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ABSTRACT Cognitive Radio Ad-hoc Networks (CRAHNs) are under constant attacks from compromised
primary & secondary nodes. These attacks focus on bandwidth manipulation, internal configuration manip-
ulation, and selective spoofing, which can disturb the normal working of the CRAHNs. Researchers propose
various security models to mitigate these attacks, each with limitations. Most of these models have higher
complexity, while others cannot be used to mitigate multiple attack types. To overcome these issues while
maintaining higher security and Quality of Service (QoS) under attacks, this text proposes a design of a novel
blockchain-based security model for improving attack resilience in CRAHNs. The model initially collects
multiple information sets from different cognitive radio controllers and creates active & redundant miners
for the storage of these sets. The number of active & redundant miners is decided via a Mayfly Optimizer
(MO) Model, which assists in improving resource utilization while reducing deployment costs. Cognitive
rules and configurations are stored on these nodes and updated via a secure blockchain verification. Due to
this, the proposed model demonstrated significant improvements in cognitive radio communications across
various metrics, even under different attack scenarios. It reduced communication delay by up to 18.5%,
increased communication throughput by up to 19.5%, and improved the Packet Delivery Ratio (PDR) by
up to 19.4% when compared with existing models such as SRC, Prob Less, and DDQL. Additionally, the
model achieved energy savings of up to 12.5%. These enhancements were made possible by the optimized
selection of miner nodes, enabling quicker mining for high-speed communication, low-energy mining tasks
for prolonged use, and high-performancemining for consistency. The results affirm themodel’s suitability for
various real-time cognitive radio scenarios. Due to the integration of the MOModel, the CRAHN showcases
better communication speed, lower energy consumption, higher throughput, and higher packet delivery
performance when compared with existing methods under real-time scenarios.

INDEX TERMS Cognitive radio ad-hoc networks, blockchain, attack, security, mayfly optimization.
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I. INTRODUCTION
Spectrum scarcity is a challenge for contemporary wire-
less ad-hoc networks since the expansion of mobile devices
has increased the need for additional frequencies [1]. The
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growing popularity of portable electronic gadgets accounts
for this need [2]. Spectrum authorizations will be used
anywhere from 15% to 85% of the time, according to
Federal Communications Commission (FCC) projections
and Spectrum Resource Currency (SRC) [3]. However,
because of current spectrum allocation limits, Proactive
Blockchain-based Spectrum Sharing (ProBLeSS) [4] seldom
employs licensed spectrum. As a result of diminishing spec-
trum utilization and increasing demand, the FCC authorized
the opportunistic use of licensed spectrum [5], [6], including
TV white spaces managed by joint clustering powered by
Neural Networks [7]. TV white spaces may use a portion
of the licensed spectrum [8], [9]. This problem-solving tech-
nique generates innovative network topologies, such as the
cognitive radio network [10], [11]. Cognitive radio networks
are presented as a remedy for the issue of poor spectrum usage
in wireless ad-hoc networks [12]. Secondary users (SUs) may
access the licensed spectrum when Primary users (PUs) are
unavailable [13]. To accelerate data transmission, the Cogni-
tive Radio Networks (CRN) via Duelling Deep Q -Learning
(DDQL) like methods [14] implement a routing protocol.
The primary users’ choices significantly impact future users’
conversations. If a PU joins an SU’s current channel, the SU
will immediately switch to a different channel or choose a
new route [15]. This is done to prevent the PU from causing
any issues. If no alternative channel is available, the SU will
attempt to select a new route using the routing protocol,
and if that fails, it will switch channels [16]. The rerouting
procedure takes much longer than usual when there is a
connection problem. To alleviate the effects of connection
loss, we designed a routing system that offers rerouting traffic
through various accessible options [17]. Most modern pro-
tocols immediately offer backup channels if a problem is
found [18]. The authors used Spiking Neuronal Networks
(SNN) to design the Ad-hoc On-Demand Multipath Distance
Vector (AOMDV) routing protocol, which is widely used in
wireless sensor networks [19]. Multiple-hop distance vectors
form the basis of this method’s reasoning [20]. This protocol
produces a set of non-overlapping pathways that may connect
any two nodes in the network, regardless of their relative
locations. In terms of latency, our protocol beats AOMDV
because, in the case of a failure, it chooses a new forwarding
node without telling the source node. Thus, there is little to no
waiting time [21]. Due to its limited feature set, AOMDV is
not recommended for traffic routing in a CRN. Developing an
energy-efficient routing system formobile ad-hoc networks is
incompatible with CRN networks [22]. As discussed in [23],
the cross-layer routing approach proposed by the authors
relies on previous knowledge of PU locations and activities.

Given that CRN’s guiding principles prohibit the sharing
of such information, this conduct is a violation of these
standards. Work in [25] created a CRN-specific spectrum-
aware routing technique. Although the protocolmay calculate
the ideal path for each node based on network-wide infor-
mation, cognitive radio ad-hoc systems are incompatible

with it. Numerous criteria were used for various research
publications to determine the ideal technique. These calcula-
tions account for various variables, including channel delay,
availability, and the potential for PU interference. Changes
in the intended behavior of CRN might make the protocol
ineffective.

A metric-based routing system is suggested as a solu-
tion, which is available online. To guarantee the success
of this technique, you must ensure the following require-
ments are met: This needs always-on PUs, accurate PU
location, and a statistical understanding of the available
channels. The CRN node’s activities refute all of these
assumptions. The CRN developers created an energy-aware
routing approach [24]. The strategy chooses the course of
action with the fewest resources to implement. Cluster-based
routing intends to improve both the speed and dependability
of packet delivery. Unfortunately, this significantly increases
the routing process’s waiting time. In addition to regular
encounters, it proposes an alternate strategy for attaining the
same objective: keeping continuous communication using
a channel-hopping system. Even if the network can avoid
connection failure between two SUs by switching engage-
ment channels, the case in which PUs occupy all engagement
channels will be disregarded. Even if the network effec-
tively avoids connection breakdown, this remains true. This
study [16] created a learning-based opportunistic routing
approach for CRN. Based on the likelihood of a trans-
mission’s success, this protocol chooses the network relay
node and channel most suited for specific communication.
Ping et al. [17] describe a spectrum aggregation-based routing
approach based on this statistic. The [18] method first obtains
network information to safeguard the data flow fromPU inter-
ference. It does not, however, account for the potential that the
data transmission technique is incorrect. The authors of [19]
determine, given a collection of source and destination SUs,
the path that optimizes network lifespan while reducing PU
interference. Combined with various routing factors, the pro-
tocols mentioned above are used to establish the ideal route.
Thus, to mitigate attacks in CRAHNs, a wide variety of secu-
rity models are proposed by researchers, and each of them has
its own set of limitations. Most of these models have higher
complexity, while others cannot be used to mitigate multiple
attack types. To overcome these issues while maintaining
higher security and Quality of Service (QoS) under attacks,
the following section proposes a novel blockchain-based
security model for improving attack resilience in CRAHNs.
The earlier models faced scalability issues, lacked precision
in addressing certain attack types, or encountered difficulties
adapting to the dynamic and resource-constrained nature of
CRAHNs. This research proposed a novel blockchain-based
security model to improve attack resilience in CRAHNs
by addressing these limitations. The model initially collects
multiple information sets from different cognitive radio con-
trollers and creates active & redundant miners for the storage
of these sets. The number of active & redundant miners is
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decided via a Mayfly Optimizer (MO) Model, which assists
in improving resource utilization while reducing deployment
costs. Cognitive rules and configurations are stored on these
nodes and updated via a secure blockchain verification.

The rest of the paper structure is organized as follows:
Section II provides a comprehensive literature review, lay-
ing the foundation for the study and identifying the gaps
in existing research. In Section III, the proposed model
is introduced and detailed, explaining its novel approach
to address the identified challenges. Section IV presents
the evaluation of the proposed model, where it is tested
under real-time scenarios, and its efficiency is benchmarked
against existing methods using various performance metrics.
Finally, Section V concludes the paper by offering contextual
observations about the model’s effectiveness and suggesting
avenues for further enhancement, particularlywithin different
cognitive network scenarios.

II. LITERATURE SURVEY
Cognitive Radio hoc networks (CRAHNs) have gained
significant attention due to their dynamic nature and effi-
cient spectrum utilization. However, these networks are
susceptible to various security threats that can disrupt their
normal functioning. The paper ‘‘BSMACRN: Design of an
efficient Blockchain-based Security Model for Improving
Attack-resilience of Cognitive Radio Ad-hoc Networks’’
presents a novel blockchain-based security model to enhance
the attack resilience of CRAHNs. This literature survey
explores related works in cognitive radio network security,
blockchain technology, and optimization techniques. This
survey paper discusses various aspects of cognitive radio
networks, including spectrum sensing, spectrum sharing, and
security issues. It highlights the need for robust security
mechanisms to counteract attacks on CRAHNs [26]. This
paper explores the integration of blockchain technology in
IoT security and privacy. Although not specific to CRAHNs,
it provides insights into using blockchain for securing decen-
tralized systems [27]. While focusing on 5G networks,
this survey discusses various security challenges emerging
wireless networks face, including cognitive radio networks.
It emphasizes addressing security concerns to ensure reliable
communication [28]. This survey paper provides a game
theoretical perspective on blockchain technology. It dis-
cusses the potential of blockchain in enhancing security and
trust in various applications, which aligns with the secu-
rity model proposed in the target paper [29]. This paper
addresses the state-of-the-art challenges in cloud comput-
ing, which could be relevant to resource optimization and
utilization presented in the target paper [30]. This paper
introduces a blockchain-based cognitive radio network for
the industrial IoT. While not directly related to the pro-
posed model, it offers insights into leveraging blockchain for
securing cognitive radio networks [31]. This survey paper
provides a comprehensive overview of cognitive radio net-
works, including security challenges. It highlights the need
for efficient security mechanisms in CRAHNs to ensure

reliable communication [32]. This paper discusses the poten-
tial opportunities and challenges of integrating blockchain
into future wireless networks, which can be relevant to inte-
grating blockchain in CRAHNs [33]. This paper discusses
the potential of using blockchain technology to enhance secu-
rity in cognitive radio networks, aligning with the proposed
security model [34]. This survey explores security and pri-
vacy issues in mobile cognitive radio networks, providing
insights into the types of attacks and vulnerabilities that the
proposed model aims to address [35]. This survey covers
various aspects of cognitive radio networks for IoT, including
security challenges. It can provide context for understanding
the challenges addressed by the proposed securitymodel [36].
Focusing on security in cognitive radio networks, this sur-
vey paper analyzes different types of attacks and potential
defense mechanisms. This can contribute to understanding
the security landscape in CRAHNs [37]. While centered
on healthcare, this survey outlines challenges and security
considerations in IoT applications. This information can be
relevant for understanding security concerns in the context
of CRAHNs [38]. This paper provides insights into IoT
security challenges and how blockchain technology can miti-
gate them, connecting with the security-enhancing properties
of the proposed model [39]. While focusing on healthcare
IoT, this paper discusses integrating cognitive radio and
blockchain technologies, offering insights into combining
these technologies in the context of CRAHNs [40]. This sur-
vey paper delves into security and privacy issues in cognitive
IoT, providing a broader understanding of the challenges the
proposed model seeks to address [41]. This paper outlines
security vulnerabilities and challenges in IoT, contributing
to understanding potential threats and the need for robust
security mechanisms in CRAHNs [42]. This study evaluates
the performance of a security system for IoT-CRAHNs, pro-
viding insights into the practical implications and benefits of
enhancing security in such networks [43]. A different layer
of security attacks in CRAHNs is discussed in [44], where
the authors discussed attacks like Collision, Denial-of-service
(DoS), Exhaustion, Selective Forwarding, Sinkhole, Sybil,
Wormhole Hello Flood, SYN Flooding, De-Synchronizing,
Logical Error Buffer Overflow, Primary User Emulation
Attack (PUEA), jamming, Traffic Analysis, Attack on Data
privacy and location Privacy. The proof-of-trust (PoT) con-
sensus mechanism is managed via a Genetic Algorithm
(GA)–based sidechaining model that the authors used for the
security in CRAHNs [45]. In the domain of smart contracts
for blockchain applications, recent scholarly work has high-
lighted the challenges in their adaptability and the limitations
in source code reusability, primarily restricted to cloning
practices. There is an emerging focus on using Unified
Modeling Language (UML) for the design of versatile and
secure smart contracts and the application of object-oriented
programming, particularly Java, to enhance their reconfigura-
bility and security features). Additionally, research by Singh
and Patel underscores the significance of reusable verification
rules in smart contracts, particularly in renewable energy
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exchange, to streamline transaction types and facilitate test
automation [47]. This abstract discusses the significance of
Blockchain technology and its transition from centralized to
decentralized data management. It focuses on Hyperledger
Fabric Private Blockchain Network (HFPBN) and explores
its architecture, components, and transaction flow. The paper
also presents a case study of applying Blockchain to Vehic-
ular Ad-hoc Networks (VANETs) within the Hyperledger
Fabric platform, analyzing the impact of block size on perfor-
mance metrics using Hyperledger Caliper [48]. This research
presents research on applying a GRU-based deep learning
model for anomaly detection in Vehicular Ad-hoc Networks
(VANETs), a critical component of intelligent transportation
systems. The study introduces a semi-supervised technique
called SEMI-GRU to enhance accuracy, demonstrating supe-
rior performance in detecting network anomalies with low
false positive rates compared to existing methods [49].
More research work related to Blockchain can be found
in [50] and [51].

A review of existing methods and their attack types, func-
tionality, approach, technique, advantages, disadvantages,
and limitations is mentioned in Table 1.

III. MATERIAL AND METHODS
A. PROPOSED BLOCKCHAIN-BASED SECURITY MODEL
Many of these models are characterized by high com-
plexity, which may lead to challenges in implementation,
performance efficiency, or scalability. Some models are spe-
cialized to handle particular types of attacks but might not
be versatile enough to mitigate multiple attack types. This
could leave the network vulnerable to unaddressed attack
vectors. In response to the identified limitations, the para-
graph introduces a new blockchain-based security model
to improve attack resilience in Cognitive Radio Ad-hoc
Networks (CRAHNs). The model’s design is outlined with
several key features:

1) COLLECTION OF INFORMATION SETS
The model gathers multiple information sets from different
cognitive radio controllers. This comprehensive data collec-
tion aids a more nuanced understanding of the network’s
status and potential vulnerabilities.

2) CREATION OF ACTIVE AND REDUNDANT MINERS
Based on the collected information, the model creates active
and redundant miners responsible for storing these sets. The
redundancy ensures reliability and availability, even if some
miners fail or are compromised.

3) USE OF MAYFLY OPTIMIZER (MO) MODEL
A Mayfly Optimizer (MO) Model determines the number
of miners. This optimization technique aims to improve
resource utilization and reduce deployment costs, balancing
performance and efficiency.

TABLE 1. Review of existing methods used for traffic pattern analysis.
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TABLE 1. (Continued.) Review of existing methods used for traffic pattern
analysis.

4) STORING COGNITIVE RULES AND CONFIGURATIONS
Cognitive rules and configurations are securely stored on
the nodes, and updates are handled via a secure blockchain
verification process. This design enhances the integrity and
authenticity of the stored information.

5) AUGMENTED AND VARIED INFORMATION COLLECTION
The model doesn’t just collect standard information but gath-
ers an augmented andwide variety of data from different node
and network components. This approach allows for more
robust and nuanced security analysis.

6) SECURITY ASSUMPTIONS
The security assumptions of our proposed system are as
follows: We assume the underlying blockchain technology,
including its cryptographic components and consensus mech-
anism, to be secure. Additionally, we assume the integrity of
communication channels between cognitive radio controllers
and miners. We also rely on the Mayfly Optimizer (MO)
Model for secure miner selection. Furthermore, we assume
the selected miners to be trustworthy. Lastly, we consider
secure methods for updating and verifying cognitive rules and
configurations on the blockchain. These assumptions under-
pin the security of our system in Cognitive Radio Ad-hoc
Networks (CRAHNs).

The new model’s design is explained, emphasizing its
multifaceted approach to addressing complexity, versatility in
attack mitigation, optimized resource utilization, and secure

FIGURE 1. Design flow of the proposed cognitive radio security process.

TABLE 2. Design flow of the proposed cognitive radio security process.

information handling. These elements collectively contribute
to a more resilient and efficient security model for CRAHNs.

Fig. 1 shows that the model initially collects multiple
information sets from different cognitive radio controllers and
creates active & redundant miners for the storage of these
sets. The number of active & redundant miners is decided via
a Mayfly Optimizer (MO) Model, which assists in improv-
ing resource utilization while reducing deployment costs.
Cognitive rules and configurations are stored on these nodes
and updated via a secure blockchain verification. The model
initially collects an augmented & wide variety of information
sets from different node & network components. These infor-
mation sets can be observed from Table 2 as follows,
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These parameters are individually calculated on the
routers, which assists in evaluating temporal parameter sets.
For instance, THR is calculated via equation 1,

THR =
1
Nc

Nc∑
i=1

Prxi
Di

(1)

where, Nc Represents the total number of temporal commu-
nications for which these parameters are calculated, Prxi are
the number of packets received during these communications
while Di Is the delay needed during these communications,
and is calculated via equation 2,

Di = tcompletei − tstarti (2)

where, tcomplete is the communication completion timestamp
(taken from the destination nodes), tstart Is the communica-
tion start timestamp (taken from the source nodes).

Similarly, the PDR is estimated via equation 3,

PDR =
1
Nc

Nc∑
i=1

Prxi
Ptxi

(3)

where, Ptx Are the total number of packets transmitted during
personal communications.While the energy level is estimated
via equation 4,

E =
1
Nc

Nc∑
i=1

estarti − ecompletei (4)

where, estart&ecomplete represents the initial energy before
starting the communications and ecomplete Is the energy level
of the node after communication completes. Based on these
metrics, the jitter is estimated via equation 5,

J =
1
Nc

Nc∑
i=1

Di −
Nc∑
i=1

Di
Nc

(5)

• This metric indicates the dela consistency of other
communications. Using these metrics, the Mayfly Opti-
mization (MO) Model is used, which assists in the
identification of miner nodes and works as per the
following process. Initially, a set of NM Mayflies are
generated using the following operations,

◦ For each Mayfly, select miner nodes that satisfy
condition 6,

d (nselected , dest) < d (src, dest)&d (nselected , src)

< d (src, dest) (6)

where d(n1, n2) represents the distance between 2 nodes and
is calculated via equation 7,

d (n1, n2) =

√
(x (n1) − x (n2))2 +

(y(n1) − y(n2))2
(7)

◦ This evaluation assists in selecting miner nodes that are
between source & destination nodes.

◦ From this set of nodes, select N stochastic nodes, and
estimate their fitness levels via equation 8,

TABLE 3. Format of the blocks.

fm =
1
N

N∑
i=1

d (seli, seli+1)

d(src, dest)
+
Max (e)

ei
+
Max (THR)

THRi

+
Max (PDR)

PDRi
+

Ji
Max(J )

(8)

where, fm is the fitness of individual Mayflies, while other
metrics are calculated via temporal evaluation process.

◦ A set of NM such Mayflies are identified, and their
fitness threshold is calculated via equation 9,

fth (sol) =

NM∑
i=1

fmi ∗
Lr
NM

(9)

where, Lr Represents the mutation rate for the Mayflies.
◦ Mayflies that have fm < fth are cross-over to the

next iteration, while other Mayflies are mutated as per
equations 8& 9, which assists in identifying high-fitness
Mayfly particles.

• This process is repeated for NI iterations, and a set of
NM different Mayflies are reconfigured during each set
of iterations.

Once all iterations are completed, Mayflies with the lowest
fitness levels are selected, and their configurations are used
to identify miner nodes. These miner nodes are responsible
for mining new blocks, which are represented via Table 3,
that stores previous hash, IP addresses of source & destina-
tion, metadata about the communication, nonce data samples,
timestamps, data samples, fitness levels of the miner nodes,
hash of the current blocks [46].

These data samples are stored on the blockchain and
communicated between the network nodes. During commu-
nications, blockchains are recovered from high-trust nodes
if block tampering occurs. Blockchains that do not satisfy
equation 10 are considered tampered chains,

H (i) = PH (i+ 1) (10)

where H&PH represent the hash and the previous hash of
blocks. For such blockchains, miner nodes with f < fth
are identified, and their chains are restored via the following
process,

• Scan each block, and check if it satisfies equation 10
• If not, then replace this block with the block fromminer-
verified chains

Due to these operations, the blockchain network is
tamper-proof and can mitigate attacks. The performance
of this blockchain network was validated under different
network conditions and can be observed in the next section
of this text.
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IV. RESULT ANALYSIS
A. EXPERIMENTAL SETUP
The performance of the proposed model was evaluated
through simulations using NS 2.34. The experimental
setup included the following key elements: a dual-ray
ground model for transmission, utilizing the Communication
Protocol 802.16a; a priority queuewith drop tails for interface
queueing; multisource antennas for diverse signal reception;
500 to 1,000 cognitive nodes with TORA protocol; network
dimensions of 1.5km x 1.5km; energy levels for different
modes like idle, reception, transmission, sleep, and transition;
and an initial network energy level of 5000mW.These param-
eters were carefully selected to simulate realistic conditions,
allowing for a thorough assessment of the model’s capabili-
ties in enhancing security and mitigating attacks in Cognitive
Radio Ad-hoc Networks (CRAHN). To overcome security
issues while maintaining higher Quality of Service (QoS)
under attacks, this text proposed a novel blockchain-based
security model to improve attack resilience in CRAHNs.
The model initially collected multiple information sets from
different cognitive radio controllers and created active &
redundant miners for the storage of these sets. The num-
ber of active & redundant miners is decided via a Mayfly
Optimizer (MO) Model, which assists in improving resource
utilization while reducing deployment costs. Cognitive rules
and configurations are stored on these nodes and updated via
a secure blockchain verification. The model’s performance
was validated under a set of standard network configurations.
These configurations can be observed in Table 4 as follows,
Due to the inclusion of block-level verification, the model
can efficiently identify tampering attacks. To validate this
claim, themodel was tested under Sybil, Main-in-the-Middle,
and Distributed Denial of Service (DDoS) attacks. For each
of these attacks, the model’s performance was validated in
terms of communication delay (D), the energy needed for
communication (E), throughput (THR), and packet delivery
ratio (PDR) during these communications. The number of
Communications (NCs) varied between 1k and 25k; 10% of
communications were evaluated under different attacks. Due
to this, the model’s performance was evaluated for attack &
non-attack scenarios. Based on this strategy, communica-
tion delay was compared with SRC [2], Prob Less [4], and
DDQL [13] in Table 5 as follows,
Based on this evaluation of different communication

scenarios, and its visualization in Figure 2, it can be
observed that the proposed model was capable of reduc-
ing the communication delay by 14.5% when compared
with SRC [2], 8.3% when compared with Prob Less [4],
and 18.5% when compared with DDQL [13] even under
different attacks. This is possible due to the optimized
selection of miner nodes that can perform faster mining,
making it the helpful model for high-speed cognitive radio
communications.

Similarly, the energy consumed during these communica-
tions can be observed from Table 6 as follows, Based on

TABLE 4. Configuration parameters used for simulation of the network
scenarios.

TABLE 5. Communication delay under 10% attack for different model
scenarios.

this evaluation of different communication scenarios and its
visualization in Figure 3, it can be observed that the proposed
model was capable of reducing the energy consumed during
communication by 12.4% when compared with SRC [2],
4.9% when compared with Prob Less [4], and 12.5% when
compared with DDQL [13] even under different attacks. This
is possible due to the optimized selection of miner nodes that
can perform low-energy mining operations, making a help-
ful model for high-lifetime cognitive radio communications.
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FIGURE 2. Communication delay under 10% attack for different model
scenarios.

TABLE 6. Communication energy needed under 10% attack for different
model scenarios.

Similarly, the throughput obtained during these communi-
cations can be observed from Table 7 as follows, Based on
this evaluation for different communication scenarios and its
visualization in Figure 4, it can be observed that the pro-
posed model was capable of improving the throughput during
communication by 19.5% when compared with SRC [2],
12.4% when compared with Prob Less [4], and 14.9% when
compared with DDQL [13] even under different attacks. This
is possible due to the selection of high-data-rate miner nodes
that can perform high throughput mining operations, mak-
ing it the helpful model for high-data-rate cognitive radio

FIGURE 3. Communication energy needed under 10% attack for different
model scenarios.

TABLE 7. Communication throughput obtained under 10% attack for
different model scenarios.

communications. Similarly, the PDR obtained during these
communications can be observed from Table 8 as follows,

Based on this evaluation for different communication sce-
narios and its visualization in Figure 5, it can be observed that
the proposed model was capable of improving the PDR dur-
ing communication by 15.5% when compared with SRC [2],
19.4% when compared with Prob Less [4], and 14.5% when
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FIGURE 4. Communication throughput obtained under 10% attack for
different model scenarios.

TABLE 8. Communication PDR obtained under 10% attack for different
model scenarios.

TABLE 9. Performance comparison of our proposed model with other
models.

compared with DDQL [13] even under different attacks.
This is possible due to the selection of high PDR miner

FIGURE 5. Communication PDR obtained under 10% attack for different
model scenarios.

nodes that can perform high-performance mining operations,
thereby making the valuable model for high-consistency cog-
nitive radio communications. Due to these advantages, the
model can be deployed for various real-time cognitive radio
scenarios.

In Table 9, a comparison of the performance is mentioned
as compared to the other models.

V. CONCLUSION
This research paper presents a novel blockchain-based secu-
rity model to bolster attack resilience in Cognitive Radio
Ad-hoc Networks (CRAHNs) while prioritizing superior
Quality of Service (QoS) under diverse attack scenarios.
The model’s framework revolves around aggregating het-
erogeneous data sets from cognitive radio controllers and
deploying active and redundant miners to safeguard these
datasets securely. A significant innovation lies in utilizing
a Mayfly Optimizer (MO) Model to optimize miner selec-
tion, resulting in heightened resource efficiency and cost
reduction. Furthermore, block-level verification enhances the
model’s capability to identify tampering attacks effectively.
Rigorous testing against Sybil, Man-in-the-Middle, and Dis-
tributed Denial of Service (DDoS) attacks demonstrated
remarkable outcomes, including an impressive 18.5% reduc-
tion in communication delays, facilitated by the judicious
selection of miner nodes, ideal for expediting high-speed cog-
nitive radio communications. Notably, energy consumption
decreased by 12.5%, attributed to the careful selection of
miner nodes optimized for low-energy mining tasks, aligning
the model with prolonged cognitive radio communication
requirements. Additionally, the model achieved a substan-
tial 19.5% increase in communication throughput and a
notable 19.4% enhancement in the Packet Delivery Ratio
(PDR) compared to existing methods. These generalized
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results underscore the model’s robust adaptability, affirming
its capacity to deliver high-speed, high-throughput, durable,
and consistent cognitive radio communications.

VI. DISCUSSION AND LIMITATIONS
In the ‘‘Discussion’’ section, we delve into the key aspects
of our proposed BSMACRN model and its implications
within the context of Cognitive Radio Ad-hoc Networks
(CRAHNs). We highlight the advantages of incorporating
blockchain technology in securing CRAHNs, underscoring
its attributes such as tamper resistance, decentralization,
and trustworthiness. Moreover, we elaborate on how our
model effectively addresses the shortcomings of existing
security models by offering a comprehensive solution capa-
ble of mitigating various types of attacks. Additionally,
we emphasize the pivotal role played by the Mayfly Opti-
mizer (MO) Model in the optimization of miner node
selection, leading to enhanced resource utilization and cost
reduction. Furthermore, we present substantial improvements
in communication delay, throughput, Packet Delivery Ratio
(PDR), and energy efficiency compared to existing models.
In the ‘‘Limitations’’ subsection, we candidly acknowledge
the constraints of our proposed model, shedding light on
potential challenges and areas necessitating further research.
These limitations encompass concerns regarding scalability
as the network size increases, the computational overhead
introduced by blockchain consensus mechanisms, and the
imperative need for robust mechanisms to address blockchain
forks and conflicts in the dynamic CRAHN environment.

The successes of this model lay a foundation for its
deployment in diverse real-time cognitive radio scenarios.
However, the exploration should not stop here. Future work
should validate the model’s performance in more exten-
sive network scenarios and against broader attacks. The
model’s functionality could be further enriched by integrating
cutting-edge techniques like bioinspired consensus models,
cryptographic selections, dual Generative Adversarial Net-
works (duan GANs), and Q-learning. These enhancements
could significantly bolster the model’s packet pre-emption
and attack detection capabilities, adapting to various cogni-
tive traffic scenarios. The proposed model is a promising step
towards more resilient and efficient CRAHNs, yet it opens
doors to further innovation and exploration in this critical
field of study.
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