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ABSTRACT This paper introduces a deep learning approach for breast cancer segmentation from ultrasound
imaging using a Dual Decoder Attention ResUNet (DDA-AttResUNet). DDA-AttResUNet utilizes a
Dual Decoder Attention structure to simultaneously focus on tumor segmentation while also capturing
supplementary contextual information, leading to enhanced segmentation accuracy. AnAttentionmechanism
is incorporated to enhance the representation of segmented regions by effectively combining information
from multiple sources. The model’s performance is validated on a public challenging dataset of 780 Breast
Ultrasound Images (BUSI), achieving aDice similarity coefficient of 92.92± 0.69%, Intersection overUnion
of 87.39 ± 1.10%, Sensitivity of 92.16 ± 0.92%, Precision of 93.90 ± 0.40%, and Accuracy of 98.82 ±

0.10% , using 10-fold cross-validation. These results, comparable to other leading methods, indicate that our
DDA-AttResUNet can significantly advance breast tumor segmentation in BUS imaging, with implications
for improved diagnosis and patient outcomes.

INDEX TERMS Breast ultrasound, tumor segmentation, deep learning, image segmentation, image
detection.

I. INTRODUCTION
Breast cancer represents a widespread disease and constitutes
a foremost contributor tomortality among females on a global
scale, as documented by the World Health Organization
(WHO) [1]. In 2020, as of the last available update, there were
2.3 million reported cases and 685,000 deaths globally due to
breast cancer [2]. In anticipation of the year 2040, predictive
modeling forecasts a forthcoming rise, with an estimated
annual incidence of over 3 million reported cases of breast
cancer and an approximate annual mortality rate of 1 million
worldwide [3]. Diverse imaging modalities, including mam-
mography, computed tomography (CT), magnetic resonance
imaging (MRI), and breast ultrasound (BUS), are pivotal
in the context of breast cancer detection. Mammography,
the standard clinical modality for breast cancer diagnosis,
has limitations due to its ionized radiation, which makes it
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unsuitable for pregnant women [4]. In contrast, BUS imaging
is cost-effective and radiation-free, making it a valuable
screening tool [5]. It provides information about breast tissue
characteristics and the existence of malignancy tissues [5].

Segmenting breast tumors from breast images is a crit-
ical step in computer-aided diagnostic (CAD) systems for
treatment planning [6]. This task is challenging for BUS
imaging due to variable tumor shapes, ambiguous contours,
low contrast, and inherent noise [7]. Advancements in CAD
systems have led to investigations of its impact on breast
cancer detection and segmentation using BUS images [8],
[9]. Despite the difficulty of the task, CAD systems have
shown promising progress in detecting and segmenting
lesions.

Automated methodologies for breast cancer segmentation
and classification can be categorized into two distinct classes:
traditional and deep learning (DL) based techniques. Tradi-
tional methods, such as thresholding, region-growing, and
handcrafted feature-based methods, may exhibit complexity
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and potentially result in imprecise lesion segmentation owing
to constraints in feature representations.

In contrast, deep learning-based segmentation methodolo-
gies have demonstrated notable performance achievements
in the realm of breast lesion detection [10], [11], [12],
[13], [14], [15]. Numerous deep learning techniques have
been employed for breast cancer segmentation utilizing
BUS images, leveraging automated feature learning through
convolution layers.

The current research proposes a DL architecture, named
the Dual Decoder Attention model with Attention ResUNet
(DDA-AttResUnet). It integrates the concepts of the Dual
Decoder Attention Network (DDANet) [16], Attention mech-
anisms [17], and the ResUNet architecture [18] to achieve
precise and robust BUS cancer segmentation results.

The ResUNet combines ResNet and UNet architectures,
utilizing residual blocks with skip connections from ResNet
to address vanishing gradient problems in deep networks.
The encoder-decoder architecture of UNet, augmented with
skip connections, effectively captures both local and global
contextual information, enhancing segmentation tasks.

The DDANet adheres to an encoder-decoder paradigm fea-
turing a shared encoder shared between two parallel decoders.
The initial decoder performs as the segmentation network,
whereas the second decoder performs as an autoencoder
network. The autoencoder strengthens the encoder’s feature
maps as an auxiliary task and generates attention maps used
in each decoder to enhance the semantic representation.

In addition, the DDA-AttResUnet incorporates attention
mechanisms that enable selective focus on relevant regions
in input images. These mechanisms prioritize informative
regions while suppressing less relevant areas, effectively
utilizing both local and global contextual information,
resulting in improved segmentation accuracy and robustness
for lesion segmentation.

Overall, the paper’s contributions/features are as follows:
• IntroducingDDA-AttResUnet for accurate breast cancer
segmentation from BUS imaging.

• Incorporating attention mechanisms with both spatial-
wise and channel-wise attention to selectively focus
on relevant regions in the input image. This attention
mechanism assigns higher importance to informative
areas while suppressing less relevant ones, enhancing
ResUNet’s ability to capture essential features.

• The incorporation of autoencoder attention maps is
employed to enhance the feature maps within the
encoder network.

• Competitive tumor segmentation performance in com-
parison to the current state-of-the-art works on the same
challenging non-ionizing, safe BUSI dataset.

The remainder of this manuscript is structured as follows:
Section II provides a comprehensive review of prior research
efforts pertaining to breast cancer segmentation and enhance-
ment. Section III expounds upon the architectural details of
the proposed DDA-AttResUnet model. Section IV presents
the experimental results and subsequent discussions, while

Section V offers the concluding remarks of the paper and
delineates prospective avenues for future research.

II. RELATED WORK
A. RELATED METHODS FOR CANCER SEGMENTATION
FROM BUS IMAGING
In the existing literature, the segmentation of breast lesions
from ultrasound images has been thoroughly investigated
through the application of diverse algorithms. Methods in the
literature can be categorized into early methods and machine
learning methods. Early methods include region-growing
methods, deformable models, and graph models, whereas
machine-learning methods include traditional handcrafted
methods and deep learning (DL) approaches.

Region-growing methods start the segmentation process
from manually or automatically selected seeds, gradually
expanding to capture target region boundaries based on
predefined growing criteria. The method was utilized by
Shan et al. [19] for breast cancer segmentation based
on incorporating contour smoothness and region similarity
criteria.

On the other hand, deformable models initialize a foun-
dational model and subsequently undergo deformations to
converge towards object boundaries while accounting for
internal and external energy factors. For instance, Madab-
hushi et al. [20] initiated the deformable model by utilizing
boundary points and incorporating balloon forces to define
the external energy. Chang et al. [21] utilized the stick
filter to reduce speckle noise in ultrasound images before
employing a 3D discrete active contour model to deform the
model and accurately segment breast lesion regions. Initial
graph-based models employ streamlined energy optimization
methodologies within the context of Markov random fields
or graph-cut frameworks. Chiang et al. [22] employed a
pre-trained Probabilistic Boosting Tree (PBT) classifier to
calculate the data term within the graph cut energy, whereas
Xian et al. [23] formulated the energy function by integrating
information from both frequency and spatial domains.
However, these pre-existing models exhibit constraints in
their ability to capture intricate semantic features and discern
faint boundaries within areas of ambiguity, consequently
resulting in boundary inaccuracies in ultrasound images with
low contrast.

Traditional machine-learning techniques utilize designed
handcrafted features to train machine-learning classifiers for
segmentation tasks. Methods proposed by Liu et al. [24] and
Jiang et al. [25] extracted various local image features and
trained SVM or Adaboost classifiers for breast lesion seg-
mentation. On the other hand, more recent machine-learning
techniques for breast cancer segmentation are based on
DL. More specifically, the recent advances in convolutional
neural networks (CNNs) have shown excellent performance
by learning high-level semantic features from labeled data.
For example, Zhuang et al. [26] implemented the Residual
Dilated Attention Gate UNet (RDAU-Net), a U-Net-derived
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model tailored for the segmentation of tumors in Breast
Ultrasound (BUS) images. Hu et al. [27] utilized the dilated
fully convolutional network with a phase-based active con-
tour model to segment breast tumors from ultrsound images.
Byra et al. [28] employed a deep learning segmentation
process based on entropy parametric maps. Zhu et al. [29]
utilized an approach for breast lesion segmentation in
ultrasound images, leveraging second-order statistics from
multiple feature subregions.

More recently, Shareef et al. [30] devised the Enhanced
Small Tumor-Aware Network (ESTAN), a Convolutional
Neural Network architecture specifically tailored for the
segmentation of diminutive tumors in Breast Ultrasound
(BUS) images. ESTAN employed a dual-encoder archi-
tecture to collaboratively extract and integrate contextual
information from images at multiple scales. Punn and
Agarwal [31] utilized the RCA-IUnet (residual cross-spatial
attention-guided inception U-net) model designed for tumor
segmentation within breast ultrasound imaging. RCA-IUnet
adopted the U-Net architecture, integrating elements such as
residual inception depth-wise separable convolution, a blend
of pooling layers (comprising max pooling and spectral
pooling), and cross-spatial attention filters. Yang et al. [32]
implemented the Cross-task guided network (CTG-Net),
which encompassed a framework that combined two core
tasks within computerized breast lesion analysis: lesion seg-
mentation and tumor classification. Wu et al. [33] utilized the
Boundary-Guided Multiscale Network (BGM-Net) designed
for breast lesion segmentation within ultrasound images.
The architecture of BGM-Net was rooted in the Feature
Pyramid Network (FPN) framework and integrated boundary
guidance mechanisms. Zhang et al. [34] implmented BO-
Net, a specialized boundary-oriented network devised to
improve breast tumor segmentation in ultrasound images.
BO-Net incorporated a two-step process: first, a boundary-
oriented module (BOM) was employed to delineate weak
tumor boundaries through the acquisition of supplementary
boundary maps; subsequently, feature extraction is carried
out by deploying the Atrous Spatial Pyramid Pooling (ASPP)
module, and developed InvUNET, a detection method for
breast tumors in ultrasound images. InvUNET combined the
UNET architecture with involution layers and lightweight
kernels that enabled location-specific and channel-agnostic
representation learning. Chen et al. [35] utilized AAU-
net, an adaptive attention U-net designed for the automatic
and stable segmentation of breast lesions in ultrasound
images. They utilized AAU-net with the Hybrid Adaptive
Attention Module (HAAM), which integrated both a chan-
nel self-attention block and a spatial self-attention block.
Umer et al. [36] developed the Dual-Decoded Attention
Mechanism (DDA-Net), utilizing an autoencoder architecture
with a U-shaped structure and incorporating a dual-decoded
attention mechanism to enhance performance. Lyu et al. [37]
developed a pyramid attention network for breast ultrasound
image segmentation, integrating Attention mechanisms and

multi-scale features. This architecture incorporated separable
convolutions to generate a multi-scale receptive field through
the aggregation of incremental small-size convolutions. It
was further augmented by the inclusion of a Spatial and Chan-
nel Attention (SCA) module. Zhang et al. [38] implemented a
computational model tailored for BUS screening, comprising
a dual-branch architecture. This architecture encompassed a
classification branch, dedicated to discerning between normal
and tumor-present images, and a segmentation branch, tasked
with delineating tumor regions. Notably, these two branches
were endowed with a shared encoder network to facilitate
information sharing and feature extraction. Zhang et al. [39]
implemented the SaTransformer, a semantic-aware model
explicitly engineered to concurrently address breast cancer
classification and segmentation tasks within an integrated
framework. This distinctive approach enabled mutually ben-
eficial information exchange and synergy between the two
tasks during the process of feature representation learning.

Table 1 presents a summary of related work of breast
cancer segmentation including method and their data.
While early methods and traditional machine learning-based
approaches have been explored for breast lesion segmenta-
tion, recent advancements in deep learning techniques, par-
ticularly CNN-based models have shown promising results.
However, the related works for breast cancer segmentation
have the following limitations:

• Region growing methods struggle with handling inho-
mogeneities and noise present in ultrasound breast
images, which can lead to inaccurate segmentations.

• Graph models have limitations in capturing high-level
semantic features suitable for tumor segmentation from
low-contrast ultrasound images.

• Deformable models, while flexible, are sensitive to ini-
tialization, and their performance may vary depending
on the starting point, potentially resulting in suboptimal
results.

• Handcrafted models rely on carefully engineered fea-
tures and may not capture all the relevant information
necessary for accurate segmentation.

• Despite the rich information extracted by deep learning
methods, their segmentation accuracies still require
further improvement.

To overcome the limitations of the existing works,
an advanced Deep learning approach, DDA-AttResUNet
integrates DDA-Net technology with Attention ResUNet
architecture, leading to superior segmentation performance.
The related work to this model is presented in the following
subsection.

B. RELATED WORK TO DDA-AttResUnet MODEL
The DDA-AttResUnet model is built upon three funda-
mental features: residual learning, incorporation of attention
mechanisms, and the utilization of dual decoder attention
technology. These components work together to enhance the
model’s performance in medical image segmentation tasks.
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TABLE 1. Summery of breast cancer segmentation related work: Auther, methodologies and dataset used.

Residual learning, introduced by He et al. [41], addresses
the degradation problem caused by increasing network depth
during training [42]. This technique enables the training
of very deep neural networks by utilizing skip connections
and residual blocks, effectively mitigating the vanishing

gradient issue and facilitating a better flow of gradients
during backpropagation. As a result, deeper architectures
can be trained, leading to improved representation learning
and higher accuracy in tasks like image segmentation.
Residual learning has been pivotal in advancing the
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state-of-the-art in deep learning and has become a founda-
tional element in modern neural network architectures. In the
context of ResUNet, full residual units are employed prior to
activation [18].

Self-attention is an attention mechanism that can be
effectively used as a modular component in basic CNN archi-
tectures with reduced computation and parameter overhead
for generating attention maps [43]. This modular extension
introduces supplementary neural networkmodules capable of
dynamically assigning weights to features either across spa-
tial dimensions or within channel-wise representations [43].
Spatial attention focuses on the importance of each pixel in

the spatial location, while channel attention assigns weights
to each channel of a feature map [44].

Channel attention, on the other hand, focuses on identify-
ing and selecting important feature dimensions by assigning
weights to each channel [45]. This mechanism is represented
by a 1D vector. Both spatial and channel attention modules
can be incorporated through parallel or sequential combi-
nations. For example, Fu et al. [46] introduced the Dual
Attention Network, which applies both types of attention
in parallel and fuses their output features. On the contrary,
Woo et al. [47] implemented the Convolutional Block
Attention Module (CBAM), a mechanism that sequentially
applies both channel and spatial attention modules.

The Dual-Decoded Attention Network (DDA-Net) is a
novel architecture specifically designed for BUS image
cancer segmentation. It follows an encoder-decoder structure
with a shared encoder and two concurrent decoders [16]. The
first decoder serves as the primary segmentation network,
responsible for generating the segmentation mask, while
the second decoder functions as an autoencoder network.
The autoencoder network plays a crucial role in enhancing the
encoder’s feature mappings by performing an auxiliary task
of creating an attention map. This attention map highlights
important regions in the encoder’s feature maps, which are
then utilized by both decoders to enhance the semantic
representation of the feature maps, resulting in improved seg-
mentation performance. By incorporating the dual-decoder
attention network and attention mechanism with ResUNet,
DDA-AttResUnet excels at capturing high-level semantic
features and accurately identifying weak boundaries in
ambiguous regions.

This capability is particularly beneficial in challenging
scenarios, such as low-contrast ultrasound images with
artifacts and intensity inhomogeneity.

In our study, we compare related techniques and hold an
ablation study that showed that incorporating the Attention
Mechanism and Dual Decoder Attention Network with the
ResUnet model achieves superior segmentation results.

III. MATERIALS AND METHODS
A. DATASET
The Breast Cancer Ultrasound Images (BUSI) dataset
encompasses a collection of 780 ultrasound images acquired

at the Baheya Hospital in Cairo, Egypt, utilizing LOGIQ
E9 and LOGIQ E9 Agile ultrasound scanners [48]. Each
individual image within the dataset possesses an average
resolution of 500 × 500 pixels and is stored in the PNG file
format. The images have been classified into three distinct
categories: normal (133 images), benign (437 images), and
malignant (210 images), with each image accompanied by a
binary ground truth mask that identifies tumor regions. The
BUSI dataset is a valuable and challenging resource for breast
lesion segmentation research, with a substantial number
of ultrasound images categorized into normal, benign, and
malignant cases of different nodules’ sizes and shapes. The
data sample is shown in Figure 1.

B. PREPROCESSING
Preprocessing involves normalization, resizing, and augmen-
tation of the training images. Normalization is a process
that entails the transformation of pixel values to conform
to a predetermined range, conventionally bounded between
0 and 1, to facilitate a smoother training process and improve
model generalizability. The images are then resized to a
standard size of 128 × 128 pixels to match the standard input
size required by the chosen model.

Data augmentation is systematically applied to the training
dataset with the objective of enriching the diversity of training
data, thereby enhancing the model’s performance and its
capacity for generalization. We apply flip transformations
(both vertical and horizontal flipping) and random rotations
up to 90° to each input image. This process generates ten
augmented images for every original input image.

C. METHODOLOGY
This section illustrates in detail our proposed encoder-
decoder-based architecture.

1) ARCHITECTURE OVERVIEW
The Dual Decoder and Attention Mechanism ResUNet
architecture illustrated in Figure 2 is tailored for tumor
segmentation in breast cancer ultrasound images. It operates
by taking a grayscale BUS and its corresponding mask as
input, processing the image through an encoder based on the
ResUNet architecture.

2) DDA-Net
The DDA-Net architecture includes an encoder for standard
feature extraction, and its outputs are directed into two
decoders: the Main Decoder (segmentation branch) and the
Auxiliary Decoder (autoencoder branch). In the Auxiliary
Decoder, the output is connected to an Autoencoder attention
map block, which includes a Conv2D layer with a sigmoid
activation function. Meanwhile, the output of the Main
Decoder is multiplied by the output of the Autoencoder
attention map block, resulting in an attention map that
highlights significant regions for segmentation. This attention
mechanism emphasizes areas where the features from
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FIGURE 1. Breast cancer ultrasound images (BUSI), including benign, malignant, and normal cases, along with their corresponding
binary ground truth masks for tumor segmentation.

the Main Decoder and the reconstructed image from the
Auxiliary Decoder agree, indicating their importance for
achieving accurate segmentation.

3) ATTENTION MECHANISM
In deep learning-based image processing, the convolutional
layer is crucial for feature extraction, but it may overlook
contextual information in input feature maps. To address this
limitation, pooling is used to increase the dependency of each
output pixel on a larger neighborhood of input pixels. How-
ever, convolutional layers may still struggle to incorporate
contextual information effectively. Attention mechanisms are
introduced to summarize input information and influence the
main information flow in the network, considering variations
in importance among pixels or channels. The integration of
attention mechanisms, such as spatial-wise and channel-wise
attention, enhances the representation of segmented regions
by combining information from multiple sources [47].
This approach leads to significant advancements in breast
tumor segmentation, leveraging deep learning and attention
mechanisms for improved accuracy and performance. In our
architecture, we incorporate two attention modules, based on
the work by Zhao et al. [43], to further enhance breast tumor
segmentation:

1) Channel Attention:
Likewise, we integrate the channel attention module
at the terminal layer of the encoder, given that the
high-level feature map predominantly encapsulates
intricate features characterized by a broad recep-
tive field and an abundance of channels. Through
the utilization of global information, this procedure

empowers the network to engage in feature recalibra-
tion, selectively amplifying significant attributes while
dampening less consequential ones. Figure 3 depicts
the organizational structure of the channel attention
module.
First, we send the feature map X ∈ RH×W×C

to the aggregation operation, which aggregates the
feature map in its spatial dimensions (H × W ) to
produce a channel descriptor v ∈ RC . The channel
aggregation operation produces a global distribution of
channel-specific features by means of calculating the
channel descriptor. The calculation formula for this is
as follows [43]:

vc = Zac(xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc(i, j) (1)

Here, xc ∈ RH×W represents the local feature map
of channel c. We use global average pooling for the
spatial dimensions in the aggregation operation Zac.
This produces a channel descriptor v ∈ RC , which
represents a global distribution of channel features.
Following the aggregation operation, a self-learning
weight computation process is executed using fully
connected layers. The function Z1(v, a) is designed to
capture inter-channel dependencies and dynamically
generate the channel weight map y ∈ RC . The
calculation formula is as follows [43]:

y = Z1(v, a) = σ (v, a) = σ (a2δ(a1v)) (2)
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FIGURE 2. The proposed DDA-AttResUNet architecture is designed for breast tumor segmentation. It utilizes a ResUNet architecture with convolutional
filters for hierarchical feature extraction. The architecture includes one stem block, consisting of a 3 × 3 convolutional block (blue) added to a
1 × 1 convolutional block (orange), followed by five encoder blocks. Each encoder block contains a Residual Block (purple), which consists of two
3 × 3 convolutional blocks (blue) with the addition of a 1 × 1 convolutional block (orange). The architecture also features five dual decoder blocks, with
each block containing both the Main Decoder and the Auxiliary Decoder (pink). Each decoder includes an Upsample block and a Concatenate block, along
with a ResNet Block (purple). The Auxiliary Decoder connects to a Conv2D layer with a sigmoid activation function, known as the Autoencoder Attention
block (yellow), and its output is multiplied by the output of the Main Decoder. Additionally, the model incorporates an attention fusion mechanism
represented by the Attention Block (green), which includes both spatial-wise and channel-wise components. This attention mechanism enhances the
representation of segmented regions. After the last decoder, the Main Decoder connects to a 1 × 1 Conv2D layer, and the output of the last decoder is
combined with the ResNet Block (purple) and a Conv2D layer with a sigmoid activation function, referred to as the AutoEncoder Attention map block
(yellow). This configuration generates two outputs: a segmentation mask highlighting the boundaries and locations of tumors and an enhanced
ultrasound image.

Here, a1 ∈ RL×C , a2 ∈ RL×C , where L is the
number of hidden neurons. The symbol σ represents
the sigmoid activation function that generates the
channel weight yc ∈ (0, 1) for channel c. Fully
connected hidden layers possess the capability to
capture non-linear interactions among channels. The
feature map X is multiplied by the weight calculated
in the previous step. The Channel Attention module
produces output X ′ by multiplying the feature values of
different channels in X with different weights, achieved
through channel-wise recalibration Zre(xc, yc) [43].

x ′c = Zre(xc, yc) = xc · yc (3)

2) Spatial Attention:
Spatial attention has been incorporated into convo-
lutional neural networks as an attention module and

has demonstrated strong performance in tasks such
as classification and detection [47]. Spatial attention
in convolution neural networks captures positional
information between images, which helps to depict the
spatial relationship between the input features. Spatial
attention, by design, does not take into account channel
information and treats all features from different
channels equally. To address this limitation, we utilize
a spatial attention module to the low-level feature
map which primarily extracts spatial features such
as contours and edges, and contains fewer channels.
This module learns the interactions between spatial
points, amplifies important regions, and suppresses
irrelevant ones. Figure 4 depicts the architecture of the
spatial attention module. Initially, the feature map X
∈ RH×W×C is fed into the aggregation operation that
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FIGURE 3. The channel attention (CA) module comprises three key functions: Zas, Z1, and Zre. Specifically, Zas produces a channel
descriptor v ∈ RC , Z1 generates the channel weight map y ∈ RC , and Zre employs y to generate the CA module’s output. Notably,
Z1 is realized through the utilization of two fully connected layers and is responsible for self-learning [43].

FIGURE 4. The Spatial Attention (SA) module comprises four primary functions. The aggregate function Zac is responsible for
generating a spatial descriptor s ∈ RH×W by aggregating the feature map across the channel dimension. The self-learning
function Z1, realized through the utilization of two convolutional layers, is tasked with generating the spatial weight map
m ∈ RH×W by adaptively capturing spatial correlations. Lastly, the function Zre employs m to enact spatial-wise recalibration,
culminating in the generation of the SA module’s output, denoted as X ′ [43].

produces a spatial descriptor s ∈ RH×W . is descriptor
is derived through the aggregation of the feature map
along its channel dimension (n). The aggregation
operation yields a comprehensive distribution of spatial
features at a global scale [43]:

shw = Zac(xhw) =
1
n

n∑
i=1

xhw(i) (4)

Here, the notation xhw ∈ RC represents the local
feature at spatial position (h,w) with C channels. The
aggregate function Zac uses global average pooling
to aggregate information across the channel dimen-
sion. Subsequently, a self-learning weight computation
process ensues, realized through the utilization of
convolutional layers. The aim of the function Z1(s, f )
is to capture the spatial correlations fully and generate
the spatial weights map m ∈ RH×W adaptively. The
calculation formula for this is as follows [43]:

m = Z1(s, z) = σ (s, z) = σ (z2δ(z1s)) (5)

Here, z1 refers to a 3 × 3 convolution, which is
denoted as Conv(3×3,n), while z2 refers to another
3 × 3 convolution, denoted as Conv(3 × 3, 1).

The value of n corresponds to the channel number
of the hidden feature map. The symbol δ refers to
the ReLU activation function, while σ represents the
sigmoid activation function that generates the spatial
weight mhw ∈ (0, 1) at position (h,w). In essence,
the convolutional operation, which accepts the original
spatial descriptor as input, can be conceptualized as
a spatial-wise self-attention function. By doing so,
it can capture non-linear inter-spatial relationships. The
spatial weights determined in the preceding step are
subsequently applied to the feature map X . Through
spatial-wise recalibration, Zre(xhw, mhw), the feature
values of different positions in X are multiplied by
different spatial weights to generate the output X ′ of
the SA module [43]:

x ′
hw = Zre(xhw,mhw) = xhw · mhw (6)

The proposed architecture incorporates two attention
modules to enhance feature representation and capture rich
contextual relationships. The first module, known as the
channel-wise attention module, operates on the input feature
maps resulting from the multiplication of the Main Decoder
and the Auxiliary Decoder in the Dual Decoder. It assigns

10094 VOLUME 12, 2024



A. A. Hekal et al.: Breast Cancer Segmentation From Ultrasound Images

a specific value to each channel through element-wise
multiplication between the input feature maps and the output
of the channel-wise attention module.

The output of the channel-wise attention module then
undergoes further processing by the spatial-wise attention
module. In this module, specific weights are assigned to
each pixel in the feature maps, further emphasizing important
regions. The resulting output is once again multiplied by the
output of the previous channel-wise attention module.

To process the output of the encoder part in the model,
we apply a 2D convolutional layer (3 × 3) followed by a
ReLU activation function and Global Average Pooling 2D.
The result is achieved through the summation of the outcome
from this layer with the output of the attention module,
which amalgamates the outcomes of both the channel-wise
and spatial-wise attention modules. The resulting combined
output is subsequently passed through a 2D convolutional
layer (3 × 3), followed by a ReLU activation function and
Batch Normalization (BN) layers. This process generates the
ultimate output that is then directed to the next Dual Decoder
block.

Figure 2 illustrates the block diagram of the attention unit
process (depicted as the green block). We have incorporated
Attention Units into the decoder segment of our architecture,
enabling the model to direct its attention toward pivotal
regions within the feature maps.

4) RESIDUAL BLOCK
Training a deep neural network with increased network
depth has the potential to improve overall performance.
However, simply stacking CNN layers could also hamper the
training process, leading to issues like exploding or vanishing
gradients during backpropagation [41].

To address this problem, residual connections are intro-
duced, facilitating the training process by directly routing
the input information to the output and preserving the
flow of gradients [41]. The residual function simplifies
the optimization objective without introducing additional
parameters and boosts the performance, inspiring the use of
deeper residual-based networks [41].
The working principle of residual units is represented by

the equation [41]:

yn = F(xn,Wn) + xn

where yn represents the output of the residual unit, F(·) is the
residual function operated on the input xn using the weights
Wn, and the result is added to the original input xn to produce
the final output yn. The weights Wn represent the weights
associated with the layers within the residual function F(·).
The addition of the original input xn is the key idea behind
residual connections, which enables the network to learn the
residual or the difference between the input and output. This
approach simplifies the learning process and helps mitigate
the vanishing gradient problem, thereby enabling the training
of deeper neural networks.

The residual units are composed of combinations of
Batch Normalization (BN), Rectified Linear Unit (ReLU),
and convolutional layers. Detailed descriptions of these
combinations and their impact can be found in the work of
He et al. [41].
In the ResUNet architecture, every Residual Block is

structured with two successive 3 × 3 convolutional blocks
and one 1 × 1 convolutional block. Each convolutional
block includes a batch normalization layer, a Rectified Linear
Unit (ReLU) activation layer, and a convolutional layer. The
Residual Block’s operation involves adding the output of the
two successive 3 × 3 convolutional blocks to the output of
the 1× 1 convolutional block. This design enables the model
to create a more robust and accurate representation of the
features.

Additionally, the ResUNet architecture includes a special
Residual Block called the stem block. The operation of the
stem block involves adding the output of one successive
3 × 3 convolutional block to the output of the 1 ×

1 convolutional block. Like the regular Residual Block, this
design empowers the model to create a more robust and
accurate representation of the features.

5) DDA-AttResUNet
The DDA-AttResUNet architecture consists of an encoder
and two decoder branches with an autoencoder attentionmap,
utilizing attention mechanisms to achieve improved medical
image segmentation.

In the encoder, each block contains a Residual Block
with the number of filters specified as [32, 64, 128, 256,
512, 1024]. The encoder comprises one stem block and five
encoder blocks, capturing hierarchical features using identity
mappings.

To reduce the feature map size, a stridden convolutional
layer is applied to the first encoder block, allowing the
model to extract abstract features. The Residual Block and
downsampled feature maps enhance the model’s ability
to learn intricate patterns and hierarchical information to
improve segmentation performance.

The DDA-AttResUNet architecture processes the ultra-
sound input image through the encoder network, creating an
abstract feature representation while downsampling it.

The decoder branches, Main Decoder (segmentation
branch), and Auxiliary Decoder (autoencoder branch)
employ reversed filters [1024, 512, 256, 128, 64, 32] for
tumor segmentation. The Main Decoder focuses on segmen-
tation using upsampling and Residual blocks. Meanwhile,
the Auxiliary Decoder captures contextual information and
enhances the segmentation using an autoencoder network.

The encoder network’s output is simultaneously directed
to both decoders, wherein a 2 × 2 transpose convolution
operation is employed to double its spatial dimensions.
Subsequently, the image is concatenated with a suitable
feature map derived from the encoder network, employing
the residual connections. These connections retrieve features
from preceding layers at their native resolution, amplifying
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their representation potency and offering an alternative
pathway for gradient flow, which is advantageous for model
convergence.

The result produced by the Auxiliary Decoder block
(autoencoder branch) is subject to processing through an
AutoEncoder attention block, comprising a 1 × 1 convolu-
tional layer and a sigmoid activation function, leading to the
generation of an attention map.

The attention map thus generated is employed as a
multiplier for the output of the Main Decoder block
(segmentation branch), functioning as the input for the
subsequent decoder block within the segmentation branch.
Attention mechanisms, such as spatial and channel attention,
refine segmented regions by combining information from
different sources.

Finally, the last decoder and the last output of the Main
Decoder with the 1×1 convolutional layer are each connected
to the Residual Block and an Autoencoder Attention block.
The network produces two images: a segmentation mask
image for precise tumor segmentation from theMainDecoder
and an enhanced ultrasound image from the Auxiliary
Decoder for improved visualization.

6) PERFORMANCE METRICS
After training the models on the training set, they are applied
to predict tumor segmentation masks for the test set. These
predictedmasks are then evaluated using several performance
metrics that involve true positive (TP), false positive (FP),
true negative (TN ), false positive (FP), and false negative
(FN ) values. These evaluation metrics include:

The Mean Intersection over Union (IoU ), also referred to
as the Jaccard index, quantifies the degree of overlap between
the predicted segmentation mask and the ground truth mask.
This metric computes the ratio of the intersection to the
union of the two masks, yielding a comprehensive measure
of segmentation accuracy.

IOU =
TP

TP+ FP+ FN
(7)

The Dice Coefficient (Dice) is employed to assess the
similarity between the predicted and ground truthmasks. This
metric quantifies the ratio of twice the intersection to the sum
of the sizes of the two masks, offering insight into the degree
of agreement between them.

Dice =
2TP

2TP+ FP+ FN
(8)

Accuracy (Acc): Accuracy measures the overall correct-
ness of the predicted segmentation compared to the ground
truth. It computes the ratio of pixels that are correctly
classified to the total number of pixels encompassed by the
mask.

Acc =
TP+ TN

TP+ TN + FP+ FN
(9)

Sensitivity (Sen), alternatively referred to as recall or
true positive rate, quantifies the fraction of genuine positive

TABLE 2. The split of the data into train, validation, and test.

instances (tumor pixels) that the model correctly identifies.

Sen =
TP

TP+ FN
(10)

Precision (Pre): Precision measures the proportion of
predicted positive cases (tumor pixels) that are truly positive.
It quantifies the model’s ability to accurately identify tumor
pixels without including too many false positives.

Pre =
TP

TP+ FP
(11)

By evaluating the models using these metrics, we can
assess the quality and effectiveness of the tumor segmentation
predictions by the presented model.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTING
In this study, the BUSI dataset, composed of 720 images,
is preprocessed to handle variations in image sizes. All
images are normalized and resized to a standardized size of
128 × 128 pixels for consistency across the segmentation
models. The dataset is then randomly split into 10-fold
cross-validation. This split remains consistent throughout
the experimentation process. Each of the ten experiments
divides the data into 90% (648 images) training and validation
data, and 10% (72 images) test data which is kept separate
and untouched throughout both the training and validation
processes. In turn, the training and validation data are
divided into 90% for training the model (which is subjected
to augmentation) and 10% for validation, which involves
hyperparameter tuning and model selection. The split of
the data into train/validation/test data are illustrated on
Table 2. The reported results in our paper reflect the average
performance metrics obtained from the test set within the
framework of 10-fold cross-validation, ensuring a robust and
unbiased evaluation of the model’s performance.

During the training phase, an NVIDIA Tesla P100 GPU
accelerates the training process. The Adam optimizer is
utilized to optimize the model, and an initial learning rate
of 0.0001 is configured. The training process extends over
150 epochs, with the learning rate undergoing reduction by
a factor of 2 when the learning progress reaches a plateau.
This adjustment promotes enhanced model performance.
To counteract overfitting, an early stopping technique is
implemented. This technique halts the training process when
validation error ceases to improve, preventing the model from
becoming excessively tailored to the training data.

B. QUALITATIVE RESULTS
In Figure 5 the input ultrasound image represents the original
scan of the breast, while the ground truth image represents the
manually annotated mask created by medical experts, serving
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FIGURE 5. A qualitative assessment of tumor segmentation outcomes across different models is presented. The initial column depicts the original
ultrasound image, while the second column exhibits the ground truth mask. Subsequent columns showcase the predicted masks produced by each
model, specifically ResUNet, ResUNet++, Att-ResUnet, DDA-ResUnet, and DDA-AttResUnet. The corresponding Dice scores for each segmentation outcome
are displayed beneath their respective predicted masks.

as the reference for tumor regions. The predicted segmented
masks are generated by the DDA-AttResUnet model and
other segmentation approaches, illustrating their respective
performance in accurately delineating tumor regions.

By visually comparing the predicted segmented masks
to the ground truth masks, Figure 5 provides a com-
prehensive view of the segmentation performance of the
DDA-AttResUnet model and its effectiveness in producing
accurate and precise tumor segmentations. In the context
of breast ultrasound image segmentation, the proposed
Dual Decoder Attention model with Attention ResUNet
architecture plays a crucial role in accurately identifying and
delineating tumor regions. The model takes advantage of
advanced deep learning techniques, attention mechanisms,
and fusion operations to enhance its segmentation perfor-
mance and generate enhanced ultrasound images.

The results produced by the network consist of two key
components: a segmentation mask image and an improved
ultrasound image, as depicted in Figure 6. The segmentation

mask offers crucial insights into tumor boundaries and
positions, thereby facilitating precise tumor segmentation
and diagnosis. Meanwhile, the enhanced ultrasound image,
generated through the utilization of the autoencoder network
(AutoEncoder attention block) within the Dual Decoder
Attention, presents an upgraded rendition of the initial input
ultrasound image. This enhanced image provides enhanced
features, enabling medical practitioners to gain a clearer
visualization of tumor regions and make more accurate
clinical evaluations.

C. QUANTITATIVE RESULTS
Ablation experiments are systematically conducted to
analyze the individual components of the DDA-AttResUNet
model. The study evaluated the performance of simpli-
fied versions, including ResNet, ResNet++, Att-ResUNet
(utilizing Attention with ResNet), and DDA-ResUnet (incor-
porating Dual Decoder models). These experiments provided
valuable insights into each component’s contributions to
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FIGURE 6. The comparative visualization displays breast tumor segmentation results involving benign, malignant, and normal breast images. Each case is
presented in three columns. The leftmost column shows the input ultrasound image (Image) of the breast. The middle column presents the ground truth
mask (Mask), while the rightmost column exhibits the predicted Enhanced Image generated by the DDA-AttResUnet model.

TABLE 3. Comparative analysis of DDA-AttResUNet with ablation experiments on the BUSI datasets (MEAN ± STD) by ten-fold cross-validation.

the overall segmentation performance, as demonstrated in
Table 3. The evaluation metrics used in the analysis included
the Dice coefficient, Jaccard index (IOU), sensitivity, pre-
cision, and overall accuracy. The results of the analysis
demonstrated that the DDA-AttResUnet model outperformed
the other segmentation approaches in terms of segmen-
tation accuracy. It yielded a superior Dice coefficient of
(92.92 ± 0.69%) and Jaccard index (IOU) of (87.39 ±

1.10%), signifying an enhanced degree of correspondence
between the predicted segmentation masks and the ground
truth masks. The model also showed improved sensitivity
(92.16 ± 0.92%) and Precision (93.90 ± 0.40%), suggesting
its ability to accurately detect tumor regions while mini-
mizing false positives. Additionally, the DDA-AttResUnet
model achieved a higher overall accuracy of (98.82± 0.10%).
In the test images, the average time that each image takes
is 40ms.

Table 4 provides an exhaustive comparative analysis of
the proposed DDA-AttResUnet model in contrast to several
contemporary state-of-the-art methodologies, all evaluated
on the BUSI dataset. The table provides valuable insights
into the performance of different techniques for segmenting
breast tumors from ultrasound images. Notable methods,
including Zhu et al. [29], Wu et al. [33], Shareef et al. [30],
Zhang et al. [34], Chavan et al. [40], Yang et al. [32],
Zhang et al. [38], Zhang et al. [39], Lyu et al. [37],

Umer et al. [36], and Punn and Agarwal [31], are included
in this comparative analysis.

DDA-AttResUnet emerges as a competingmethod, achiev-
ing the highest scores in several critical performance
metrics. It impressively attains a Dice coefficient of 92.92%,
signifying a substantial overlap between its predicted
segmentation and the ground truth. Additionally, DDA-
AttResUnet demonstrates a sensitivity of 92.16%, indicating
its capability to accurately identify true positive cases,
along with an impressive accuracy of 98.82%, affirming its
overall effectiveness in precisely classifying both positive and
negative cases.

While DDA-AttResUnet excels in numerous aspects, it’s
important to acknowledge that its IOU (Jaccard index) mea-
sures at 87.39%, representing the proportion of intersections
over the union of its predicted and ground truth regions.
Furthermore, its precision stands at 93.90%, highlighting
the accuracy of true positive predictions. In comparison, the
method presented by Punn and Agarwal [31] achieves a
slightly higher IOU of 89.9% and a precision of 94%, show-
casing competitive performance in these specific metrics.

The remarkable performance of DDA-AttResUnet can be
attributed to its sophisticated architecture, which combines
the Dual Decoder Attention model with the Attention
ResUNet segmentation model. By synergistically utilizing
advanced deep learning techniques alongside dual decoder
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TABLE 4. Comparative outcomes between the proposed methodology and contemporary state-of-the-art approaches are presented on the identical
dataset, denoted as (BUSI).

attention and Attention mechanisms, this model attains
extraordinary accuracy and robustness in segmentation
outcomes. This unique amalgamation of features sets
DDA-AttResUnet apart in the pursuit of superior segmenta-
tion results.

D. DISCUSSION
The segmentation of breast cancer within breast ultrasound
(BUS) images presents a formidable challenge, owing to the
intricate and inherently ambiguous characteristics inherent in
the data. Manual diagnosis of breast cancer fromBUS images
is subjective and difficult, leading to the development of CAD
systems.

This study focuses on breast cancer segmentation from
BUS images and proposes amethod calledDDA-AttResUnet.
The proposed method achieves 92.92%, 92.16%, 93.90%,
and 98.82% in Dice score, Sensitivity, Precision, and
Accuracy, respectively, using the BUSUdataset. Comparative
analysis with existing deep learning-based segmentation
techniques demonstrates the competitive performance of
DDA-AttResUnet in terms of segmentation DSC scores,
highlighting its potential for reliable breast cancer diagnosis
using BUS images.

Recent researches by Zhang et al. [39], Zhang et al. [38],
Lyu et al. [37], Umer et al. [36], Shareef et al. [30],
Zhang et al. [34], Yang et al. [32], and Punn and Agarwal [31]
have concentrated on employing deep learning techniques for
the segmentation of breast cancer, specifically on the chal-
lenging BUSI images. Punn and Agarwal [31] documented
the highest DSC of 91.4%, slightly lower than the reported
Dice score achieved by the proposed DDA-AttResUnet.

One of the limitation of the proposed system is that the IOU
and Precision can still be improved. Pun and Agarwal [31]
achieved higher values for IOU (89.9%) and Precision (94%)
compared to the proposed DDA-AttResUnet. This indicates
the need for investigating more areas for improvement.

Overall, the integration of the dual decoder attention and
attention mechanism contributes to exceptional segmentation
DSC scores compared to existing models. Additionally,
qualitative results (Fig. 5) further validate its effective-
ness in segmenting breast cancer from ultrasound images.

Furthermore, Figure 6 showed enhanced ultrasound images
generated by the DDA-AttResUnet model with improved
visual clarity when compared to the original inputs, which
enables a clearer identification of tumor regions.

V. CONCLUSION
The present study introduces a deep-learning breast cancer
segmentation method for breast ultrasound (BUS) images,
utilizing the DDA-AttResUnet model with dual decoder
attention and attention mechanisms. Our method achieves
a competitive segmentation dice coefficient of 92.92% on
the BUSI dataset, a set of non-invasive, safe, cheap, and
non-ionizing-radiation ultrasound images. The dual decoding
attention and attention mechanism in ResUNet significantly
improved segmentation results. This mechanism enhanced
localization accuracy by focusing on important regionswithin
feature maps, leading to superior segmentation performance,
especially in terms of the dice coefficient. To address the
generalizability of the proposed system, we plan to test it on
other BUS datasets and investigate its possible refinement.
Additional research in breast cancer segmentation from
BUS images holds potential implications for better cancer
diagnosis and treatment planning.
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