowledge graphs, it is necessary a distributed
implementation of the layout algorithms to improve the time
needed to generate the visual representation [24]. Actually,
Consalvi et al. [73] propose a self-contained system to
compute interactive visualizations of thousands elements in
a mobile browser.

In addition of recent efforts on KGs visualization, there
are some commercial products enabling analysts to visualize
RDF graphs like Data Graphs3 or the family of tools
developed by Cambridge Intelligence company: Keylines,
ReGraph, and KronoGraph4 that offer the capability to render
KGs to support tasks in areas like pharmacy and bio-science
research or financial analysis. In the area of free tools, there
are two online tools that consumes RDF data and produce
a visual representation: RDF visualizer5 and RDF grapher.6

The main limitation with these tools is the small amount of
data they can process.

IV. PROPOSED METHOD
The notion behind the semantic map of a KG is to produce
a reduced version of the KG by exploiting the semantic
similarity between each pair of entities. To illustrate this idea,
let us generate a small KG from DBPedia containing the list
of some fictional characters from series of fantasy novels by
the novelist George R. R. Martin. Figure 3a) presents a visual
representation produced by the online RDF graph visualizer,7

3https://datagraphs.com (Last visited: 2023-11-16)
4https://cambridge-intelligence.com/ (Last visited: 2023-11-16)
5https://issemantic.net/rdf- visualizer (Last visited: 2023-11-16)
6https://www.ldf.fi/service/rdf-grapher (Last visited: 2023-11-16)
7https://issemantic.net/rdf-visualizer (Last visited: 2023-11-16)
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FIGURE 3. Visual representation from a small KG containing some fictional characters by George R.R. Martin. a) Contains the visual representation
produced by the online RDF visualizer. b) Inferred semantic map of the original KG.

FIGURE 4. Semantic mapping phases. (a) Consume a KG as a list of n-triples, (b) Generate the semantic distance matrix D, (c) Cluster entities
using the matrix D, (d) Infer main term α, and (e) Assemble the semantic map by connecting each centroid with α.

which is an online tool that allows easy to visualization and
analysis RDF datasets. However, this kind of visualization
is not visually informative or visually appealing which may
lead in an ineffective exploratory visual analysis. Contrarily
Figure 3b) exhibits a semantic map of the KG. This semantic
map uses a node-link representation to display the set of
entity instances of the KG connectedwith their corresponding
centroid and all centroids connected with the central concept
of the semantic map.

A. EXTRACTING SEMANTIC DISTANCE OF ENTITIES IN A
KNOWLEDGE GRAPHS
The first phase of the semantic mapping process is to group
the entities of the KG based on the semantic closeness
between each pair of entities in theKG. Themain challenge in
this phase is to extract numeric data from the KG and generate
a set of entity group. We propose computing the semantic
distance for each pair of entities in the KG by generating a
semantic distance matrix.
Definition 3 (Semantic Distance Matrix): Given aKnowl-

edge Graph K = (V ,L,E), and sim(e1, e2) the semantic
similarity between entity instances e1 and e2, the semantic
similarity matrix D(K ) represents the semantic distance
between each pair of entity instances in E . Specifically, the
value for cell di,j = 1 − sim(ei, ej).
Algorithm 1 describes the process to compute the distance

semantic matrix D. The algorithm begins by generating the

set of triples that represent the KG from the set of edges E .
For each edge e ∈ E , the subject, property label, and target
entity instance are extracted using the functions subject(),
property(), and value(), respectively. Subsequently, for each
pair of triples ti, tj ∈ T , the semantic similarity is computed
using the sim().
The computational complexity of the function sim() is

not detailed by original authors in [74], however, we can
provide a brief discussion on the computational complexity
based on the provided description of the algorithm and the
available code of sim().8 The function sim() receives as input
parameters the reference of two entities in the YAGO KG,
let’s call them e1 and e2. It consists of five phases:

1) Extracting concepts from the YAGO KG,
2) Mapping concepts to synsets,
3) Calculating the IC metric,
4) Calculating scores for synsets, and
5) Obtaining the final score for the given entities.
The filtering step takes linear time, specifically O(N1 +

N2), where N1 and N2 represent the number of concepts
associated with entities e1 and e2, respectively. Similarly,
mapping concepts to synsets for each entity takes linear time,
O(N1+N2), for each entity. Calculating the IC for each synset
and finding the most common synsets also takes linear time,
O(N1 + N2). The comparison and score calculation involve
nested loops. In the worst case, there are N1 iterations for the

8https://github.com/gsi-upm/sematch (Last visited: 2023-11-16)
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Algorithm 1 Algorithm to Build the Semantic Distance
Matrix
Input: Set of edges E of K
Output: Semantic distance matrix D
1: T = ∅

2: for all e ∈ E do
3: T = T

⋃
{(subject(e), property(e), value(e))}

4: end for
5: for all (ti, tj) ∈ T × T do
6: if ti = tj then
7: D(i, j) = 0
8: else
9: ea = subject(ti)

10: eb = subject(tj)
11: D(i, j) = D(j, i) = 1 − sim(ea, eb)
12: end if
13: end for
14: return D

score of e1 and N2 iterations for the score of entity e2. This
results in a time complexity of O(N1 · N2). The final score
calculation is a constant-time operation, O(1). Overall, the
most time-consuming part of the code is the nested loop for
comparing synsets and calculating scores, which results in a
time complexity of O(N1 · N2).

The relation between similarity and distance follows the
notion that the higher is the similarity between two entities
the lower is the distance between these entities. The i − th
row ofD(K ) is the vector containing semantic distance values
between the i − th entity and the rest of entities in the KG.
The semantic distance between each entity and itself is 0.
Our proposal consist of using a centroid-based clustering
algorithm and generate a non-overlapping set of clusters by
using the semantic distance matrix D as input of the selected
clustering algorithm.

B. CLUSTERING ENTITIES OF KNOWLEDGE GRAPHS
One of the central needs of semantic maps is to find
specific nodes in the KG that represent each group of entity
instances. Center-based clustering algorithms seem to be
suitable for this purpose.We propose using PAM and Affinity
Propagation center-based clustering algorithms due to their
compatibility with handling distancematrices as input instead
of feature vectors [62]. PAM is a clustering algorithm that
works by iteratively selecting a set of k medoids from
the data points and assigning each non-medoid point to its
closest medoid. The algorithm tries to minimize the sum of
distances between each data point and its assigned medoid.
On the other hand, Affinity Propagation is a clustering
algorithm that works by propagating messages between data
points to determine which points should be exemplars (i.e.,
representatives of their clusters).

Let C =
⋃
Ci the set of clusters resulting after applying

a centroid-based clustering algorithm. Each cluster Ci has
a centroid element denoted by centroid(Ci) and the set of

centroid elements is defined in the Equation 2.

µ =

⋃
Ci∈C

centroid(Ci). (2)

C. CENTRAL CONCEPT OF THE SEMANTIC MAP
One of the main features of a semantic map is the central
concept that represents the main topic of this graphical
representation. In this work, we denote this central concept
as α. In a regular semantic map, α is connected with a set
of selected keywords (e.g., structures, characteristics, size,
habitat, movie, kinds in Figure 2). These keywords are used
to represent every group of words of the semantic map. This
work proposes to use the centroids inferred by centroid-
based clustering algorithms [57] as the keywords of a KG.
Therefore, we denote these keywords as the set of centroidsµ

of the entities in a KG, where each µi represents the centroid
of i-th cluster Ci, i.e., µi = centroid(Ci).
To infer the central term α, we propose to compute the

ICgraph measure for all types associated with each centroid
in µ. Let types(ei) to be the function to retrieves set of types
associated with the entity ei, we define T as the set of shared
types among all centroids in µ This definition is formally
described in equation 3.

T =

⋂
µi∈µ

types(µi) (3)

Definition 4 (Central Concept α): Given a set of shared
types T , the central concept α of K is the concept ci ∈ T
with maximum ICgraph.

Algorithm 2 Algorithm to Infer Main Term α of K
Input: µ: Set of centroids of C .
Output: α: Main term of K
1: T = types(µ0)
2: for all µi ∈ µ − µ0 do
3: T = T ∩ types(µi)
4: end for
5: α = maxt∈T ICgrapht
6: return α

Algorithm 2 formalizes the process of inferring the main
term ofK by initializing the set of shared types, denoted as T ,
with the types associated with the centroid of cluster C0. The
computational complexity of ICgraph() (See eq. 1) depends on
the complexity of building the set of entities having as type
the concept ci, denoted as E(ci). To achieve this, we need to
traverse the entire KG, which has a time complexity ofO(N ),
where N is the number of nodes in the KG. For each node,
we must retrieve the list of types and search for the concept
ci. Assuming that the complexity of obtaining the list of types
isO(t), where t is the number of types associatedwith concept
ci, the overall complexity of ICgraph() is O(N · t).

D. SEMANTIC MAP OF A KNOWLEDGE GRAPH
Let us define the semantic map of a KG:
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Definition 5 (Semantic Map of a Knowledge Graph):
Given a Knowledge Graph K = (V ,L,E), a semantic
distance matrix D(K ), the main term of K : α, the semantic
map of K is defined as SM(K ) = (α,EK ).
Table 1 describes the symbols associated with semantic

maps of KGs.

TABLE 1. Symbols associated with semantic maps of Knowledge Graphs.

Semantic mapping process aggregates the process of
clustering entities of KG and inferring the central term α.
Algorithm 3 describes the process to build the semantic map
of a KG. Figure 4 visually describes the phases of semantic
mapping process. Algorithm 3 consists of four main steps:
building the semantic distancematrix, computing the clusters,
inferring the main term, and creating the semantic map. The
complexity of each step depends on the number of triples
in the input KG and the number of clusters. The semantic
distance matrix is a square matrix of size n × n, where n
is the number of triples in the input KG. The complexity
of building this matrix involves performing n × n calls to
the function sim(), which has a computational complexity of
O(N1·N2). However, in the worst case,N1 andN2 can be equal
to n. Consequently, the complexity of building the semantic
distance matrix is O(n4). The complexity of computing
the clusters varies depending on the clustering algorithm
used. For example, Affinity Propagation has a complexity of
O(n2 · T ), where T is the number of iterations, while PAM
has a complexity of O(k · (n − k)2), where k is the number
of clusters. The complexity of inferring the main term α

has a time complexity of O(N · t), where N is the number
of nodes in the entire KG (N ≫ n). The complexity of
creating the semantic map is O(n+ k). This involves creating
edges between each node and its centroid, and between each
centroid and the main term. Therefore, the overall complexity
of the generating semantic maps of a KG is dominated by the
process of inferring the main term α, which is O(N · t).

Algorithm 3 Process of Building a Semantic Map of a KG
Input: E : Edges associated with the KG
Output: SM(K)
1: D = buildSemanticDistanceMatrix(E)
2: C, µ = computeClusters(D)
3: α = inferMainTerm(µ)
4: Initialize set SM = ∅

5: for all Ci ∈ C do
6: µi = centroid(Ci)
7: for all x ∈ Ci do
8: Enc = Enc ∪ create_edge(x, µi)
9: end for

10: end for
11: for all µi ∈ µ do
12: Eµ = Eµ ∪ create_edge(µi, α)
13: end for
14: EK = Eµ

⋃
Enc

15: SM(K) = (α,EK )
16: return SM

Our proposed method offers a novel approach for generat-
ing a semantic map of a KG using the results of a clustering
algorithm applied to nodes in the KG based on their semantic
distance. By leveraging the inherent semantic relationships
among the nodes, our method enables the creation of a map
that captures and visualizes the underlying semantic structure
of the data. This approach provides a valuable tool for gaining
insights into complex datasets and facilitating knowledge
discovery.

V. EVALUATION STUDY
The experimental results section aims to demonstrate the
effectiveness of our proposedmethod for generating semantic
maps and how these maps can be used to visualize KGs.
We begin by describing the Python framework developed
for testing our approach. Next, we discuss the datasets used,
which are the result of a set of SPARQL queries. We then
detail the process of selecting hyperparameter values for
the PAM and Affinity Propagation algorithms. Afterward,
we focus on the quality assessment of semantic maps of
KGs, emphasizing the quantitative evaluation of clusters
generated by the algorithms. Furthermore, we present the
centroid-based inference method for term α. Additionally,
we describe the survey we conducted to validate the
effectiveness of semantic maps in completing some visual
data exploration tasks on a KG. Finally, we provide a
comprehensive analysis of the obtained results, discussing the
implications and significance of our findings

A. SEMANTIC MAPPING FRAMEWORK
Experiments are executed using a framework9 implemented
using Python 3 language which depends on the Sematch

9https://github.com/pcamarillor/semantic_mapping (Last visited: 2023-
11-16)
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TABLE 2. Dataset summary.

FIGURE 5. Template of the SPARQL query to get the list of types
associated with each centroid.

framework [74] to perform SPARQL queries to DBPedia
public endpoint and compute the similarity measure used
to compute D. The function sim(ei, ej) mentioned in
Algorithm 1 is implemented through a SPARQL query to
DBPedia. Once generated D, our tool produces the set
of centroids µ and the set of non-centroid NC nodes by
using centroid-based clustering strategies: PAM and Affinity
Propagation. We infer the main term α by implementing
the Algorithm 2. These shared types are the result of a
SPARQL query to DBPedia that follows the path shown
in Figure 5. Finally, our tool, assembles the semantic map
by implementing Algorithm 3 and generating maps using
pyvis library which is a wrapper around the Javascript
visJS library.

B. DATASETS
Datasets used to validate the semantic mapping building
process are the result of performing a SPARQL query to
DBPedia KG through its public endpoint10 and results are
saved in N-Triples format, i.e., each dataset is a list of
subject-predicate-object triples. The intention of each dataset
is to represent different knowledge domains accumulated in
DBPedia and how they can be reduced and visualized using
semantic maps. Table 2 contains a summary of datasets used
for experiments. Detailed SPARQL queries used to generate
these datasets are described in the repository that contains the
framework developed to run these experiments.

10https://dbpedia.org/sparql/ (Last visited: 2023-11-16)

C. HYPERPARAMETERS SELECTION
A key hyperparameter in the PAM clustering algorithm is
the number of clusters we want to generate (k). Determining
this hyperparameter is a crucial step in clustering and we
determine this value by using the elbow method [75].11

The preference parameter is a crucial hyperparameter in
the Affinity Propagation clustering algorithm, which is a
parameter that help to determine the number of clusters
that will be generated. A higher preference value will result
in more clusters, as more data points will be selected as
exemplars, while a lower preference value will lead to fewer
clusters, as fewer data points will be selected as exemplars.
Therefore, it is often necessary to perform sensitivity analysis
by trying different values of the preference parameter to find
the optimal number of clusters. Our proposal is to maximize
the silhouette index of resulting clustering after running
Affinity Propagation with preference values that goes from
0.1 to 0.9 since this is the range of possible semantic distance
values in the distance matrix. Table 3 describes the selection
of preference and k hyperparameters for Affinity Propagation
and PAM algorithms, respectively.

D. QUALITY OF SEMANTIC MAPS
The core of the semantic mapping process is to cluster the
entity instances and obtain the set of centroids µ. In order
to provide a quantitative approach to validate semantic maps,
we propose to associate the quality of clusters computed with
the quality of semantic maps. With this evaluation strategy,
we can learn how reliable are the groups shown in the
semantic map.

Table 4 includes three columns describing the semantic
map quality for two centroid-based clustering algorithms

11The elbow method is a heuristic approach to determine the optimal
number of clusters in a dataset and the idea behind this method is that as the
number of clusters increases, the WSS decreases, as the distance between
each data point and its assigned center becomes smaller.
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TABLE 3. Hyperparameter selection. The PAM algorithm uses the elbow method to determine the optimal number of clusters k. The elbow method uses
the WSS metric, which decreases as the distance between each data point and its assigned center becomes smaller. For Affinity Propagation, the
preference value is a parameter that helps determine the number of clusters that will be generated. A higher preference value results in more clusters,
while a lower preference value leads to fewer clusters.

TABLE 4. Quality of clusters in the entity clustering phase of semantic mapping process. The silhouette score measures how similar each entity is to its
own cluster compared to other clusters, with scores closer to 1 indicating better cluster quality. The Davies-Bouldin index measures the ratio of the
within-cluster scatter to the between-cluster separation, with lower scores indicating better cluster quality. The Calinski-Harabasz index measures the
ratio of between-cluster variance to within-cluster variance, with higher scores indicating better cluster quality.

(PAM and Affinity Propagation) in terms of silhouette score,
Davies-Bouldin score, and Calinski-Harabasz index. The
silhouette score measures how similar each entity is to its own
cluster compared to other clusters, with scores closer to 1
indicating better cluster quality. The Davies-Bouldin index
measures the ratio of thewithin-cluster scatter to the between-
cluster separation,with lower scores indicating better cluster
quality. The Calinski-Harabasz index measures the ratio of
between-cluster variance to within-cluster variance, with
higher scores indicating better cluster quality.

E. INFERRED MAIN TERMS
For each experiment, semantic mapping process infers the
main term α based in the ICgraph metric. Table 5 describes
the inferred α for each dataset.

F. QUALITATIVE ASSESSMENT OF SEMANTIC MAPS
One of the goals of graph summarization is to facilitate
the process of visual data exploration [22]. In this context,
we propose to evaluate the effectiveness of the summarization
process described in this work bymeasuring howwell seman-
tic maps serve as a visualization strategy for fulfilling visual
exploratory tasks. A diagram that represents a knowledge
graph visually is called a classical visual representation.

TABLE 5. Inferred main terms.

In this diagram, the entities and relationships in the graph are
shown as nodes and edges, respectively. The nodes are labeled
with the names of the entities they represent, and the edges
are labeled with the names of the relationships they represent.
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TABLE 6. Effectiveness of semantic maps as strategy to visualize Knowledge Graphs.

This diagram can be used to explore the relationships between
the entities and visualize the structure of the knowledge
graph. We conducted a survey that consists of the following
three sections:

• The first section aims to understand the profile of the
respondents.

• The second section employs a Likert scale [76] to mea-
sure the effectiveness of classical visual representations
of knowledge graphs for three datasets: DISEASES-
AND-DRUGS.NT, MOVIES-AND-ACTORS.NT, and
CITIES.NT.

• The third section inquires about which method is easier
to use and more effective in representing knowledge
graphs.

This survey was applied to a group of 25 experts and it is
fully detailed in Appendix A.
In terms of the profiles of the experts who participated in

this study, we offered six different profiles associated with
the fields of knowledge discovery, artificial intelligence, and
data science. Participants had the option to select more than
one profile. From these responses, we found that

• 88.5% mentioned having a background in computer
science or a related field.

• 73.1% mentioned being familiar with graph theory.
• 65.4% expressed curiosity about exploring and discov-
ering new insights from data.

• 53.8% were curious about natural language processing,
machine learning, and semantic web technologies.

• 38.5% reported having experience in querying and
manipulating data using languages such as SPARQL.

• Only 3.8% mentioned having experience in crafting
knowledge models.

Regarding the frequency of using knowledge graphs in
their daily duties:

• 38.5% of participants mentioned using knowledge
graphs sometimes.

• 11.5% always use knowledge graphs to fulfill their daily
duties.

Table 6 presents the effectiveness results using a Likert
scale to evaluate the effectiveness of two different visual
representations of KGs in fulfilling three exploratory tasks
related to visual data. When we asked experts about which
method they find easy to use, 76.9% of them selected seman-
tic maps, while 23.1% favored classic visual representation.
Explicitly inquiring about which method experts believe is
more effective in representing KGs, 88.5% chose semantic
maps, and 11.5% opted for classic visual representation.

G. DISCUSSION
The quality analysis of semantic maps (Table 4) demonstrates
the superior performance of the PAM algorithm over the
Affinity Propagation algorithm. The PAM algorithm consis-
tently achieved higher silhouette scores for all datasets, indi-
cating better-defined and well-separated clusters compared to
the Affinity Propagation algorithm. Moreover, the Davies-
Bouldin scores for the PAM algorithm indicated compact
and well- separated clusters in 5 out of 8 datasets, whereas
the scores for the Affinity Propagation algorithm indicated
significant overlap and poor separation. The Calinski-
Harabasz index further reinforced the superiority of the PAM
algorithm in generating high-quality semantic maps, as its
scores were significantly higher than those of the Affinity
Propagation algorithm across all datasets. Consequently, the
PAM algorithm emerges as the preferred choice, producing
superior semantic maps with better separation.
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Regarding to inferred main concepts (α), there are
two particular cases to analyze. For the DISEASES.NT
dataset, semantic map produced using the Affinity Prop-
agation algorithm infers that the main concept is yago:
AlimentCondition, contrarily main term inferred using
the PAM algorithm is the concept yago:Disease11407
0360. Similarly, for the ACTORS.NT experiment, the
semantic map produced by using the Affinity Propaga-
tion algorithm infers the main concept as the concept
yago:WikicastActors but the main concept inferred
when the PAM algorithm is applied to build the semantic
map is the concept yago:Actor109765278. The reason
of this difference between the main concepts inferred is that
each clustering algorithm produces different set of centroid
elements (µ), which affects directly the inference of the main
concept.

Hybrid datasetsMOVIES-AND-ACTORS.NT andDISEA-
SES-AND-DRUGS.NT are used to validate the process
to infer the term α when the instances inside datasets
comes from different classes, however our study yielded a
particularly intriguing finding in the resulting semantic maps
of these hybrid datasets. Resulting clusters exhibit a high level
of coherence and meaningfulness.

In our effectiveness survey, we delved into three
exploratory tasks related to KGs. We examined the effec-
tiveness of semantic maps and classical visual representation
across different datasets. Let us explore the key findings
in detail. For the first exploratory task (Search for one
specific item), semantic maps consistently garnered strong
support. Specifically, for the DISEASES-AND-DRUGS.NT
dataset, 20% of participants strongly agreed that semantic
maps effectively located requested item. In the context
of the MOVIES-AND-ACTORS.NT dataset, 24% of par-
ticipants found semantic maps useful for search tasks.
Meanwhile, classical visual representation received 8%
and 12% endorsement for the same tasks in the two
datasets, respectively. For the CITIES.NT dataset, 20%
of participants favored semantic maps, while only 8%
found classical visualization helpful. Regarding to second
exploratory task aimed to identify the main term of the
KG, for the DISEASES-AND-DRUGS.NT dataset, 44% of
participants found classical visual representation effective in
identifying themain topic, while 36% favored semanticmaps.
In the context of the MOVIES-AND-ACTORS.NT dataset,
48% of participants preferred semantic maps, whereas
32% relied on classical visual representation for this task.
For the CITIES.NT dataset, 44% of participants leaned
toward semantic maps, while 24% opted for classical visual
representation in identifying main terms. These results
underscore the varied utility of semantic mapping and visual
representation in identifying the main topic of a certain
RDF vocabulary. Lastly, for the third task associated with
the process of exploration and comprehension of knowledge
graphs we found that for DISEASES-AND-DRUGS.NT
dataset, 20.8% of participants strongly agreed that semantic
maps facilitated understanding. Similarly, in the context of

the MOVIES-AND-ACTORS.NT and CITIES.NT datasets,
41.7% of participants endorsed semantic maps for this task.
Conversely, classical visual representation received varying
levels of support: 12.5%, 25%, and 16.7% for the respective
datasets. These findings emphasize the role of semantic
mapping in enhancing knowledge graph exploration across
diverse domains.

Although our proposal presents an effective approach to
summarize KGs by generating semantic maps, we acknowl-
edge one difference from the description of semantic maps
provided in Section III. In the semanticmap shown in Figure 2
the centroids are concepts i.e., the centroids are members
of TBox set, but the semantic mapping process we are
describing in this paper, centroids are entity instances, i.e,
µi ∈ ABox ∀µi ∈ µ. This difference, though significant, falls
beyond the scope of the current proposal to generate semantic
maps.

VI. CONCLUSION AND FUTURE WORK
In conclusion, our study focused on the generation of
semanticmaps as a summarization strategy based on semantic
similarity. Through the utilization of centroid-based cluster-
ing algorithms, specifically Affinity Propagation and PAM,
we successfully captured the semantic distance between
nodes in the KG and generated meaningful clusters.

Our experiments revealed a notable divergence between
the two clustering algorithms.While the Affinity Propagation
algorithm produced clusters with qualitative coherence and
meaningfulness for hybrid datasets, the PAM algorithm
excelled when evaluated using internal validation metrics.
This emphasizes the importance of considering both qual-
itative and quantitative evaluation measures in assessing
clustering quality.

Additionally, we leveraged the computed centroids to
infer the main term α, resulting in visually appealing
and informative representations of the KG. This inference
method, outlined in Algorithm 2, facilitated a comprehensive
understanding of the encoded information.

Our qualitative study demonstrates the effectiveness of the
use of semantic maps as a visualization strategy for fulfilling
diverse exploratory analysis tasks. For locating specific
items, semantic maps consistently garnered strong support,
while classical visual representation played a complementary
role. Similarly, in identifying main terms, semantic maps
prevailed, but classical visual representation remained rel-
evant. Lastly, for exploring and comprehending knowledge
graphs, semantic maps found favor among participants, while
classical visual representation received varying levels of
endorsement.

As future work, we consider evaluating the summarization
technique we propose by reducing the ℓp−reconstruction
error and the cut-norm error quality metrics proposed by
Riondato et al. [41].

In summary, our work successfully integrates centroid-
based clustering algorithms, qualitative evaluation, and
inference methods to generate semantic maps for visualizing
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KGs. This approach offers a comprehensive understanding of
the data, combining qualitative and quantitative assessments.
We believe that our findings significantly contribute to the
field, enabling researchers and practitioners to effectively
visualize and analyze complex KGs with improved clarity
and interpretability.

APPENDIX A
SURVEY ON EFFECTIVENESS OF KNOWLEDGE GRAPH
REPRESENTATIONS
This appendix describes the survey we conducted as part of
the qualitative assessment of the visual representation offered
by semantic maps. For questions 3 to 8, each item could be
answered by selecting one option from the choices: Strongly
agree, Agree, Neutral, Disagree, and Strongly disagree
choices. Figures shown in this appendix are scaled versions
of the actual pictures that were exposed to participants.

FIGURE 6. Dataset DISEASES-AND-DRUGS.NT represented using RDF
Visualizer online tool.

1) Select the description that matches your professional or
academic profile.

• I have a background in data science, computer
science, information science, or a related field.

• I am familiar with graph theory, graph databases,
and graph algorithms.

• I have experience in querying and manipulating
data using languages such as SPARQL, Cypher,
or Gremlin.

• I have expertise in crafting knowledge models
using standards like RDF, OWL, or Schema.org.

• I am curious of natural language processing,
machine learning, and semantic web technologies.

• I have some curiosity to explore and discover new
insights from data.

2) How often do you use knowledge graphs in your work
or studies?

• Never
• Rarely
• Sometimes
• Often
• Always

3) The following picture (see Figure 6) displays a
classic visual representation of certain drugs and

FIGURE 7. Dataset DISEASES-AND-DRUGS.NT represented using the
generated semantic map.

diseases described in Wikipedia. Please evaluate the
visual representation displayed based on the following
statements:

• I was able to find easily the itemdbpedia:Ross_
River_fever using this visual representation

• I was able to identify the central concept that
represents all items in the picture

• This representation helped me understand the rela-
tionships between different entities and concepts

4) The following picture (see Figure 7) displays a
semantic map that summarizes certain drugs and
diseases described in Wikipedia. Please evaluate the
visual representation displayed based on the following
statements::

• I was able to find easily the item Ross_River_
fever using this visual representation

• I was able to identify the central concept that
represents all items in the picture

• This representation helped me understand the rela-
tionships between different entities and concepts

5) The following picture (see Figure 8) displays a
classic visual representation of certain actors and
movies described in Wikipedia. Please evaluate the
visual representation displayed based on the following
statements:

• I was able to find easily the item dbpedia:
Ender’s_Game_(film) using this visual rep-
resentation

• I was able to identify the central concept that
represents all items in the picture
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FIGURE 8. Dataset ACTORS-AND-MOVIES.NT represented using RDF
Visualizer online tool.

FIGURE 9. Dataset ACTORS-AND-MOVIES.NT represented using the
generated semantic map.

• This representation helped me understand the rela-
tionships between different entities and concepts

6) The following picture (see Figure 9) displays a
semantic map that summarizes certain actors and
movies described in Wikipedia. Please evaluate the
visual representation displayed based on the following
statements::

• I was able to find easily the itemEnder’s_Game_
(film) using this visual representation

• I was able to identify the central concept that
represents all items in the picture

• This representation helped me understand the rela-
tionships between different entities and concepts

7) The following picture (see Figure 10) displays a classic
visual representation of certain cities described in
Wikipedia. Please evaluate the visual representation
displayed based on the following statements:

• I was able to find easily the item dbpedia:
Bogotá using this visual representation

FIGURE 10. Dataset CITIES.NT represented using RDF Visualizer online
tool.

FIGURE 11. Dataset CITIES.NT represented using the generated
semantic map.

• I was able to identify the central concept that
represents all items in the picture

• This representation helped me understand the rela-
tionships between different entities and concepts

8) The following picture (see Figure 11) displays a
semantic map that summarizes certain cities described
in Wikipedia. Please evaluate the visual representation
displayed based on the following statements::

• I was able to find easily the item Bogotá using
this visual representation

• I was able to identify the central concept that
represents all items in the picture

• This representation helped me understand the rela-
tionships between different entities and concepts

9) Which method do you find easier to use?
• Semantic Maps
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• Classic Visual Representations
10) Which method do you think is more effective in

representing knowledge graphs?
• Semantic Maps
• Classic Visual Representations
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