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ABSTRACT In the evolving domain of built-up area surveillance, remote sensing technology emerges
as an essential instrument for Change Detection (CD). The introduction of deep learning has notably
augmented the precision and efficiency of CD. This study focuses on the integration of deep learning
methodologies, specifically the diffusion model, into remote sensing CD tasks for built-up urban areas.
The goal is to explore the potential of a pre-trained Text-to-Image Stable Diffusion model for CD tasks and
propose a new model called the Difference Guided Diffusion Model (DGDM). DGDM incorporates multiple
pre-training techniques for image feature extraction and introduces the Difference Attention Module (DAM)
and an Image-to-Text (ITT) adapter to improve the correlation between image features and text semantics.
Additionally, DGDM utilizes attention generated from pre-trained Denoise UNet to enhance CD predictions.
The effectiveness of the proposed method is evaluated through comparative assessments on four datasets,
demonstrating its superiority over previous deep learning methods and its ability to produce more precise and
detailed CD results. This innovative approach offers a promising direction for future research in urban remote
sensing, emphasizing the potential of diffusion models in enhancing urban CD precision and automation.
Our implementation code is available at https://github.com/morty20200301/cd-diffusion.

INDEX TERMS Remote sensing data, change detection, diffusion model, built-up areas.

I. INTRODUCTION

The escalating phenomenon of urban sprawl worldwide
underscores the pressing need for efficacious Change Detec-
tion (CD) mechanisms to meticulously monitor, analyze,
and adeptly manage urban transformations. The essence of
CD lies in discerning variations in terrestrial objects over
temporal scales, typically employing a pair or more of images
captured from identical geographical coordinates, a task
significantly facilitated by remote sensing technology [1],
[2], [31], [4]. This technology has proven indispensable in a
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plethora of realms, notably in disaster monitoring and urban
planning, by virtue of its capacity for real-time surveillance
and analysis [5].

In the specific context of built-up urban territories,
CD unveils a unique array of challenges and prospects,
thereby warranting a focused scrutiny within the domain
of remote sensing technologies [6], [7], [8], [9]. The
inherent density, complexity, and dynamism of urban land-
scapes demand the inception of advanced, resilient, and
automated CD methodologies [10]. These methodologies
are quintessential for aptly mirroring the subtle alterations
transpiring over time, especially against the canvas of swift
urbanization, climate change ramifications, and burgeoning
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infrastructural advancements [11]. The rigorous surveillance
of urban locales is instrumental in unearthing invaluable
insights into a multitude of urban dynamics including, but not
limited to, shifts in land-utilization, residential expansions,
and the intrusion upon verdant expanses [12]. In light of the
progressive strides in remote sensing technology, there has
been a palpable surge of interest among researchers toward
honing CD methodologies [13], [14]. The ongoing endeavor
to refine these methods not only holds promise for elevating
the accuracy and efficiency of urban change detection but
also for contributing to more prudent and sustainable urban
planning and disaster management strategies.

In the past, change detection was primarily addressed
through traditional methods and handcrafted features [15],
[16]. However, traditional methods have limitations, and it
can be challenging to choose the most suitable approach in
practice. The limitations of traditional methods are becoming
more apparent due to factors like diverse remote sensing data
sources, improved spatial resolution, and richer image details.
The poor expressiveness of features extracted by traditional
methods can significantly reduce change detection accuracy
and make the process sensitive to factors such as seasonal
variation, illumination conditions, satellite sensors, and solar
altitude angle. Traditional methods often require manual
extraction of features, which can be time-consuming and
tedious. Additionally, they heavily rely on domain-specific
knowledge, which hampers the automation capability of
change detection technology. In summary, traditional meth-
ods that depend on expert knowledge tend to be suboptimal,
and the features they use are not strong in representing
images.

With the emergence of Deep Learning (DL) [17], [18],
change detection has been extensively explored [19], [20].
DL-based methods offer a promising solution to overcome
the limitations of traditional methods, by automatically
learning and extracting features from remote sensing images,
making the process more efficient and less reliant on human
expertise. Furthermore, DL’s nonlinear characterization and
remarkable feature extraction capabilities grant it a profound
understanding of complex scenes, resulting in performance
that consistently surpasses that of traditional methods.
Capitalizing on these advantages, DL-based methods have
witnessed an exponential rise in their adoption for tack-
ling remote sensing challenges [21], [22]. From tasks
such as image classification, object detection, and scene
upstanding, to image segmentation, DL techniques have
been harnessed to enhance the quality and efficiency of
remote sensing applications [3], [4]. Notably, the highly
discriminative features offered by DL methods have proven
invaluable in addressing CD problems. Researchers have
undertaken numerous studies to acquire richer insights
into changes through the design of well-crafted model
structures [23], [24], [25], [26].

Recently, the diffusion model [27] has emerged as a
powerful tool in generative Al. One of its standout features
is the ability to model intricate data distributions without
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the need for adversarial training. This sidesteps challenges
commonly associated with Generative Adversarial Networks
(GANs) [28], such as mode collapse. Furthermore, the
Denoise Unet [29] demonstrates proficiency in extracting
meaningful image features during its reverse operation.
Notably, the ddpm-CD [26] employs the diffusion model
for CD tasks and surpasses preceding methodologies by
a significant margin. However, it relies solely on image
features, overlooking the rich potential of high-level text
semantics [30].

In this paper, we introduce the Difference Guided Dif-
fusion Model (DGDM) for remote sensing CD tasks. Our
objective is to harness the capabilities of a pre-trained
text-to-image diffusion model [29]. Drawing inspiration
from recent research [30], [31], we employ a frozen VQ-
GAN [32] encoder to extract features from the subsequent
scene and a frozen MAE [33] to obtain features from
both the preceding and subsequent scenes. Building on this
foundation, we developed a Difference Attention Module
(DAM) to pinpoint the feature variations between scenes.
To bridge the disparity between image features and high-level
text semantics from pre-trained models, we introduced an
Image-to-Text (ITT) adapter. Using a pre-trained diffusion
model, the cross-attention map integrates with multi-scale
feature maps sourced from the Denoise UNet. This combined
output is then concatenated through a streamlined decoder
for CD prediction. Our evaluations reveal that the DGDM
outperforms the previous State-of-the-Art (SOTA) on four
renowned CD datasets, showcasing significant improve-
ments.

The contributions of this paper are summarized as follows:
(1) We introduce DGDM, a pioneering approach that lever-
ages pre-trained knowledge from a text-to-image diffusion
model for CD tasks. (2) We developed the ITT adapter,
specifically designed to bridge the gap between image
features and learned text semantics. (3) We demonstrate the
effectiveness of employing multiple pre-training technologies
to enhance learning in new tasks. (4) Across four datasets,
we assess and establish the superiority of our methods.

Il. RELATED WORKS

A. REMOTE SENSING CHANGE DETECTION

There are a wide variety of methods available for detecting
changes in multi-temporal images, such as ImageRatio [15],
DPCA [36], MAD [37], CVA [38], and IRMAD [39]. Recent
advancements in remote sensing CD have been signifi-
cantly influenced by deep learning, owing to its superior
learning capabilities [4], [40], [41]. Deep learning models,
especially Convolutional Neural Networks (CNNs), have
demonstrated exceptional performance in extracting intricate
features from high-dimensional data, which is especially
beneficial for analyzing remote sensing images (e.g., FC-
EF [19], DS-IFN [42], and DASNet [43]). These neural
network-based models are adept at automatically learning
hierarchical representations without the necessity of manual
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FIGURE 1. Samples for text-to-image generation. All the samples are generated through a Stable Diffusion [29] model finetuned on RSICD
dataset [34]. Input texts are shown on the left, and columns 1-8 are generated images (the last column is ground-truth).

feature extraction, making them particularly advantageous for
large-scale and high-resolution datasets [21], [22]. Attention
modules [44], [45], [46] and transformer networks [47] tend
to be a new aspect of CD tasks, which focus more on the
global information during CD calculation. Moreover, the
emergence of weakly supervised and contrastive techniques
in the context of deep learning has further opened new
horizons in remote sensing CD. These methodologies allow
models to enable a training pipeline by pseudo label [35]
or contrastive learning, thereby reducing the need for large
labeled datasets in the remote sensing domain. Recently,
diffusion probabilistic models have emerged as potent
tools, addressing the challenges present in contemporary
remote sensing pre-training techniques [48]. ddpm-CD [26]
leverages the diffusion model to compute feature differences
during the denoising process, yielding superior DC results
compared to earlier studies. However, it still lacks the ability
to fully utilize the potential of a pre-trained diffusion model.
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B. DIFFUSION MODEL

Generative models have been a cornerstone of machine
learning, particularly in image synthesis. Prominent mod-
els such as Variational Autoencoders (VAEs) [49] and
Generative Adversarial Networks (GANs) [28] have paved
the way for generating realistic images, with Diffusion
models [27], in particular, showing remarkable success in this
domain.

Diffusion processes have been explored to model the data
generation procedure as a stochastic process, where images or
data are gradually transformed from a noise initial state. One
of the earliest works leveraging this idea was the denoising
diffusion probabilistic models [27]. This model established
a framework where data is transformed into noise through a
reverse diffusion process, and the generation is the forward
process from noise to data. Stable Diffusion [29] is designed
to make the training and generation process of diffusion
models more stable, consistent, and efficient. This can be
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FIGURE 2. Reconstruction samples from MAE Pre-training. We employ the RSICD dataset [34] and the BA Dataset [35] for pre-training, using a
mask rate of 75%. Within each sample, the first column displays the original input image, the second showcases the image with 75% of its pixels
masked, and the final column presents the image as reconstructed by MAE.

in terms of convergence during training, the fidelity of the
generated samples, or even the computational efficiency of
the process. Text-to-image generation is inherently more
complex than image synthesis from noise. This is because
the model has to align the diffusion process with the semantic
content of the text. Stability in this context would imply that
small changes in the text description or slight variations in
the diffusion process wouldn’t lead to drastically different or
nonsensical images. As shown in Figure 1, we demonstrate
some generated samples from stable diffusion finetuned on
RSICD dataset [34]. They depict scenes across city centers,
bridges, land, and more, boasting high quality and aligning
accurately with the provided texts.

A recent work VPD [30] further extends the denoise
process of text-to-image by extracting the visual insights
garnered by advanced diffusion models for tasks related to
visual perception, e.g., segmentation [50] and depth estima-
tion [51]. Rather than following the incremental diffusion
process, they suggest using an autoencoder like UNet as the
primary model. This allows for the direct processing of clean
images without introducing noise. They then incorporate a
singular denoising step using specific text prompts to derive
the semantic information. The cross-attention between text
and image feature [52] tends to be a strong guidance for
downstream tasks. Inspired by VPD, we take advantage
of Denoise UNet to instruct the detection of remote
sensing change through feature differences between input
images.
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C. MASKED AUTOENCODERS

The Masked Visual Modeling method [53] offers a novel
approach to learning representations from images that have
been purposefully disrupted by masking. Essentially, this
technique functions akin to denoise autoencoders, perturbing
the input signals and subsequently reconstructing the original,
undistorted signals to acquire effective representations.
This paradigm has given rise to various derivatives, such
as methods for reconstructing masked pixels [54] or for
restoring lost color channels [55]. The remarkable success of
Masked Language Modeling in Natural Language Processing
(NLP), exemplified by BERT [56], in the context of self-
supervised pre-training, coupled with the growing popularity
of Vision Transformers (ViT) [57], has ignited a significant
surge in research exploring the use of transformer-based
architectures for Masked Visual Modeling within the domain
of computer vision.

Some recent works naturally extend the foundational prin-
ciples laid out by BERT [56] and propose learning representa-
tions from images by predicting discrete tokens. Meanwhile,
MaskFeat [58] showcases the remarkable performance,
particularly when employing the Histogram of Oriented
Gradients (HoG) as the prediction target. iGPT [59], with its
pioneering works in predicting pixel sequences, has charted
the course in this direction. Additionally, some other research
efforts [33] focus on using pixels themselves as prediction
targets, a more straightforward approach. MAE [33] and
its variants [60], by learning to reconstruct missing patches
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FIGURE 3. Overview of our proposed DGDM for remote sensing change detection: DGDM employs a frozen VQ-GAN encoder to extract features
from the subsequent scene. It utilizes a frozen MAE to capture features from both preceding and later scenes. Following this, the DAM module
computes the difference and aligns it with the Denoise UNet via the ITT adapter. We concatenate the cross-attention map with multi-scale
feature maps sourced from the Denoise UNet, then forward them to a decoder, culminating in a classifier for change detection.

from randomly masked input image patches, have excelled
in generating high-quality visual representations. Notably,
MAE’s encoder is optimized to handle visible patches, even
under a high mask ratio, significantly expediting training and
translating into improved transfer performance. We adopt
MAE (patch 16 x 16) as the encoder to encode the input image
and then use the extracted features to compute the difference
prompt for a Denoise UNet. In Figure 2, we demonstrate
some reconstruction samples from MAE pre-trained on
RSICD dataset [34] and BA Dataset [35]. We observe that
even when 75% of the pixels are masked in the original input
image, MAE demonstrates the capability to reconstruct them
using visible patches. Therefore, MAE is adeptly suited to
serve as the encoder for feature difference calculation.

lll. METHOD

A. OVERVIEW

In Figure 3, we present the overall workflow of our Difference
Guided Diffusion Model (DGDM) designed for detecting
changes in remote sensing imagery. The DGDM framework
employs a frozen VQ-GAN encoder to distill features specif-
ically from later scenes. Simultaneously, a static Masked
Autoencoder (MAE) extracts features from both earlier and
later scenes. Following this, our Difference Attention Module
(DAM) assesses the disparities between these scenes and
aligns them using the Image-to-Text (ITT) adapter before the
input to a Denoise UNet architecture. The denoising process
will generate cross-attention maps with multi-scale feature
maps. They are channeled through a decoder, culminating in
a specialized classifier for change detection. We will provide
a detailed discussion of these components in this section.

B. PRELIMINARIES: DIFFUSION MODELS

Firstly, we offer a concise introduction to diffusion models.
These models emulate data distribution by learning the
reverse stage of a diffusion process. Denote z; as the random
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variable at the 7-th time step; the diffusion process can be
characterized as:

It NN(\/a_th—lv(l_al)I)’ (1)

where a; are pre-defined coefficients for noise schedule.
We can further get a simple close form of p(z;|zo) by:

2 =azo + V1 — e, )
t
a = Ha,-, e ~ N, ). (3)

i=1

This function allows model to sample an arbitrary z; during
training. By the re-parameterization [27], the objective
function of diffusion models can be converted to:

Loy = By e llle — €p(z: (20, €)), 15 Cl13], 4

where € is the Denoise UNet [61] which is trained to predict
€ based on the conditioning inputs C and z; is calculated in
Equation 2.

Equation 4 ensures consistent training of diffusion models,
even when faced with sophisticated conditioning inputs. The
approach of Stable Diffusion [29] has been pivotal in text-
to-image generation, showcasing impressive outcomes in
image synthesis guided by natural language. In their method,
a VQGAN is initially trained to bridge the pixel space and
the latent space. Following that, a diffusion model is trained
in this latent space, aligning with the objective outlined
in Equation 4. VPD [30] delves deeper, exploring ways to
harness the extensive knowledge embedded in the pre-trained
text-to-image diffusion model for subsequent visual tasks.
In our work, we leverage the feature disparity between prior
and subsequent scenes as the conditioning input, enhancing
CD predictions using the pre-trained text-to-image diffusion
model.
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C. DIFFERENCE GUIDED DIFFUSION MODEL

Given an image x, € R*#>W>3 of the preceding scene and
an image x; € RE*W>3 of the later scene, our target is to
predict the changing area y € R¥*W>! between them where
y is a binary mask.

1) VQ-GAN AND MAE ENCODER

We denote a frozen VQ-GAN’s encoder as E,_gq,. Note that
we obtain the VQ-GAN pre-trained by [62]. Thus, using x; as
the input, the output of the encoder is treated as zp:

20 = Evg_gan(x1), € RPwxe, 5)

In order to compute the feature difference between x;, and x;,
we utilize an 8 x 8 MAE [33] encoder pre-trained on RSICD
dataset [34] and the BA Dataset [35]. Denoting E,,,. as the
encoder, the feature extraction can be defined as:

f}? = Enae(Xp), € R*€, (6)
Ji = Epae(x1), € RS>, (7

where s is the flattened spatial dimension (s = 64 for 8 x 8
MAE) and c is the same feature dimension as Equation 5.

2) DIFFERENCE ATTENTION MODULE

Our DAM is an adaptation of the cross-attention mechanism.
To preserve spatial information, we incorporate position
embeddings p into each vector in f;,, leading to fx/] =fy +p.
x/z serves as both the Key and the Value, while the feature
Jfx, from the preceding scene acts as the Query. The linear
transformations for Query, Key, and Value are symbolized by
0(), K(-), and V(-), respectively. As shown in Figure 4, the
formulation of DAM is as follows:

Ag = Q(fp)K(fl/), (®)
Al = softmax(¢(Aq)), ©)
fa = AV (), (10
fi = norm(fa + f), € R, (n

where ¢ represents a Feed Forward Network (FFN) and
norm denotes layer normalization. After DAM we get feature
tokens that describe the difference between preceding and
later scenes.

3) IMAGE-TO-TEXT ADAPTER

Our DAM quantifies the difference between two input images
and represents it by f;. However, as we introduced in
Section III-B, the conditioning inputs are original text data
and there is a gap to our f;. We thus need a module to
covert image features and align them into the semantic space
of texts. Image-to-Text (ITT) Adapter is inspired by recent
visual prompt works [63], [64]. We set ITT as a simple
structure with only two layers of full connection and this
processing can be formulated as:

fa = ITT(f)), € R°*“. (12)
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We find that ITT alignment between image feature and
pre-trained text semantic is essential for the training of
continues Denoise UNet. This can be found in Section IV.
We use f as the conditioning input C defined in Equation 4.

4) DENOISE UNET

A pre-trained diffusion model encapsulates sufficient infor-
mation for sampling from the data distribution, as model
€p can be interpreted as the gradient derived from data
density [30], [69]. We believe that a text-to-image model
already has enough high-level knowledge. After ITT, the
aligned difference features can instruct the denoising process.
Through Denoise UNet €5, we want to extract multi-scale
feature maps F and corresponding attention A between fy
and zo. The process of Denoise UNet can be formulated as:

F, A= €20, fa)- (13)

Observe that we set + = 0, ensuring that the latent feature
map remains no noise. The multi-scale feature F is readily
derived from the final layer of each output block across
varying resolutions. This comprises four feature maps, with
the spatial size of the i-th feature map F; defined as h; = w; =
2%2i=1,2,3,4.

It has been observed in [30] and [52] that the attention
maps A generated from cross attention module is essential
for downstream task. Cross-attention is operated through
each of the 4 resolutions of the Denoise UNet. Follow-
ing [30], we take the mean of all cross-attention maps
corresponding to a particular resolution to yield an average
map A; for the i-th resolution. Given that cross-attention
maps are derived by using the conditioning inputs C as
both key and value, the shape of the averaged attention
map is A; € RIxwixs,

We then resize (to block i = 4) and concatenate F and A
into an entirety M as:

4 -
M = f re([Fy, Aj]), € RIwaxc, (14)
i

where § is the loop calculation, [-] is the concatenation and
re is the resize operation. M merge both the image features
of zo derived from Denoise UNet and high-level semantic
describing difference. We find this mixture of information can
greatly contribute to the downstream CD tasks.

5) CHANGE DETECTION

The final target of our DGDM is to realize the CD and we
employed a simple decoder (3 layers of convolution) followed
by a one-layer fully connection as a classifier. The process can
be formulated as follows:

y = cls(Decoder(M)), (15)

where cls(-) is the classifier and y is the final change
detection.
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FIGURE 4. The structure of our Difference Attention Module (DAM). It takes features from the preceding scene as query and

the later scene as Key and Value.

TABLE 1. CD results on four datasets compared to previous SOTA methods. All results are shown as percentages and the best results are mark with bold

and the second best are marked with underline.

WHU-CD [65] LEVIR-CD [66] DSIFN-CD [42] CDD [67]

Method F1 IoU OA F1 IoU OA F1 IoU OA F1 IoU OA

FC-SC [19] 83.67 7196 9849 79.85 6646 9850 59.71 4256 87.57 75.11 60.14 9495
FC-EF [19] 8340 7153 9839 76.73 6224 9831 7217 5645 8337 6693 5030 93.28
FC-SD [19] 86.31 7592 98.67 78.95 6523 9884 7055 5449 84.13 70.61 5457 94.33
DT-SCN [68] 87.67 78.05 98.77 9143 84.21 9935 70.58 5443 82.87 92.09 8534 98.16
STANEet [66] 8726 7740 98.66 8232 69.95 9852 6456 47.66 8849 84.12 7222 96.13
SNUNet [24] 88.16 78.83 98.82 83.50 71.67 9871 66.18 4945 87.34 83.89 72.11 96.23
ChangeFormer [20] 90.40 8248 99.04 88.57 79.49 99.12 94.67 88.71 93.23 94.63 89.80 98.74
BIT [23] 89.31 80.68 98.92 90.53 83.39 9934 8761 7796 9230 8890 80.01 97.47
ddpm-CD [26] 9091 83.35 99.09 9265 86.31 99.42 96.65 91.28 97.09 9562 91.62 98.98
DGDM (ours) 91.25 8391 99.18 92.80 86.55 9943 96.48 91.05 96.88 95.70 91.78 99.09

IV. EXPERIMENTS

A. DATASET AND TRAINING DETAILS

1) PRE-TRAING

We adopt a VQ-GAN model from [62] and finetune the
Stable Diffusion using RSICD dataset [34] which collectively
comprise 10,921 remote sensing images, each accompanied
by five descriptive sentences. Some samples are shown in
Figure 1. We also pre-train MAE with both the RSICD
dataset [34] and BADataset [35]. This is realized by first
pre-training a 16 x 16 MAE with 40 epochs. Then, we resized
the learned position embedding into 8 x 8 and finetuned
a 8 x 8 with a further 40 epochs. The learning rate starts
from 0.0001 and undergoes a linear decay to zero across
40 epochs in both settings. We take this operation to ensure
that even an 8 x 8 MAE can extract informative features. The
reconstruction results can be found in Figure 2.

2) TRAINING OF DGDM

We adopt four popular datasets to evaluate CD tasks. They
are WHU-CD [65], LEVIR-CD [66], DSIFN-CD [42], and
CDD [67]. These four data describe the changes in surface
architecture during urban construction. Following previous
works, we adopt 256 x 256 as the input size for models.
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We retained the parameters of both the VQ-GAN’s encoder
and the MAE’s encoder in a fixed state. The Denoise UNet
was assigned a learning rate of 0.00005, while other modules
received a rate of 0.0001. These rates undergo a linear decay
to zero across 100 epochs. We fine-tuned DGDM using the
validation set of the datasets and presented the outcomes
on the test set. We employed the cross-entropy loss in
conjunction with the AdamW [70] optimizer. All experiments
are implemented using a Nvidia A100 GPU.

3) COMPARISON WITH STATE-OF-THE-ART (SOTA)

We compare our DGDM with several SOTA methods
including DT-SCN [68] a daul-task constrained siamese
network, STANet [66] spatial-temporal attention network,
ChangeFormer [20] a transformer-based method, fully-
convolutional early-fusion (FC-EF) [19], siamese-difference
(FC-SD) [19], siamese-concatenation (FC-SC) [19], ddpm-
CD [26] a diffusion model-based method, and BIT [23] bi-
temporal image transformer.

4) EVALUATION METRICS
To evaluate the CD performance, we present the F1 and Inter-
section over Union (IoU) scores pertaining to the change class

VOLUME 12, 2024
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ddpm-CD [26] in WHU-CD dataset [65].
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FIGURE 6. Comparision of our DGDM to SOTA methods FC-SD [19], BIT [23], ChangeFormer (C-Former) [20], and
ddpm-CD [26] in LEVIR-CD dataset [66].
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FIGURE 7. Comparision of our DGDM to SOTA methods FC-SD [19], BIT [23], ChangeFormer (C-Former) [20], and

ddpm-CD [26] in DSIFN-CD dataset [42].

C-Former

ddpm-CD

DGDM Truth

e o)

v

Lo

\F

)
.t

=
s

=

FIGURE 8. Comparision of our DGDM to SOTA methods FC-SD [19], BIT [23], ChangeFormer (C-Former) [20], and

ddpm-CD [26] in CDD dataset [67].

as our primary quantitative metrics. Additionally, we provide
the overall accuracy (OA) to assess the comprehensive quality
of predictions, in alignment with [26].

B. RESULTS
1) QUANTITATIVE RESULTS

In Table 1, we juxtapose our DFDM with prior SOTA
methods across four distinct datasets. Results are represented
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in percentages, with top performances highlighted in bold
and second-best underlined. Notably, ChangeFormerm, BIT,
and ddpm-CD represent the most recent advancements in CD
tasks. Upon analysis, it’s evident that DFDM consistently
outperforms across three metrics on WHU-CD, LEVIR-CD,
and CDD datasets. To illustrate, in the WHU-CD dataset,
there is a marked improvement of 0.34%, 0.56%, and 0.09%
in F1, IoU, and OA metrics respectively when compared to
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TABLE 2. Ablation studies assess the impact of the DAM&ITT, MAE, and Attention modules on CD results across four datasets. All outcomes are presented

as percentages, with the best results highlighted in bold.

WHU-CD [65] LEVIR-CD [66] DSIFN-CD [42] CDD [67]

DAM ITT MAE Attention Fl1 IoU OA F1 IoU OA F1 IoU OA F1 IoU OA
v v v 81.57 7033 9819 79.02 66.58 98.70 69.93 5277 81.68 7633 62.68 95.68

v v v 83.69 7292 9836 80.50 67.14 98.83 7044 5329 80.53 74.19 60.27 95.39
v v v 88.15 80.34 9890 8945 8297 99.28 87.07 7699 92.18 8750 79.81 97.33
v v 80.22 70.18 98.02 77.56 66.02 9843 6856 5250 80.27 7348 59.82 9526

v v v 8522 7540 9855 179.02 65.71 9890 7134 5849 84.13 7548 5890 95.81
v v v v 91.25 8391 99.11 9280 86.55 99.44 96.48 91.05 96.88 9570 91.78 98.99

one of the leading methods, ddpm-CD. The incorporation of
the diffusion model’s semantic information enables DFDM to
more effectively discern differences between scenes, a core
competency of the CD task. However, in the DSIFN dataset,
our performance is marginally less optimal. This may caused
by the small data quantity of DSIFN, which made the learning
of DFDM difficult. Despite this, the results achieved by
DFDM remain competitive, given the minimal disparity.

2) QUALITATIVE RESULTS

We provide visual representations of CD predictions across
four datasets, presenting two sample images for each from
Figures 5 to 8. A comprehensive analysis will follow to
validate the superiority of our DGDM.

In Figure 5, we present two samples from the WHU-
CD dataset, which focuses on detecting changes in building
structures. Our DGDM demonstrates superior accuracy in
predicting the architectural contours, even capturing minor
modifications in buildings, as illustrated by the second
sample. The LEVIR-CD dataset shares a similar objective of
identifying building alterations but boasts a more extensive
data set with intricate scenes. As depicted in Figure 6,
the samples spotlight changes in densely constructed areas.
While methods like FC-SD, BIT, and C-Form struggle to
detect comprehensive alterations, and ddpm-CD exhibits
commendable results, our DGDM remains unmatched in
its performance. The DSIFN-CD and CDD datasets delve
into broader CD tasks. As shown in Figure 7, samples
in DSIFN-CD highlight the evident superiority of DGDM.
And CDD, with its massive collection of 15,998 data pairs,
poses challenges for all methods. As evident from the first
challenging sample in Figure 8, discerning pathways in green
zones proves elusive, leading models to misidentify them as
unchanged areas. Despite these challenges, DGDM exhibits
enhanced precision, especially in predicting main roads.

C. ABLATION

In this section, we evaluate the significance of certain
modules within our DGDM. As detailed in Table 2, our
ablation study focuses on DAM, ITT, MAE, and Attention
(generated cross-attention masks that concatenated to the
input for the encoder). VQ-GAN is necessary for the Stable
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Diffusion pipeline introduced in VPD [30]. Thus, it is not
included to this ablation study. A checkmark in the table
signifies the inclusion of a module during training, while
the last row with all check marks represents the complete
DGDM configuration. When MAE is excluded, the VQ-GAN
encoder is directly used for feature extraction. In the absence
of the Attention module, multi-scale features are directly fed
into the decoder, bypassing the concatenation with attention
maps.

Our findings highlight the essential roles of DAM and ITT
in training DGDM. As we hypothesized in Section III-C3,
a significant gap exists between image features and pre-
trained high-level semantics. The difference of images
from two periods also need to be calculated (disscused
in Section III-C2). Without these modules, we observed
a marked decrease in performance across all datasets.
Furthermore, our results indicate that merely adding either
DAM or ITT independently does not lead to a noticeable
improvement in performance. This suggests that each module
performs distinct and critical functions in the overall process.
The utility of Attention for downstream CD detection tasks
is also evident. We posit that the attention maps between
the difference feature represented as f; and zo accentuate
the areas of change, thereby contributing to the decoder.
Regarding the use of MAE, the pre-trained features in MAE
seem to facilitate a superior feature differentiation. This could
be attributed to the ViT structure, which aligns closely with
the text token encoder in the pre-trained Stable Diffusion.

D. DISCUSSION

The rapid pace of urbanization worldwide accentuates
the importance of efficient CD in built-up urban regions.
Such areas are characterized by their intricate landscapes,
comprising a mix of ever-evolving architectural styles, dense
infrastructural elements, and overlapping urban features.
Historically, these complexities posed significant hurdles
for traditional CD methodologies. Deep learning, with its
superior feature extraction capabilities, has been a game-
changer, especially in discerning subtle transformations
within dense urban fabrics. Our DGDM, which adeptly
combines both image features and high-level text semantics,
emerges as an invaluable tool in this domain. It can pinpoint
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even the slightest changes in urban structures, an attribute
that’s paramount for applications like urban planning, disaster
management, infrastructure assessments, and developmental
monitoring.

It’s crucial to acknowledge that there’s room for refined
enhancements, as illustrated by the outcomes from the DSIFN
dataset. To optimize learning and improve the alignment
between image features and semantics, DGDM requires
a more comprehensive dataset. In the future, we plan to
involve more data for training, which is the tend for large
vision model pattern. Our ablation study has provided deeper
insights into the functions of individual modules within
DGDM. The pivotal roles of DAM&ITT, the significance
of the Attention module in underscoring differences, and
the synergy between multiple pre-training technologies like
MAE, underscore the depth and sophistication of our model.

It is certain that urban change is vast, and DGDM’s
potential could paint far beyond the current experiment
results. As cities evolve, the need for CD methodologies
that are not just precise but also swift, scalable, and socially
sensitive becomes paramount. DGDM is designed to fusion
the image feature and text knowledge. It can further extent
to incoperate information other than only image (e.g.,
year, landsacpe description) to improve its ability. With
its innovative architecture, sets the stage to address these
needs, offering a solution that is as agile as it is accurate.
The potential applications are myriad: from guiding urban
development with an environmentally conscious approach to
enabling disaster resilience by rapid assessment of calamities.
The model could serve as the cornerstone for smart city
initiatives, where real-time data fusion from various sensors
informs sustainable urban growth, and where community
engagement in validating CD results fosters a participatory
approach to urban planning.

In the era of swift urban transformations, the demand for
precise, efficient, and scalable CD methodologies escalates.
Our proposed method DGDM, with its innovative features
and high accuracy in CD tasks, stands ready to meet this
pressing urban challenge.

V. CONCLUSION

As cities continue to sprawl at an unprecedented pace, the
ability to monitor and understand these changes is becoming
ever more vital. Remote sensing technologies for urban CD
are at the forefront of this challenge. Our latest research
introduces a breakthrough in this vital field, blending the
advanced capabilities of a learned diffusion model with a
diverse suite of pre-training technologies. This innovative
approach enables us to capture the nuanced dynamics of
urban expansion with greater precision than ever before. Our
DGDM is a testament to the power of this fusion, marrying
the inherent strengths of diffusion models with the latest
developments in text-to-image conversion. By doing so, the
DGDM not only carves a path for future exploration in urban
CD tasks but also sets a new benchmark for the discipline.
We have achieved this by integrating VQ-GAN, MAE, and
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an intricate ITT adapter. The well-designed orchestration of
these advanced technologies within the DGDM framework
pushes it to the forefront, surpassing existing state-of-the-art
methods. This assertion is backed by robust empirical data
gathered from a comprehensive range of urban CD datasets.
The practical applications of our research are manifold. From
improving urban planning and management to aiding in
disaster response, the implications of our work are profound.
By increasing both the precision and automation of CD
techniques, we can offer planners and policymakers tools that
were previously unimaginable.

Looking forward, we envision our research serving as a
springboard for further exploration. The potential to refine
diffusion models for even more complex urban environments
presents an avenue for future studies. It is our hope that
the DGDM will encourage a new wave of innovation in
remote sensing, leading to smarter, more sustainable cities.
In sum, our research not only represents a improvment in
urban remote sensing capabilities but also serves as a clarion
call for the community to continue pushing the boundaries of
what these technologies can achieve.
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