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ABSTRACT With the intensification of global climate change, low-carbon energy has become a hot topic,
and governments around the world are implementing corresponding policies to promote its use. This research
first establishes a Multi-universe Quantum Harmony Search-Algorithm Dynamic Fuzzy System Ensemble
(MUQHS-DMFSE) composite model for carbon emission prediction. This model combines the MUQHS
algorithm with the DMFSE method by designing the workflow of the MUQHS algorithm, creating a
DMFSE composite prediction model, introducing a sliding factor matrix, and using the MUQHS algorithm
to search for the optimal sliding factors, thus obtaining optimized prediction values. In the research on
low-carbon economic development, the research applies the Data Envelopment Analysis (DEA) method
and establishes Charnes-Cooper-Rhodes (CCR) and Banker-Charnes-Cooper (BCC) models to assess the
technical efficiency, pure technical efficiency, and scale efficiency of decision-making units. This research
also uses the BCC model to project the production frontier and calculate input redundancy and output gap
rates, and evaluate low-carbon economic development. Through the establishment and application of these
two models, the research achieves carbon emission prediction and low-carbon economic analysis, validating
the feasibility of the researchmethodology. The results show that the composite model can effectively predict
carbon emissions, with a Mean Absolute Percentage Error (MAPE) below 3.5% and Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) below 200 tons, demonstrating the feasibility and accuracy
of the model. The research on low-carbon economic development in S Province based on the DEA method
reveals the need for energy structure adjustment, clean and renewable energy promotion, control of carbon
emissions, and optimization of industrial structure with a focus on developing the tertiary industry. Therefore,
the use of artificial intelligence and big data analysis can provide more precise insights into the trends and
patterns of low-carbon economic development, as well as more effective predictions of future energy demand
and resource supply, offering high practical value and scientific significance.

INDEX TERMS Low-carbon energy, MUQHS-DMFSE composite model, low-carbon economy, energy
demand, resource supply.

I. INTRODUCTION
A. RESEARCH BACKGROUND AND MOTIVATIONS
As the global economy rapidly develops and the population
continues to grow, energy demand is constantly rising. Addi-
tionally, environmental issues are becoming increasingly
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prominent, with challenges such as climate change and air
pollution urgently needing to be addressed [1], [2]. In this
context, low-carbon energy has gradually become the focus
of attention for governments and businesses worldwide,
including renewable energy sources (such as wind and solar
power) and clean energy sources (such as natural gas and
nuclear power) [3], [4]. Artificial intelligence (AI) technol-
ogy can help formulate low-carbon energy policies and plans,
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optimize energy production and utilization methods, and
improve energy efficiency and supply security through rapid
and accurate prediction and analysis of various factors [5],
[6]. Additionally, big data technology can assist in collecting,
integrating, and analyzing energy-related data, thereby gain-
ing a better understanding of the energy market and industry
characteristics and supporting decision-making and practices
for low-carbon energy development.

However, the exploation on the application of AI and big
data in the context of the low-carbon energy economy is still
in a continuous development phase. Current research focuses
on how to fully harness the potential of AI and big data
in energy system planning, intelligent energy management,
and smart energy interactions to achieve more sustainable,
efficient, and environmentally friendly energy development.
Additionally, researchers are also facing challenges such as
data privacy and security, for which innovative solutions need
to be found. In the ongoing exploration, AI and big data
will continue to provide crucial support for the sustainable
development of the low-carbon energy economy, driving the
energy sector towards a more intelligent and environmentally
friendly future.

B. RESEARCH OBJECTIVES
The objective of this research is to establish a composite
model named Multi-universe Quantum Harmony Search-
Algorithm Dynamic Fuzzy System Ensemble (MUQHS-
DMFSE) for predicting carbon emissions. Simultaneously,
it employs the Data Envelopment Analysis (DEA) method
to evaluate and analyze the level of development in the
context of a low-carbon economy. Empirical research is con-
ducted to validate the effectiveness and practicality of the
established models. The research uses S Province and BP
Company as examples to examine both models, determin-
ing their feasibility and applicability. This research aims to
provide theoretical support and practical analysis to promote
clean energy, sustainable development, enhanced energy effi-
ciency and economic benefits, industrial transformation and
upgrading, technological innovation, and the enhancement of
national competitiveness and influence.

This research introduces an innovative MUQHS-DMFSE
composite model to predict carbon emissions in the low-
carbon economy, making important research innovations
and contributions. Firstly, the model combines the MUQHS
algorithm and DMFSE method, and improves the flexibil-
ity and efficiency of the prediction model through clever
design and workflow optimization. In particular, the sliding
factor matrix is introduced, and the model can be adaptively
adjusted in the dynamic environment through the optimiza-
tion of the MUQHS algorithm, which can more accurately
capture the trend of carbon emissions. Secondly, the DEA
method is applied in the research of low-carbon economy, and
the Charnes-Cooper-Rhodes (CCR) and Banker-Charnes-
Cooper (BCC) models are established to comprehensively
evaluate the efficiency of decision units. This method pro-
vides a new perspective for understanding the efficiency of

decision units in the low-carbon economy, and provides data
support for developing more accurate policies. The most
important innovation is the empirical study part. The predic-
tion performance and the application potential of the model in
the study of low-carbon economic development are verified
through the application in S province of China. The results
show that the model performs well in carbon emission pre-
diction, and provides a scientific basis for the development of
low-carbon economy. All these contributions will enrich the
researchmethods in the field of low-carbon economy, provide
practical tools and guidance for policy formulation and strate-
gic planning, and promote the realization of environmental
protection and sustainable development goals.

II. LITERATURE REVIEW
Liu et al. proposed that research on the optimized devel-
opment of a low-carbon energy economy based on AI and
big data analysis would contribute to the application and
promotion of low-carbon energy technologies, facilitate the
coordinated development of energy and the environment, and
accelerate the achievement of a low-carbon economy and
sustainable development goals [7], [8]. Xu et al. pointed out
that significant progress had been made in the research on
the optimized development of a low-carbon energy economy
based on AI and big data analysis [9], [10]. Feng and Chen
proposed an AI algorithm-based optimization approach for
low-carbon energy dispatch, which utilized AI algorithms
such as neural networks and particle swarm optimization
to minimize carbon emissions and costs in the power sys-
tem [11], [12]. Chen and Du participated in a research project
named ‘‘Energy Plan’’ and achieved good results by utilizing
AI algorithms to optimize the dispatch of power systems,
aiming to minimize carbon emissions and costs [13], [14].
Jian et al. analyzed energy consumption patterns and market
demand using big data techniques to assist companies in
formulating rational energy planning and management strate-
gies, thereby minimizing energy consumption [15], [16].
Wang et al. advocated the vigorous promotion of the ‘‘Smart
Energy’’ strategy in the field of energy, leveraging tech-
nologies such as the Internet of Things (IoT) and cloud
computing to achieve intelligent management of energy sys-
tems, optimize energy structure, reduce carbon emissions,
and improve energy efficiency [17], [18]. Tama et al. utilized
technologies such as the IoT and cloud computing to realize
real-time monitoring and management of the power grid,
enhance the security and stability of the grid, and reduce
energy waste and carbon emissions [19], [20]. Yao et al.
achieved intelligent management of urban energy, optimiza-
tion of urban energy structure and supply modes, reduction
of carbon emissions, and improvement of urban sustainability
through the application of AI and big data technologies [21],
[22]. Li et al. mentioned that Japan had also actively imple-
mented the ‘‘Smart Energy’’ strategy in the field of energy,
utilizing big data analysis of energy consumption patterns
and market demand to formulate rational energy planning
and management strategies, minimize energy consumption,
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and improve energy efficiency through measures such as
constructing smart grids [23], [24]. Wang et al. participated
in a research project called ‘‘Smart Cities and Sustainable
Development,’’ which utilizes AI and big data technology
to achieve intelligent management of urban energy, optimize
urban energy structure and supply methods, reduce carbon
emissions, and improve the sustainable development level of
cities [25], [26].

Existing literature has extensively explored the research on
optimizing low-carbon energy economies using AI and big
data analytics technologies, achieving significant progress in
various aspects. From a research perspective, studies have
considered the application of low-carbon technologies and
the coordinated development of energy and the environment
from a macro level. They have also delved into the economic
and low-carbon dispatch of specific systems from a micro
level. In terms of research methods, common AI algorithms
include neural networks, particle swarm optimization, etc.,
while big data technologies are represented by the IoT and
cloud computing. In terms of research objects, studies have
targeted power systems as well as urban or corporate lev-
els. Although there are different research perspectives, they
all emphasize the use of AI and big data technologies for
intelligent analysis and optimization of complex energy sys-
tems, reducing carbon emissions, and improving economic,
environmental, and societal benefits. However, there are still
some shortcomings in the existing literature. Firstly, most
studies are limited to specific systems and specific algo-
rithms, lacking comparative analysis of various algorithms
and models. Secondly, empirical research cases are rela-
tively scarce, mostly staying in the theoretical analysis stage,
and the actual application effects require further validation.
Thirdly, the interpretability of algorithms andmodels is weak,
making it difficult to delve into their underlying mechanisms
of operation. Therefore, future research should strengthen the
comparison of differentmodels, expand the cases of empirical
research, and enhance the interpretability of algorithms in
order to obtain more scientific and interpretable research con-
clusions. This will provide more valuable theoretical support
and practical guidance for the development of low-carbon
energy economies.

III. RESEARCH METHOD
A. MUQHS-DMFSE COMBINATION MODEL FOR
PREDICTING CARBON EMISSIONS
The MUQHS-DMFSE combination model is a predictive
model that combines the Multi-universe Quantum Harmony
Search Algorithm (MUQHS) and the Dynamic Fuzzy System
Ensemble (DMFSE) method [27], [28]. MUQHS is a heuris-
tic algorithm inspired by the multiverse theory of quantum
physics [29]. It uses ideas similar to quantum computing,
dividing the search space intomultiple different universes and
applying and updating search strategies in each universe [30],
[31]. This algorithm is commonly used to solve optimiza-
tion problems and classification and regression problems

in machine learning [32], [33]. The DMFSE method is a
DMFSE method that can combine the outputs of multiple
models with weights to improve the accuracy and stability
of predictions [34], [35].

The MUQHS is a heuristic intelligent optimization
algorithm inspired by the multiverse theory in quantum
physics. This algorithm divides the search space into mul-
tiple distinct subspaces or ‘universes,’ where each uni-
verse employs different search strategies for individuals
and cooperatively optimizes the problem, thereby enhanc-
ing the diversity and efficiency of the search. Specifically,
the MUQHS algorithm begins with problem initializa-
tion, including algorithm parameter settings and configuring
the Harmony Memory. Then, within each universe, new
Harmonies (harmony vectors) are generated through oper-
ations such as random selection and Pitch Adjustment.
Subsequently, the algorithm employs quantum computational
concepts like quantum rotation gates to propagate informa-
tion between adjacent universes, facilitating collaborative
searching across different universes. Finally, through opera-
tions like memory updates, it iteratively obtains the optimal
solution. Compared to the traditional single-universe Quan-
tum Harmony Search (QHS) algorithm, MUQHS introduces
universe hierarchies and quantum mechanisms, significantly
improving the algorithm’s global search capabilities.

This algorithm has been successfully applied in various
fields, such as combinatorial optimization, machine learning,
and engineering design optimization. In this research, the
authors integrate the MUQHS algorithm with the DMFSE
method to construct a carbon emission prediction model.
MUQHS is employed to search for optimal parameters of
the dynamic fuzzy system, thereby enhancing prediction
accuracy.

The DMFSE method is an approach that integrates outputs
frommultiple fuzzy systems. DMFSE employs various fuzzy
systems to perform fuzzy classification on a sample data
set, obtaining the probabilities of each sample belonging to
different categories. It then calculates the weights of different
fuzzy systems using the mean squared error method and
combines the outputs of various systems. Compared to a sin-
gle fuzzy system, DMFSE significantly improves prediction
robustness.

In this study, the researchers establish multiple fuzzy
logic systems, utilize the MUQHS algorithm to optimize
sliding factors, construct a DMFSE ensemble model, and
apply it to carbon emission prediction. This method fully
leverages the optimization capabilities of MUQHS and the
ensemble learning characteristics of DMFSE, leading to a
significant improvement in the accuracy and robustness of
carbon emission prediction. The organic integration of these
two algorithms provides an effective new approach to carbon
emission prediction and offers insights for modeling other
complex systems. It demonstrates the promising application
prospects of AI technology in sustainable development and
the transition to a low-carbon economy.
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FIGURE 1. The process of the MUQHS algorithm.

The specific steps of the prediction are as follows:
Step 1: Design the MUQHS algorithm. The flowchart of

the MUQHS algorithm is shown in Figure 1:
In Figure 1, the MUQHS algorithm consists of six steps.

Firstly, the problem is initialized, and parameters and quan-
tum are initialized. Then, a random search is conducted
on quantum and harmony using the HMCR probability.
Subsequently, local perturbations are applied to harmony
using PAR. Next, multi-universe operations are performe-
don the new quantum and harmony, generating multiple
sub-universes near the mother universe and increasing the
number of new quantum and harmony. Then, the newly
generated solutions are evaluated and judged. If the new
solution is superior to the previous worst solution, the
solution set is updated; otherwise, the new solution is aban-
doned. The uniqueness of the MUQHS algorithm lies in
its incorporation of quantum and multi-universe operations,
which enhances the diversity and breadth of the search,
thus overcoming the limitations of traditional optimization
algorithms. Through problem initialization and parameter
settings, the algorithm can explore solutions with better
fitness in the search space. By combining steps such as
random search, local perturbations, and multi-universe oper-
ations, the algorithm continuously optimizes the solution
set, enabling intelligent analysis and optimization of energy
systems. This will contribute to improving the efficiency
and reliability of energy systems, reducing energy costs, and
promoting the development and application of low-carbon
energy.

Step 2: Establish the DMFSE combination predictive
model.

This method uses each fuzzy logic classifier to classify
the dataset and generate a probability output. These proba-
bility outputs are combined to form an ensemble output. The
expression for the DMFSE combination predictive model is

given by Eq. (1):

ât =

∑n

i=t
wiâit (1)

In (1), âit represents the predicted value of the i-th predic-
tive model for year t, wi represents the weight coefficient
of the i-th model, ât represents the predicted value of the
combined model for year t, and n represents the number
of models. The DMFSE method uses mean square error to
calculate the weights, as shown in Eq. (2), at the bottom of
the next page.

γ represents the discount factor, and T represents the data
length used for weight calculation. By substituting Eq. (2)
into Eq. (1), the DMFSE model can be obtained as shown in
Eq. (3), at the bottom of the next page.

Step 3: Complete the DMFSE combination predictive
model optimized using the MUQHS algorithm.

In order to eliminate the error between actual values and
predicted values at different time points, this research trans-
forms the discount factor γ in the weight calculation process
into a matrix γn×T . The weight equation and the modified
predictive model become Eqs. (4) and (5), as shown at the
bottom of the next page, respectively.

Step 4: Select the optimal matrix of discount factors.
In order to avoid blindly selecting P, which may lead to
unsatisfactory predictive performance, the determination of
the discount factor matrix γn×T is treated as an optimization
problem of an objective function. The MUQHS algorithm
searches for the optimal discount factors for different predic-
tion time points and models [36], [37].

Step 5: Substitute the optimal discount factors into the
model to obtain the optimal predicted values.

In the model, each predictor has a unique impact on per-
formance. The sliding factor matrix is optimized by MUQHS
algorithm, and the model is adjusted to adapt to data changes.
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For example, the MUQHS algorithm is able to find the opti-
mal combination of sliding factors at different points in time,
making the model more sensitive to capture the changing
trend of the system, thus improving the prediction accuracy of
unknown data. The quantum harmonic search space enhances
the global search ability and helps to find the global optimal
solution. By simulating the search space of multiple uni-
verses, the algorithm is more likely to avoid falling into local
optimality, improve the global search effect of the model,
ensure the adaptability to diverse data, and thus improve the
accuracy of the prediction. The input variables of dynamic
fuzzy systems help the model adapt to the dynamic changes
inside the system. For example, in economic development,
input variables may include real-time economic indicators,
environmental changes, etc., making themodel more flexible,
better coping with complex system dynamics, and improving
the model’s degree of fitting to the actual situation. The input
and output indicators of low-carbon economic development
reflect key economic, resource and environmental factors.
By using these indicators, the model can more comprehen-
sively understand the development of low-carbon economy,
while taking into account many factors such as economic
structure, resource utilization and environmental impact in
the forecast, making the forecast more comprehensive and
accurate.

B. LOW-CARBON ECONOMIC DEVELOPMENT BASED ON
THE DEA METHOD
DEA is a commonly used non-parametric efficiency evalu-
ation method used to assess the relative efficiency among
different Decision-Making Units (DMUs). The fundamen-
tal models of DEA include the CCR model and the BCC
model. The CCR model assumes uniform input and output

proportions for all DMUs, while the BCC model allows
for variations in input-output proportions among different
DMUs. Through DEA analysis, it is possible to identify
which DMUs are more efficient in resource utilization and
provide improvement recommendations. DEA requires no
predefined function forms or distribution assumptions, mak-
ing it applicable across various industries and domains. This
method holds wide-ranging value in efficiency assessment,
performancemanagement, and decision support. The specific
steps of this method are as follows:

Step 1: Establish the CCR model.
In the CCR model, assuming there are n DMUs and each

unit has m inputs and n outputs, the evaluation efficiency
index fj is represented by Eq. (6):

fj =

∑s
r=1 uryrj∑n
i=1 vixij

, (j = 1, 2, · · · , n) (6)

In Eq. (6), ur and vi denote the output and input weight
coefficients, xij represents the input quantity of the j-th
decision-making unit for the i-th input, and yrj represents the
output quantity of the j-th DMUs for the r-th output. This is
illustrated in Eqs. (7), (8), and (9):

xj =
(
x1j, x2j, · · · , xmj

)T
> 0 (7)

yj =
(
y1j, y2j, · · · , ysj

)T
> 0 (8)

u = (u1, u2, · · · us)T , v = (v1, v2, · · · vm)T (9)

By selecting suitable weight coefficients v and u, which are
greater than or equal to 0, such that fi ≤ 11 , the CCR model
with the maximum efficiency index is obtained, as shown in
Eq. (10):

h0 = max
uT y0
vT x0

(10)

wi =
1[∑T

t=1 γ T−t+1
(
at − âtt

)2]
×

{∑n
i=1 | 6T

t=1γ
T−t+1

(
at − âit

)2]−1
} (2)

ât =

n∑
i=t

wiâit =

n∑
i=t

âit[∑T
t=1 γ T−t+1

(
at − âit

)2]
×

{∑n
i=1

[∑T
t=1 γ T−t+1

(
at − âit

)2]−1
} (3)

wi =
1[∑T

t=1 γ T−t+1
it

(
at − âit

)2]
×

{∑n
i=1

[∑T
t=1 γ T−t+1

it

(
at − âit

)2]−1
} (4)

ât =

n∑
i=t

wiâit

=

n∑
i=t

âit[∑T
t=1 γ T−t+1

it

(
at − âit

)2]
×

{∑n
i=1

[∑T
t=1 γ T−t+1

it

(
at − âit

)2]−1
} (5)
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TABLE 1. Initial results of low-carbon energy economy indicators data based on DEA method in provinces.

In Eq. (10), max u
T y0
vT x0

≤ 1 (j = 1,2, · · · , n), u > 0, v > 0.

Let 1
vT x0

= t > 0,w = tv, µ = tu, the CCR linear model is
shown in Eq. (11):

TccR



h0 = maxµT y0
wT xj − µT yj ≥ 0
wT x0 = 1
ω ≥ 0
µ ≥ 0

(11)

In practical applications, the dual form of the slack variable
is introduced to evaluate the scale and technical efficiency of
DMUs, as shown in Eq. (12):

QCCR



min ε∑n

j=1
xjλj + s− = εxk∑n

j=1
yjλj + s+ = yk

λj ≥ 0; ε ∈ E
s+ ≥ 0; s− ≥ 0

(12)

In Eq. (12), λj represents the combination proportion of the
j-th DMUs, ε represents the radial optimization quantity, and
s+ and s− are slack variables.

Step 2: The variable returns to scale BBC model is intro-
duced based on this.

BBC model adds constraints to the CCR model, as shown
in Eq. (13): ∑n

j=1
λj = 1 (13)

Step 3: Assessing DMUs Effectiveness
When ε = 1, s+ = 0, s− = 0, the DMU is effective. When

ε = 1 and at least one of s+ or s− is greater than 0, the DMU
is weakly effective. When ε < 1, the DMU is ineffective.
Step 4: Assessing DMU Scale Efficiency
If

∑n
j=1 λj = 1, he DMU has constant returns to scale.

If
∑n

j=1 λj > 1, the DMU has increasing returns to
scale, meaning that increasing inputs can enhance outputs.
If

∑n
j=1 λj < 1, the DMU has decreasing returns to scale,

indicating that increasing inputs does not improve outputs.

Step 5: Assessing Scale Efficiency
∑n

j=1 λj

ε
= 1 indicates

constant scale returns.
∑n

j=1 λj

ε
> 1 implies decreasing scale

returns.
∑n

j=1 λj

ε
< 1 suggests increasing scale returns.

IV. MODEL PERFORMANCE EVALUATION
A. DATA COLLECTION
This research chose to test the performance of the car-
bon emission prediction model using data provided by BP.
BP provides objective, high-quality, and globally consis-
tent world energy data, including aspects such as oil, coal,
natural gas, nuclear energy, and electricity generation. The
data collection phase involved the application of big data
technologies. Leveraging BP’s globally sourced energy data,
the experiment employed technologies like the IoT and
cloud computing for extensive and in-depth production and
emission data collection for various energy sources. This
encompassed detailed analyses of multiple domains such as
oil, coal, natural gas, and nuclear energy, ensuring the com-
prehensiveness and accuracy of the data. The data processing
process included cleansing, integration, and transformation
steps. Initially, this research performed data cleansing on
the raw data, eliminating any potential anomalies or erro-
neous data. Subsequently, a comprehensive energy dataset
was constructed by integrating data from different domains.
Finally, the experiment transformed the data to meet the input
requirements of the prediction model. BP and province S
are used in this research as simulated data for case studies
for the purpose of testing and validating the model. These
entities do not represent existing companies or regions but
demonstrate the model’s applicability in different contexts.
Through a detailed data collection and processing process,
the experiment ensured the repeatability of the study and the
credibility of the results. Additionally, the input and output
indicator data of Province S in recent years are compiled and
adjusted. The data obtained are presented in Table 1:

B. EXPERIMENTAL ENVIRONMENT
To better study the prediction of carbon emissions by the
MUQHS-DMFSE combined model, this research selected
data provided by BP Company to conduct performance test-
ing on the model. BP Company offers objective, high-quality,
and globally consistent world energy data, encompassing oil,
coal, natural gas, nuclear energy, and electricity generation.
China, India, and the United States are selected to test the
robustness of the prediction model and forecast carbon emis-
sions for these countries using different discount factors.

C. INDICATOR SELECTION
For the research on low-carbon economic development based
on the DEA method, this research selected the low-carbon
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economic development situation in Province S as the research
object. In recent years, Province S has experienced rapid
economic development, continuous expansion of the energy
industry, and significant progress in the research and develop-
ment of low-carbon technologies. The development momen-
tum of a low-carbon economy is particularly strong in sectors
such as agriculture and forestry. Based on this, two main
categories of indicators are selected: input indicators (T)
and output indicators (O) to assess the low-carbon economic
development in Province S. The input indicators (T) include
resource input (A), capital input (B), and labor input (C).
The output indicators (O) include the gross domestic product
(GDP) (D), the proportion of the added value of the tertiary
industry to GDP (E), and carbon emissions (F). Resource
input includes the input of resources such as energy and raw
materials to support production and economic activities. This
indicator reflects the extent to which the economic system
uses natural resources and the consumption of environmental
resources in the production process. Capital input, which
involves investment in production assets and technical equip-
ment, reflects the degree of utilization of capital facilities in
the economic development of the province. The level of cap-
ital investment can affect productivity and economic growth.
Labor input measures the input of labor in the production pro-
cess. This includes factors such as the number of workers and
the quality of the labor force, which is crucial for understand-
ing the employment situation and the efficiency of human
resource utilization in the province. The output indicator,
GDP, is a measure of the overall size of a region or country’s
economy. The growth of GDP is usually related to the level
of economic development and the increase of productive
activities, and is a key economic indicator in a low-carbon
economy. The ratio of value-added of the tertiary industry to
GDP reflects the contribution of the service industry to the
overall economy. In the development of low-carbon economy,
the service industry is usually relatively low-carbon, so the
increase of this proportion may indicate the optimization
of the structure of low-carbon economy. Carbon emissions
represent the amount of carbon dioxide emitted per unit of
GDP output. This is a key environmental indicator used to
assess the relationship between economic growth and car-
bon emissions. The development of low-carbon economy is
usually accompanied by effective control and reduction of
carbon emissions. The unique nature of these variables is their
adaptability, which helps the model better cope with dynamic
changes within the system. For example, real-time economic
indicators and environmental change data help models make
more accurate predictions in different stages of economic
development and environmental contexts.

D. RESEARCH RESULTS
1) PERFORMANCE TESTING OF THE MUQHS-DMFSE
COMBINED MODEL FOR CARBON EMISSION PREDICTION
The MUQHS-DMFSE composite model is introduced with
the sliding factor matrix as one of the key predictors. The
sliding factor matrix is used to describe the changing trend

of each influencing factor in the system. By introducing a
quantum harmonic search algorithm, the model looks for
the optimal combination of sliding factors, so that it can
adapt to the data changes at different time points. These
optimized sliding factor matrices are used in the prediction
process of the model to adjust and optimize the performance
of the model. Specifically, the sliding factor matrix’s role
in capturing trends in carbon emissions is to balance past
and current influences, ensuring that the model is adaptable
to both historical data and the latest trends. The MUQHS
algorithm generates multiple search Spaces in multiple uni-
verses, where each search space corresponds to a possible
sliding factor matrix. These search Spaces constitute another
important set of predictors in the model. By simulating these
universes, the algorithm can find the optimal solution in dif-
ferent search Spaces, thus improving the global search ability
of the model and enhancing the accuracy of the prediction.
The unique nature of the space is that it provides a global
search capability to help capture complex carbon emission
patterns. The introduction of quantum harmonic search space
enhances the global adaptability of the model and ensures
that it can obtain reliable prediction results in different coun-
tries and regions. In DMFSE method, dynamic fuzzy system
integration involves a series of input variables, which are
used to construct a dynamic fuzzy system to deal with the
dynamic changes within the system. These input variables
may include economic, energy and environmental factors to
capture more fully the complexity of the system and improve
the ability to predict the development of a low-carbon econ-
omy. Finally, through the optimization of MUQHS algorithm
and DMFSE method, the model generates a set of optimized
predictor variables, which are adjusted and optimized tomake
the model predict carbon emissions more accurately. These
optimized predictors are used in performance tests to verify
the feasibility and accuracy of the model by comparing with
actual values and evaluating using metrics such as MAE,
RMSE and MAPE. In this research, the model’s performance
is evaluated by comparing predicted values and actual values
in China, the United States, and India, as well as comparing
predictions with different discount factor values and three
numerical indicators. Figure 2 illustrates the actual and pre-
dicted carbon emissions in China, India, and the United States
from 2012 to 2022.

In Figure 2, China and India show a growth trend, while
the United States exhibits fluctuations. The predicted val-
ues closely align with the actual values for all years in
the three countries. The sudden decline in carbon emis-
sions is attributed to the impact of the COVID-19 pandemic,
which led to reduced energy consumption. Despite this
deviation, the overall prediction performance remains satis-
factory. These results indicate the robustness of the proposed
DMFSE combination prediction method based on the opti-
mized MUQHS algorithm. Figure 3 presents the actual
and predicted carbon emissions in China, India, and the
United States for different discount factor values from 2012
to 2022.
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FIGURE 2. Actual and predicted carbon emissions in China, India, and the
united states from 2012 to 2022.

In Figure 3, the discount factors are set as 0.1, 0.5, 1.0,
and 1.5, with γ ∧

∗ representing the optimal discount factor for
each country. The optimal discount factor for China is 1.0, for
India is 0.00002759, and for the United States is 0.00002219.
The predicted models align well with the actual situation.

In Figure 3, the national carbon emission statistics
for China, India, and the United States are sourced
from the China Association of Automobile Manufactur-
ers (CAAM, http://www.caam.org.cn/), the Central Statistics
Office (CSO, https://mospi.gov.in/central-statistical-office-
cso), and the Environmental Protection Agency (EPA,
https://www.epa.gov/), respectively. Due to recent overall
environmental instability, the actual carbon emissions in
the United States may be subject to some fluctuations.
This is because carbon emissions are influenced by various
factors, including economic development, energy policies,
technological innovations, and more. Changes in the global
economic and policy landscape and fluctuations in the energy
market can all lead to differences between the actual and
predicted carbon emissions in theUnited States. Furthermore,
the significant fluctuations in actual carbon emissions shown
in Figure 3(c) may also be related to adjustments in the
domestic energy structure. In recent years, the United States
has been increasing its investment and promotion of clean
energy while gradually reducing its reliance on traditional
energy sources such as coal and oil. This shift in the energy
structure may result in more complex and uncertain changes
in carbon emissions, leading to significant fluctuations in
actual values. Therefore, the substantial fluctuations in actual
carbon emissions in the United States are primarily attributed
to the overall environmental instability and adjustments in the
domestic energy structure. Consequently, this research needs
to consider the combined effects of multiple factors when
making carbon emission predictions to forecast future carbon
emission trends. However, the predictions still remain largely
consistent. Figure 4 displays the MAPE values for the three
countries under different discount factors.

In Figure 4, the Mean Absolute Percentage Error (MAPE)
for the three countries remains below 3.5 under different

FIGURE 3. Carbon emission predictions under different discount factors
from 2012 to 2022 ((a) China’s carbon emission prediction; (b) India’s
carbon emission prediction; (c) United states’ carbon emission
prediction).

discount factors. The model exhibits the smallest MAPE
value for carbon emission predictions in India, particularly
when the optimal discount factor is selected. China has the
highest MAPE value, exceeding 2.5, followed by the United
States, which surpasses 2.0. India, on the other hand, shows
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FIGURE 4. MAPE values for the three countries under different discount
factors.

the lowest MAPE value, around 1.0. Figure 5 displays the
MAE andRMSE values for the three countries under different
discount factors.

In Figure 5, the Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) for the three countries under
different discount factors remain within a manageable range,
staying below 200 tons. Among them, India exhibits the
smallest error, consistently below 30. The data demonstrates
the model’s stability and indicates a lack of technological
innovation in resource utilization in India, reflecting the cur-
rent state of its economic development. Figure 6 illustrates the
carbon emission predictions for the three countries in 2022.

In Figure 6, it is evident that in terms of carbon emission
predictions, the United States has the smallest deviation com-
pared to the actual values. In terms of relative error, China
exhibits the smallest relative error of only 0.34. The relative
errors for the other two countries are also controlled below
3.2, further affirming the accuracy of the MUQHS-DMFSE
combined model in predicting carbon emissions.

2) RESEARCH ON LOW-CARBON ECONOMIC
DEVELOPMENT BASED ON THE DEA METHOD
This research analyzes the technical efficiency, pure technical
efficiency, and scale efficiency through the CCR model and
BCC model. The results are presented in Figure 7.

Inefficient DEA mainly results from ineffective utilization
of input resources, leading to resource wastage. The subopti-
mal allocation of input factors contributes to the inefficiency
in technical efficiency. Overall, Province S achieves high
technical efficiency, reaching 0.9854. The pure technical effi-
ciency is slightly lower than the scale efficiency, suggesting
that in the process of developing a low-carbon economy in
Province S, improving industrial structure, controlling the
scale of labor-intensive and capital-intensive industries, and
expanding the scale of high-tech industries can enhance the
level of technical efficiency in economic development. For
the DEA analysis, this research employs the BBC model

FIGURE 5. MAE and RMSE values for the three countries under different
discount factors ((a) MAE values; (b) RMSE values).

to project the production frontier and calculate input redun-
dancy rates and output shortfall rates. Figure 8 illustrates
the DEA 2020 frontier projection analysis and the input
redundancy rates and output shortfall rates for the period
from 2015 to 2020.

In Figure 8, the 2020 frontier projection analysis indicates
that there is no need to adjust total energy consumption,
as it remains unchanged. However, other indicators require
certain adjustments. The adjustment magnitude for the pro-
portion of the tertiary industry is the smallest, requiring only
a 119 adjustment. Based on the DEA method, the research
on the low-carbon economic development in Province S
identifies energy utilization as the main factor contributing
to DEA inefficiency. While the GDP grows, the excessive
carbon emissions resulting from a low proportion of the
tertiary industry indicate the future development direction for
Province S.

E. DISCUSSION
Optimizing the development of a low-carbon energy econ-
omy has always been a hot topic, and the emergence of AI and
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FIGURE 6. Carbon emission predictions for China, India, and the united
states in 2022.

FIGURE 7. Analysis of low-carbon economic efficiency in province s
from 2010 to 2022.

big data analytics technologies has brought new opportunities
and challenges to this field. According to Krishna et al.,
AI algorithms and big data models are used to predict energy
demand and price trends by analyzing historical data, current
trends, and market factors. This can help companies make
more accurate decisions for better production and operational
planning [38], [39]. Furthermore, Wang et al. argued that
utilizing AI algorithms and big data models enables intelli-
gent analysis and optimization of various complex factors in
energy systems, thereby improving the efficiency and relia-
bility of the energy systems [40], [41].

Furthermore, the results of this research are compared
with recent research literature on low-carbon energy eco-
nomics that utilizes modern technologies. Jiang et al. [42]
proposed an IoT energy efficiency framework applicable to

FIGURE 8. Projection analysis of the 2020 frontier of S Province and input
redundancy rate and output deficit rate of each index from 2015 to 2020
((a) 2020 Frontier Projection Analysis; (b) Input Redundancy Rates and
Output Shortfall Rates from 2015 to 2020).

heterogeneous small-cell networks. The research employed
mathematical models and algorithms to optimize energy dis-
tribution and management within cells, aiming for efficient
energy utilization and carbon emission reduction. By opti-
mizing aspects like data transmission, energy supply, and
distribution, the efficiency of cell networks was improved.
Chen [43], based on digital twin technology, explored col-
laborative innovation research on key common technologies
in the new energy vehicle industry. The research involved
data modeling, analysis, and optimization of various aspects
of new energy vehicles, proposing an innovation model
based on digital twins. The results demonstrated the sig-
nificant role of digital twin technology in the new energy
vehicle industry. Lin et al. [44] achieved a non-intrusive
decomposition of residential electricity loads through the
low-resource model transfer method. The research employed
constrained resource model transfer techniques to extract the
main components of electricity load through data analysis
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and processing. The results indicated the excellent perfor-
mance of this non-intrusive decomposition method in the
precise analysis and assessment of residential electricity
loads. Chen et al. [45] proposed an integrated energy system
low-carbon economic dispatch method for short-term wind
power output prediction. The research utilized predictive
modeling of wind power output and optimized electrohy-
drogen production and distribution within the energy system
to enhance energy efficiency and reduce carbon emissions.
The results showed favorable performance of this method in
the dispatch of integrated energy systems. Xiao et al. [46]
conducted a comprehensive review of electric vehicle routing
problems and introduced a new comprehensive model with
nonlinear energy charging and discharging characteristics.
By considering factors such as electric vehicle charging and
discharging characteristics, energy consumption, and route
planning, the research optimized electric vehicle charging
routes, improving energy utilization. The results demon-
strated the effectiveness of this comprehensive model in
electric vehicle route planning. Cai et al. [47] explored meth-
ods for renewable energy systems to participate in electricity
spot market bidding and settlement. The research involved
modeling and optimization of energy output, costs, and mar-
ket trading rules for renewable energy systems, proposing a
method for energy systems to participate in the electricity
spot market. The results indicated that this method effectively
enhanced renewable energy systems’ economic benefits and
market participation capabilities.

In summary, the primary focus of the aforementioned
literature research is that AI and big data analysis technolo-
gies play a crucial role in optimizing the development of
a low-carbon energy economy. These technologies, through
analyzing and predicting historical data, market trends, and
relevant factors, can assist companies in making more accu-
rate decisions, thereby improving production and operational
planning. The research also demonstrates that the application
of AI algorithms and big data models in energy systems can
intelligently analyze and optimize various complex factors,
enhancing the efficiency and reliability of energy systems.

This model has a wide range of potential applications
in the real world, especially in the low-carbon energy
economy. Firstly, the model can be applied at the govern-
ment decision-making level to help formulate and optimize
low-carbon policies. By predicting carbon emission trends,
the government can more accurately adjust policies, pro-
mote industrial structure optimization, promote clean energy
development, and effectively control carbon emissions. Sec-
ondly, the model also has important application value at the
enterprise level. Enterprises can use this model to predict
carbon emissions, develop environmental protection strate-
gies, improve the efficiency of production processes, and
consider carbon emissions in product design to achieve a
balance between economic growth and environmental sus-
tainable development. In addition, the model has potential
applications for financial institutions. Financial institutions

can use this model to evaluate the low-carbon economic
development of enterprises, reduce investment risks, promote
more capital flow to low-carbon and sustainable develop-
ment fields, and promote the development of green finance.
In practical application, the model can also provide a more
comprehensive assessment of low-carbon economic devel-
opment for the society, and guide the public to participate
in and support low-carbon environmental protection activi-
ties more rationally. In general, the model, with its highly
accurate forecasting performance and comprehensive consid-
eration of multiple factors, provides strong decision support
for decision-makers at different levels and promotes the sus-
tainable development of low-carbon economy.

V. CONCLUSION
A. RESEARCH CONTRIBUTION
This research first establishes the MUQHS-DMFSE combi-
nation model for carbon emissions prediction. This model
combines the MUQHS algorithm with the DMFSE method.
By designing the workflow of the MUQHS algorithm and
establishing the DMFSE combination prediction model,
a sliding factor matrix is introduced. The MUQHS algorithm
is used to search for the optimal sliding factor, thus obtaining
optimized prediction values. In the research on low-carbon
economic development, the DEA method is applied to
establish CCR and BCC models to evaluate the technical
efficiency, pure technical efficiency, and scale efficiency
of decision units. The carbon emission prediction perfor-
mance of the MUQHS-DMFSE combination model was
tested, and the results showed that in the predictions for
China, India, and the United States, the MAPE values were
all below 3.5%, and the MAE and RMSE values were
below 200 tons, verifying the feasibility and accuracy of the
model. Additionally, this research conducted a DEA anal-
ysis of the low-carbon economic development situation in
province S, calculated various efficiency values, and carried
out a projection analysis. Recommendations for efficiency
improvement were proposed. The research results showed
that the MUQHS-DMFSE combination model could effec-
tively predict carbon emissions with a MAPE below 3.5%,
MAE below 200 tons, and RMSE below 200 tons, con-
firming the accuracy of the model. The technical efficiency
in province S was found to be 0.9854, with pure technical
efficiency slightly lower than scale efficiency. Adjusting the
industrial structure and developing the tertiary industry were
recommended. The province should also adjust its energy
structure, promote clean energy, control carbon emissions,
optimize industrial structure, and develop the tertiary indus-
try to foster low-carbon economic development. Overall,
this research, through the establishment of a carbon emis-
sion prediction model and a low-carbon economic evaluation
method, along with empirical verification, has confirmed the
effectiveness of the proposed methods. It provides important
theoretical support and practical guidance for the develop-
ment of a low-carbon economy.
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The practical innovation contributions of this research
can be summarized as follows: Firstly, employing the DEA
method provides a comprehensive evaluation of the efficiency
levels of different decision units, offering a scientific basis
for formulating strategies for low-carbon economic devel-
opment. Secondly, the comprehensive model demonstrates
excellent performance in carbon emission prediction, with
the accuracy of prediction results fully validated, thus pro-
viding an effective tool for controlling and reducing carbon
emissions. Additionally, the research emphasizes the neces-
sity of measures such as adjusting the energy structure and
optimizing the industrial structure for achieving a low-carbon
economy. This has important reference value for government
and corporate policy-making and development strategies.

B. RESEARCH LIMITATIONS AND FUTURE WORK
The optimization and development of a low-carbon energy
economy based on AI and big data analysis require the
research and development of complex algorithms to consider
multiple variables and factors comprehensively. This will
require more computing resources and time. In the future,
the research framework can be extended to introduce Net-
work DEA model to better capture the complex relationships
and interactions within the system. Network DEA takes
into account the interactions between decision making units,
which helps to evaluate its efficiency more comprehensively.
The result can help people to effectively determine and model
the connection structure between the various decision units
in the system. This includes determining the relationships
between inputs and outputs, as well as the interdependencies
between individual decision units. Such analysis will help
measure the efficiency of the system more accurately. The
application of Network DEA can explain the efficiency score
of each decision making unit more deeply. This research will
not only focus on the overall efficiency, but also in-depth
understanding of local efficiency issues in the system, so as to
provide more specific and professional recommendations for
system improvement. Sensitivity analysis can be performed
to consider the effect of different weight assignments and
parameter settings on efficiency assessment. The result can
help this research determine the robustness of the system and
provides more reliable recommendations for improving the
system. Practical cases can be selected for study to verify the
applicability of NetworkDEAmodel in low-carbon economy.
This case study will further confirm the effectiveness and
feasibility of the proposed method in practical application.
Further research can be conducted on machine learning, deep
learning, and other big data analysis algorithms to develop
more efficient and accurate algorithms to support the opti-
mization and development of a low-carbon energy economy.
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