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ABSTRACT Sensor-based sorting describes a family of systems that enable the removal of individual
objects from a material stream. The technology is widely used in various industries such as agriculture,
food, mining, and recycling. Examples of sorting tasks include the removal of fungus-infested grains, the
enrichment of copper content in copper mining or the sorting of plastic waste according to the type of
plastic. Sorting decisions are made based on information acquired by one or more sensors. A particular
strength of the technology is the flexibility in sorting decisions, which is achieved by using various sensors
and programming the data analysis. However, a comprehensive understanding of the process is necessary
for the development of new sorting systems that can address previously unresolved tasks. This survey is
aimed at innovative researchers and practitioners who are unfamiliar with sensor-based sorting or have only
encountered certain aspects of the overall process. The references provided serve as starting points for further
exploration of specific topics.

INDEX TERMS Agriculture, automatic quality control, food processing, machine vision, mining, recycling,
sensors.

I. INTRODUCTION
Sensor-based sorting is an increasingly important technology
in various industries where material streams must be
processed with high throughput. The umbrella term refers to
a family of systems that enable the separation of individual
particles from a bulk material stream, where the sorting
decision is based on sensor data. The term bulk material
describes a powdery, granular, or lumpy mixture in pourable
form, i.e., unpacked. They are used, for example, to remove
fungus-infested seeds before sowing and foreign or inferior
substances from food, to enrich ores inmining, e.g. for copper
or gold extraction, or to sort waste, e.g. lightweight packaging
by material type or waste glass cullet by color. Since sorting
decisions are typically calculated based on information from
one or more imaging sensors, it falls within the scope of
machine vision. The manual counterpart to sensor-based
sorting is hand picking, in which impurities are removed by
hand from a product to be recovered. The development of
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sensor-based sorting systems in the broadest sense has been
around for almost 100 years. For example, there exists a
relevant patent from 1926 [1]. It has found wide application,
mainly in the fields of mining, recycling, and the processing
of agricultural products and foodstuffs.

A schematic representation of the processes is shown
in Fig. 1. The material is fed into the system by means
of a conveyor mechanism, for instance, a vibrating feeder.
The material is then transported further, for example, by a
conveyor belt. Sensor-based data acquisition also takes place
during this transport phase. The sensor data are processed
with the goal of detecting and classifying individual particles
in the material stream. The classification result serves as the
basis for the sorting decision, which is executed by means of
actuators. Since classification and separation are performed
in separate steps, sensor-based sorting is sometimes also
referred to as indirect sorting in distinction from mechanical
sorting processes such as screening, wind sifting, or float/sink
processes [2]. In theory, an arbitrary number of classes can be
distinguished, and separation into multiple fractions is also
possible in principle. In industrial applications, however, the
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FIGURE 1. Schematic illustration of the sensor-based sorting process.

task is usually implemented as a binary sorting task, that is,
sorting into “product” and “residue”, since this is both simpler
and more efficient to implement than multi-way sorting.

A particular strength of the sorting technology lies in the
flexibility with regard to the detectable material properties,
and thus the sorting criteria to be applied. This is mainly
due to the variety of sensors that are suitable for use in
sensor-based sorting systems. Due to their suitability for
systems with high material throughput, imaging sensors
dominate at this point. An example for a sensor-based sorting
system is shown in Fig. 2.
From this introductory overview, it becomes obvious

that research in sensor-based sorting is a highly interdisci-
plinary field, including aspects from the fields of process
engineering, mechatronics, sensor and actuator technology,
image processing, expert knowledge about the product to be
sorted, and probably more. In addition, only economically
attractive systems find their way into industrial applications,
which means that economic considerations are also of
great importance. Related work therefore typically sets
a corresponding focus, depending on the authors’ main
discipline. However, a multidisciplinary approach is always
required to implement high-performance sorting systems or
to solve new sorting problems.

At the time of writing, 131 articles and conference papers
are indexed in the Scopus database for the search query
“sensor-based sorting” for the period between 2006 and
2023. For the preparation of this paper, those were clustered
according to the main application field addressed and the
sensor technology focused on, where applicable. From Fig. 3
it can be seen that, according to the indexed work, there exist
threemain applications, namely the processing of agricultural
products and foodstuffs, mining, and recycling, the latter two
representing the clear majority of contributions. Although
most publications in the past have dealt with the mining
sector, it can be noted that, especially in recent years, this

FIGURE 2. Example of a sensor-based sorting system with its
components numbered as chronologically passed by the material stream:
(1) feeding, here: vibrating conveyor (2) transport, here: conveyor belt
(3) sensor box (4) schematic illustration of scan-line (5) illumination,
here: halogen floodlight (6) separation, here: pneumatic valves.

trend has shifted towards the recycling sector. Fig. 4 further
provides a qualitative overview of the relationship between
the sensor technologies considered most frequently and the
corresponding field of application according to the indexed
publications. As can be seen, there appears to be a dominant
application of sensors in the infrared (IR) spectrum for
recycling applications and of X-ray-based systems in the
mining field. Sensors operating in the visible (VIS) spectrum
are represented in all fields of application with a focus on
the processing of agricultural products and foodstuffs. Laser-
induced breakdown spectroscopy (LIBS) and laser-induced
fluorescence spectroscopy (LIFS) appear to be of current
interest both in mining and recycling, but are not considered
to the same extent as the aforementioned technologies.

This survey aims to cover a particularly broad spectrum
of the state of the art and research in sensor-based sorting.
For this purpose, we selected references from the year
2000 onward, focusing on recent publications. The references
were further selected based on their relevance in order to
cover the broad spectrum of research on sensor-based sorting
as well as their credibility, allowing a comprehensive view
of the topic. Existing surveys on the technology are typically
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FIGURE 3. Journal and conference papers indexed by Scopus per year and
field of application matching the search query ‘‘sensor-based sorting’’.

FIGURE 4. Qualitative comparison of the most widely used sensor
technologies and the respective application fields based on Journal and
conference papers indexed by Scopus matching the search query
‘‘sensor-based sorting’’.

limited to a certain field of application, such as mining [3],
[4] or the processing of municipal solid waste [2], or certain

sensors, such as infrared and laser-induced breakdown
spectroscopy [5]. The survey therefore aims at researchers as
well as practitioners who are either new to the application of
sensor-based sorting or have restricted themselves to certain
involved aspects.

This survey is organized as follows: Following this intro-
duction, we provide a detailed overview of the application
fields and exemplary sorting tasks that have been addressed
so far in Sec. II. These are clustered according to the
main fields of application in sensor-based sorting, i.e.,
processing of agricultural products and foodstuffs, mining,
and recycling. In Sec. III, we take a closer look at the different
system components involved, i.e., those illustrated in Fig. 1,
the common instantiations and their parameters. The main
process parameters that define the sorting task are discussed
in Sec. IV. Furthermore, an overview of common means to
quantitatively describe the efficiency of sensor-based sorting
systems is provided in Sec. V. Finally, Sec. VI concludes the
information provided and discusses the potential for future
research directions.

II. FIELDS OF APPLICATION OF SENSOR-BASED SORTING
Sensor-based sorting is used mainly in the fields of agri-
cultural products and foodstuffs processing, mining, and
recycling. All fields of application have in common that large
material streams need to be processed at high throughput.
Exemplary materials to be sorted from these different areas
can be seen in Fig. 5. In the following, exemplary tasks in the
respective areas are presented.

A. AGRICULTURAL AND FOOD INDUSTRY
In order to meet the great challenge of supplying food to a
constantly growing population in the face of declining arable
land, the agricultural industry is under constant pressure
to increase efficiency. There exist numerous examples of
the use of machine vision systems to support solving this
challenge [6]. Sensor-based sorting also plays an important
role in meeting this challenge.

Numerous articles deal with the grading of seeds for
crop production, that is, the detection of defects, damaged,
shrunken, and broken kernels, as well as foreign materials.
Corn with approximately 5% and rice and wheat with
approximately 19% each are among the most substantial
sources of calories in the human diet [7]. Consequently,
sensor-based sorting is widely used in these applications. For
example, it is a suitable sorting technology for the processing
of wheat grains [8]. High material throughput and low system
costs represent an important factor for the profitability of the
systems [9]. A prominent application example in this context
is the detection and removal of fungus-infected wheat grains
before sowing [10], [11]. Long-term conditioning of wheat
seeds is also expected to increase resistance to disease over
several generations [12]. Other research is even concerned
with estimating seed vigor during grading [13]. Comparable
studies have also been published in the context of corn
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FIGURE 5. Examples of materials to be sorted from mining, recycling and agricultural products and foodstuffs.

seed [14], for rice grading [15], [16], [17], and sunflower
seed [18].

In addition to tasks related to seeds and hence mainly
agricultural products, sensor-based sorting is also used in
the industrial processing of a wide variety of foods, for
example bulgur [19]. Safety-relevant application examples
can be found in the reduction of aflatoxin contamination in
apricot kernels [20] or the removal of coherbs containing
liver-toxic pyrrolizidine alkaloids from the spice and medic-
inal plant crop [21]. Numerous applications also deal with
the quality enhancement of nuts, for example pistachios [22]
or almonds [23]. Sensor-based sorting was even successfully
used to sort grapes according to their sweetness [24]. Other
applications include beans, corn for consumption, and small
fruits such as tomatoes and cherries [25].

B. MINING
In the field of mining, sorting tasks mainly consist of
separating ores to be extracted from non-metallic accompa-
nying minerals, called gangue. A particular challenge in this
area of application is that the materials to be detected are
always present as mixtures and virtually never in pure form.
In addition, very heterogeneous and complex geometries have
to be handled. A comprehensive overview of the application
field is presented in [4].
The processing of mineral resources typically involves

energetically very intensive and therefore expensive process
steps. This applies in particular to crushing andwet processes,
such as float/sink processes. In addition to energy costs, the
need for electricity and water, which can be contaminated
during the process, plays an important role in the operating
permit of a mine [26]. Due to increasing demand for certain

mineral resources and advanced mining, the industry also
faces decreasing ore grades and more complex ore types [3],
[27], [28].

This is also why the use of sensor-based sorting is
becoming increasingly economically attractive for this area
of application. By implementing pre-concentration before
the aforementioned process steps, unwanted by-products can
be removed from the material flow, thus reducing energy
requirements. Additionally, the freed-up capacity of the
process steps can increase the throughput of the target
product. In some cases, it is also possible to extract other
valuablematerials from the stock stream under the by-product
through sorting [29], e.g., quartz [30]. Furthermore, eco-
nomic analyses on the use of sensor-based sorting in this
context have been published [31], [32].

Many published works deal with the question at which
point in the preparation process, which is usually visualized
in the form of a flow chart, sensor-based sorting can be used
most efficiently. In general, it is agreed that pre-concentration
has the greatest effect if it occurs at the earliest possible
point in the processing chain, e.g., directly on the run-of-
mine material [4], [33]. As part of pre-conditioning, the rock
is often screened to a defined particle size distribution [34].
Commonly, a minimum cutoff grade is defined for the

pre-concentration of minerals. This threshold value indicates
what proportion of an element to be extracted should be
present in the rock so that it can be further processed. When
sensor-based sorting is used, the element to be extracted
is usually not detected, but rather indications in the form
of certain minerals are detected in order to make a sorting
decision. Many articles deal with sensor-based sorting for
enrichment of copper content [27], [33], [35], [36], [37],
[38], [39], [40], [41], [42]. Other fields of activity can be
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found in talc [3] and lithium extraction [30], tin extraction
by cassiterite detection [43], limestone extraction [44],
gold extraction [27], [38], [40], [45], [46], [47], silver
extraction [38], [46], [47], coal [48], [49] and shale coal
extraction [50] or rare earths [26], [51].

C. WASTE PROCESSING AND RECYCLING
In waste processing, manual sorting by humans is still
widespread today. However, the purity and thus the value of
recovered material can be significantly increased by using
sensor-based sorting systems [52]. This is urgently needed
because, for example, a directive of the European Union
mandates an increase in municipal waste recycling rates of
one percentage point per year from 55 to 65% by weight for
the years 2025 to 2035 [53].

Similarly to mining applications, sensor-based sorting in
the context of recycling is typically only a small component
of a complex processing chain, which also includes many
mechanical sorting processes [54]. Typical processing steps
include screening, magnetic separation, air classification,
ballistic separation, sensor-based sorting, and manual sort-
ing [55]. It typically serves as a pre-treatment step with the
goal of generating fractions as suitable as possible for a
recycling process. Two general tasks can be distinguished:
the sorting of highly heterogeneous mixed waste, such as
unseparated municipal waste, and the sorting of already
separately collected waste fractions.

A comprehensive overview of the use of both mechanical
and sensor-based sorting methods for highly heterogeneous
municipal waste is presented in [2]. Sensor-based sorting is
typically used for such heterogeneous material streams only
late in the treatment chain, i.e. subsequently to various other
processes. One reason for this is that sorting into a large
number of fractions is technically very complex. Frequently,
however, pre-sorting by mechanical processes is simply more
practicable. However, sensor-based process monitoring can
also provide valuable insights into material flows early in
the preparation [56], [57]. Occasionally, sensor-based sorting
is also applied early, i.e., on heterogeneous stock streams,
for example, to selectively extract glass [58] or to remove
impurities for further processing as refuse-derived fuel, e.g.,
polyvinyl chloride (PVC) [59].
In the work considered below, an already pre-sorted

material stream, for instance due to the way of collection,
is assumed. Glass, metal, and plastic recycling are presented
as the most prominent representatives. The processing of
construction and demolition waste is also considered.

1) GLASS
In glass recycling, sensor-based sorting has been used since
the 1990s. For reuse, the color purity of the waste glass cullet
is of great importance. For example, for the production of
white container glass with an addition of 50% waste glass
cullet, there must be a purity of color, that is, the addition
of actual white glass, of 99.7% [60]. Green glass behaves

most tolerantly. Here, an off-color content of up to 15% is
tolerable. Furthermore, foreign matter, especially ceramics,
stones and porcelain [58], as well as heat resistant [61] and
lead-containing glass [2] must be removed from the material
stream by sorting. All these tasks are realized using sensor-
based sorting.

2) METALS
Metal recycling plays an increasingly important role both in
the recycling of shredded components, such as those from
buildings or vehicles, and in the recycling of waste electrical
and electronic equipment (WEEE). For example, steel
demand and production have doubled in the last 30 years [62].
The use of recycling processes results in tremendous energy
and CO2-emission savings [63]. An overview of existing
sorting and sensing technologies and requirements forWEEE
recycling can be found in [64].

For metal recycling, magnetic separators are used first
in the treatment pipeline [62]. This results in an already
iron-free fraction, which can be further processed by sensor-
based sorting. Thereby, for example, separation of aluminum,
magnesium, copper, and brass can be achieved [65], [66].
A distinction between iron, chromium, and nickel is also
possible [62]. In addition, the differentiation of various alu-
minum alloys, especially cast and wrought alloys, represents
a special task [67]. Further investigations are concerned with
the preparation of materials of specific end products, for
example, screens [68].

3) PLASTICS
Sensor-based sorting has been established as a pre-treatment
step in plastic waste processing for several years. To prepare
the material for subsequent recycling processes, it is typically
necessary to create fractions as pure as possible with regard
to the polymer type. Obviously, those can occur in arbitrary
colors, hence the sorting needs to be material selective.
However, especially with the so-called waste electrical
and electronic equipment plastics (WEEP), complicated
mixtures or compounds of polymers that make the task even
more difficult occur quite often. For such, even float/sink
methods, which are often used for the separation of different
polymers [69], reach their limits in this task, since the
densities in mixtures of different polymers often overlap and
no longer allow differentiation [70].

A general task for sensor-based sorting in the pre-treatment
of plastic waste is the general differentiation of various poly-
mers such as polyethylene terephthalate (PET), low and high
density polyethylene (LDPE, HDPE), PVC, polypropylene
(PP), polystyrene (PS) and acrylonitrile-butadiene-styrene
(ABS) [71], [72]. In many cases, sorting of polymer groups,
such as polyolefins, including PE and PP, is of particular
interest [73]. The task typically depends on the characteristics
of the waste stream. For example, distinguishing PET and
polylactides (PLA) is particularly important in the sorting
of food packaging, as these polymers are mainly used in
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these products [74]. With the development of compostable
and biodegradable plastics, sorting of these has also drawn
scientific attention [75].

Furthermore, during their lifetime, plastics undergo aging
and possibly contamination, leading to changes in material
properties that have an impact on recycling [70]. The
probably most extreme case of this effect is in the field of
landfill mining [76], where raw materials must be recovered
from already landfilled waste [77]. Plastics that experienced
degradation may differ in the sensor signal from virgin
ones [73], which leads to the need for adapting data
processing [78]. The effects may also depend on the type
of degradation, for example, due to multiple re-extrusion
processes in the case that the material was already recycled,
or thermal aging [79], [80]. Beyond that, it is even desirable
to consider the state of aging as a potential sorting criterion
by predicting the state of aging based on sensor data [81].
Further studies focus on the detection of additives and

polymer mixtures [82]. Since additives and fillers also play a
crucial role in plastic recycling, special attention is paid to the
detection of heavy metals in polymers [83], [84], brominated
plastics [82], [83], other flame retardants [85], and chlorine-
containing plastics [86].
An alternative approach to reduce the complexity of the

methods presented and to enable high-purity sorting is the
use of markers [87]. The idea is to provide polymers with
fluorescent markers during production that can then be
detected with the aid of sensors during pre-treatment. This
is also called tracer-based sorting [88].

For technical reasons, which are explained in Sec. III-B,
and because they occur predominantly in WEEP, the sorting
of black plastics is currently receiving high attention [89].
Several studies focus on general polymer discrimination [82],
[90], [91] or on specific sub-tasks, such as styrenic plastics
and polyolefins [70], [92], particularly for black plastics.
Various research priorities and developments are possible

for the further spread of sensor-based plastic sorting [5].
One possible improvement lies in focusing more on the
heterogeneity of plastic waste, which is often not adequately
addressed in studies. Also, the potential of multi-sensor
solutions, which yield promising performance, has not yet
been fully exploited. Last but not least, there is a great
need for extensive datasets in the application domain to fully
exploit modern machine learning techniques.

4) CONSTRUCTION AND DEMOLITION WASTE
In the wake of, among other things, the request of the
European Union towards its member states to significantly
increase the use of recyclate in the building materials sec-
tor [93], the use of sensor-based sorting for construction and
demolition waste (C&DW) has been intensively investigated
in recent years. Among others, C&DWmay contain concrete,
bricks, tiles and ceramic, asphalt, wood, and gypsum [94].
Around 600million tons of mineral raw materials are used
annually in the construction sector in Germany alone [95].

Currently, primary raw materials are used predominantly
in the production of new building materials, since only
81million tons of C&DW are recycled for construction
applications each year. Much of the demolition material is
landfilled or used as fill material in road construction [96].

Sensor-based sorting can be essential to increase this
rate and create high-quality building materials from recy-
clate [97]. For reasons comparable to those of plastic
recycling, sorting tasks can be classified as relatively difficult,
partly because multiple sensors are supposedly required [98].
By using appropriate fragmentation technologies, for exam-
ple, electrodynamic fragmentation [99], composites can be
separated along grain boundaries for subsequent sorting.
Besides the characteristics of the material stream, e.g.,
depending on the source, the sorting of the coarse [96] and
the fine fraction [97] is typically distinguished. In addition
to the generation of pure fractions in terms of material, the
removal of particularly critical materials, namely organic,
gypsum, and aerated concrete, from the material stream for
the recycling process plays an important role [100]. Two
special recycling lines, which are said to have a special
potential for industrial establishment, are ‘‘gray-to-gray’’,
referring to the purification of concrete and plaster, and ‘‘red-
to-red’’, referring to bricks and ceramics [98]. In addition
to the treatment of material originating from the demolition
of buildings, another exemplary task is the sorting of road
debris, for example, into the categories tar, bitumen, and
minerals [101].

III. SYSTEM COMPONENTS AND PARAMETERS
The overall sorting process performed in sensor-based sorting
systems is typically divided into 4 phases [4], [43], [102],
[103]:

Presentation refers to feeding and transport of the material
within in the system.

Examination refers to the observation of objects contained
in the stream by one or more sensors.

Data analysis refers to the processing of sensor data.
Separation describes the physical separation of individual

objects from the material stream.

In order to implement efficient sorting systems, the various
components of the system must be optimally matched to
each other. Several works further consider pre-conditioning
of the material, e.g., in the form of crushing or screening,
as a separate first phase [3], [26], [104]. All process phases
are based on various parameters and can also be divided into
geometric and process parameters [34]. They are discussed in
more detail below.

A. FEEDING AND TRANSPORT
In addition to the obvious task of feeding material into the
system, the technical realization of feeding can already have
a significant impact on the quality of sorting. Objects should
be fed to the transport phase as individually as possible, that
is, with the greatest particle spacing possible, while providing
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the desired mass throughput. Furthermore, it is desirable to
ensure that the material is evenly distributed throughout the
entire width of the sorting, since this allows the utilization of
the best possible capacity and generally has a positive impact
on the quality of the sorting. A common technical realization
is the use of vibratory conveyors. Optionally, those can be
equipped with an additional feed hopper [105]. However,
the feeding process typically depends on the overall process
in which the sensor-based sorting system is embedded, for
instance, prior pre-treatment steps.

Similarly, the transport phase also has additional objectives
in addition to the simple transportation task. First, it needs to
be ensured that no objects lie on top of each other, since this
would lead to occlusions. Second, the formation of clusters
of objects should be avoided. This goes hand in hand with
the above-mentioned requirement for the feeding mechanism
to feed objects as individually as possible. On the one hand,
it is important to ensure enough spacing between objects
such that single object separation is still possible. Whether
this is the case also depends highly on the temporal and
spatial resolution of the separation, as will be discussed in
Sec. III-D. Whenever objects are too close to each other,
a single activation of an actuator can erroneously separate
several objects from the material stream. Also, it must be
possible for data analysis to recognize single particles as such.
Third, the transport phase must ensure optimal flow control.
This means that all objects are transported at uniform velocity
and no relative motion of individual objects exists. In case
of non-uniform velocity, objects may present a trajectory
not predicted by the system, which may cause separation
failure [58], [106]. The fulfillment of all three mentioned
tasks has a strong impact on the quality of the sorting [105].

There are three transport mechanisms predominantly used
in sensor-based sorting: conveyor belts, chutes, and free-
fall transport. A schematic representation of these variants is
provided in Fig. 6. In the following, these three variants are
discussedwith respect to their advantages, disadvantages, and
parameters. Also, there exists related work on methodology
to evaluate the transport behavior of individual objects, for
example, such as those presented in [107].

Flat conveyor belts, as depicted in Figures 2 and 6a,
supposedly meet the requirements mentioned above on
the transport phase best. They support the elimination of
relativemotion of the particles by accelerating or decelerating
them to the set belt speed, hence ensuring a uniform
transport velocity. This particularly holds true for rough belts.
However, in the application area of agricultural products and
food industry, this may not be an option due to hygiene
and cleanliness. In this case, the belt should be as smooth
as possible. A common setup to increase throughput while
ensuring a high separation quality is to transport the material
sequentially over several conveyor belts with increasing
belt speed. In this way, the material is pulled further apart
throughout the transportation process [105]. However, the
mentioned advantages are mirrored in the costs. This not only
concerns comparatively high investment costs, but also an

increase in the space requirement to set up the belt, as well
as operating costs, e.g., electricity and wear and tear on the
belt. As conveyor belts include many moving parts, they can
also be considered maintenance-intensive. As a consequence,
condition monitoring systems and the like are sometimes
employed [108]. The parameters of this type of transport are
the length of the belt, the speed of the belt, and the material
of the belt. In industrial settings, belt speeds typically range
from 1m s−1 to 4m s−1 [105].
The realization of material transport through chutes,

as shown in Fig. 6b, is a cost-effective alternative compared
to conveyor belts. Acceleration of the material occurs via
gravity. Cost advantages exist not only due to lower invest-
ment costs, but also due to lower maintenance requirements.
Only the wear of the chute surface may need to be accounted
for [16]. However, these cost advantages are countered by
the fact that chutes typically achieve poorer flow control.
This is partly due to friction of the surface with the
accelerating objects. One measure of compensation, which is
used especially in the food industry, is the use of rills on the
chute by means of which the material is guided. This, in turn,
has a negative effect on the scalability of the system in terms
of possible mass throughput, as additional rills have to be
provided. For chutes, possible design parameters include the
length of the chute, the angle of inclination, and the surface
material [109].

The most cost-effective solution is the transport of the
material in free fall, see Fig. 6c. As is the case with chutes,
the material is accelerated by means of gravity. However,
whenever the air resistance of the particles in the material
stream varies too much, there will also be variations in
the transport speed. This, in turn, may lead to issues with
material separation and data acquisition, such as color fringes
when using color line-scan cameras. For foreign, previously
unknown objects, which are typically to be removed in
the course of the sorting process, no information regarding
air resistance can be provided. Therefore, the field of
applications for such sorters is severely constrained.

B. SENSOR TECHNOLOGY
Thewide range of applicable, commercially available sensors
leads to flexible application areas of sensor-based sorting.
Imaging, line-scanning sensors are primarily used to enable
high material throughput. From X-rays to the terahertz range,
a large part of the electromagnetic spectrum is covered here.
The properties of the material to be “made visible” determine
the best sensor type. Multi-sensor systems are used when
a single sensor cannot perform the task [110]. Information
from the various sources must then be processed accordingly
during data analysis, and information fusion approaches have
to be applied.

The most widespread sensors for sensor-based sorting
are described in detail below, along with how they work.
Examples of applications are also mentioned. Examples of
non-imaging systems are included in addition to the prevalent
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FIGURE 6. Schemes of the most common transport variants: (a) conveyor belt (b) chute and (c) free fall. The green spheres represent objects to be
accepted (“product”) and the red squares objects to be rejected (“residues”). The yellow beam indicates the scan-line of the sensor, and the blue
beam indicates the actuator’s action zone. In the schematics of (a) and (b), sensory examinations can also be performed on the transport medium
(i.e., on a conveyor belt or chute) instead of after discharge.

TABLE 1. Overview of the sensors discussed in Sec. III-B. The sorting tasks, advantages and disadvantages cited are illustrative; each technology
possesses numerous advantages and disadvantages.

imaging sensors. Table 1 provides an overview of the sensors
discussed.

1) X-RAY SENSORS: XRF AND XRT
X-rays are in the wavelength range below 10 nm. The two
mainly used measuring principles in sensor-based sorting
are dual-energy X-ray transmission (DE-XRT) and X-ray
fluorescence (XRF).

For XRT measurement, which is well-known from airport
security checks, a source is placed on one side of the transport
medium, e.g., above the conveyor belt, and a sensor on
the opposite side, e.g., under the conveyor belt [51]. The
source emits x-rays of a certain energy that pass through
the material to be inspected. In this process, the beams are
absorbed proportionally. The absorption is material-specific,
with elements with a low atomic number having lower
absorption than elements with a high atomic number. The
sensor therefore measures the intensity of the attenuated
X-rays that have penetrated the material and have not been
fully absorbed. Combining these intensities pixel by pixel,
an x-ray image is obtained. A major advantage is that
the penetrating measurement reveals information about the
internal structure of particles [111]. In multi-energy X-ray
transmission (ME-XRT) imaging, several of such images
at different energy levels are acquired using this principle.
DE-XRT results in a high- and low-energy level image.
An advantage of this measurement principle is that the

thickness of the scanned particles, which, in principle, has a
direct influence on the absorption properties, does not affect
the measurement [51].

In contrast, XRF is used to measure the fluorescence
caused byX-rays. Source and sensor aremounted on the same
side of the material, that is, above a conveyor belt [2].

X-ray sorters are mainly found in the application fields
of mining and recycling and are only occasionally used for
sorting agricultural products and food. An example of the
usage of XRF is the determination of the copper content
in ores [33], [40]. Other examples using XRF include the
determination of heavy metal concentration in wood [112],
the discrimination of PVC and PET [2] or the sorting of
non-ferrous metals in waste deposits [113]. With respect to
(DE-)XRT, examples of application include the detection of
rare earths in ores [26], [51], coal preparation [48], sorting
of non-ferrous metals [65] and the detection of enclosed
diamonds [114].

2) COLOR LINE-SCAN CAMERAS
Color line-scan cameras are sensitive to light, that is, the
range of the electromagnetic spectrum visible to humans,
which ranges from 380 nm to 780 nm. With reference
to “visible”, such cameras are also called VIS cameras.
They record three color channels within the aforementioned
wavelength range, which correspond to the colors blue, green,
and red.
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There are different sensor patterns for capturing the three
wavelength ranges. In the tri-linear layout, there are three
physically separated sensor lines, which are provided with
corresponding optical filters. The sensor lines are read out
with a certain time offset, which must be configured orthog-
onally to the sensor rows according to the transport speed of
the scene, so that the same scene is recorded in all colors.
Deviation from this configuration can lead to unwanted color
artifacts since the registration of the color channels is no
longer performed appropriately. The effect can be prevented
by using a prism in which the incident light is distributed
among the three separate line sensors, which are then read out
simultaneously. In bi-linear sensor patterns, two of the three
color channels are combined in one sensor line by alternately
making one pixel sensitive to the corresponding wavelength.
In this way, the problem of registration is alleviated, but not
circumvented. In the monoline pattern, only one sensor line
is used, in which macropixels consisting of three adjacent
pixels, each sensitive to one color range, are located. Thus,
all colors are captured at the same time without the costly
use of a prism, but with minimal local offset. Color line-
scan cameras are used for both reflectance and transmittance
measurements. The latter are used, for instance, in color glass
sorting.

Color line-scan cameras are used in all fields of application
of sensor-based sorting. Tasks in the agricultural products
and food industries include the sorting of various wheat
grains [8], [9], [12], cleaning bulgur [19], rice sorting [17],
and the sorting of sunflower seeds [18]. One of the most
prominent examples of application in the recycling field
is the sorting of colored glass cullet [58]. The use of
ultraviolet (UV) illumination further creates fluorescence
effects that can be observed in the visible spectrum and
which allow lead glass to be detected and sorted out [2].
Applications in the mining sector include the sorting of
already processed minerals [115] and the processing of
lignite [115]. Color line-scan cameras are also frequently
used in multi-sensor systems, especially in conjunction with
infrared cameras [73], [98] or alternatively in the form
of four-channel VISNIR cameras. If the information to be
extracted cannot be taken from visible light, VIS cameras
are nevertheless frequently used as complementary sensor
technology for the precise localization of individual particles
due to the high spatial resolution available.

3) COLOR AREA-SCAN CAMERAS
Other than the sensor patterns discussed in the context of
line-scanning VIS cameras, Bayer sensors are usually used to
obtain color information for area-scan cameras [116]. Here,
the sensor is covered by a color filter array, whereby half
of the sensor is provided with green filters and the rest
equally with red and blue filters. This creates a checkerboard-
like pattern. The raw camera image thus initially contains
information for only one color per pixel. The missing color

values for all pixels are calculated by interpolation during the
so-called demosaicing process.

In contrast to commonly used line-scanning sensors, the
use of area-scan color cameras for sensor-based sorting
has been proposed [117]. A supposed advantage in using
area-scan cameras is the ability to observe the movement of
individual particles. This is achieved by using sufficiently
high frame rates, which in turn enable multiple observations
of the particles. The authors propose a multiobject tracking
algorithm, in which the parameterization of a motion model
can be updated incrementally with each observation and
eventually used to predict a particle’s future trajectory [118].
This in turn can be used for the calculation of the actuator
control signals for separation, see Sec. III-C. The potential
of this approach has been demonstrated both by numerical
simulation [119] and experimentally on a lab-scale sorting
system [120]. The presented results suggest that the approach
is particularly advantageous for sorting scenarios in which
non-uniform transport velocities (see Sec. III-A) exist.
Furthermore, it enables material characterization based on
motion-related features [121], [122]. However, although
the use of color area-scan cameras has been addressed in
various scientific publications, no industrial application is
known.

4) INFRARED AND HYPERSPECTRAL CAMERAS
Hyperspectral cameras (or Hyperspectral Imaging, HSI)
combine optical spectroscopy with spatially resolved imag-
ing, bringing together the advantages of both methods.
Depending on the sensor technology and the imaging
spectrometer used, hyperspectral cameras capture specific
regions of the electromagnetic spectrum. Technically, these
are divided into the ultraviolet range (UV, 220 to 380 nm),
visual to near-infrared range (VISNIR, 400 to 1000 nm),
shortwave infrared or extended shortwave infrared range
(SWIR, 1000 to 1700 nm and ESWIR, 1000 to 2500nm ) and
mid-infrared rang (MIR, 3 to 5 µm).

A hyperspectral image provides a large number of spectral
channels of closely neighboring wavelengths (sometimes
several hundred), so that each pixel is assigned a continuous
spectrum in the corresponding spectral range. Examples of
spectra as acquired per pixel with a SWIR-HSI camera are
provided in Fig. 7. This allows for a spectroscopic analysis of
objects or scenes, which can be used to determine chemical
material properties. This is especially true in the SWIR region
where molecules absorb light because of the vibrational
motions of their bonds, especially CH, OH, NH, and SH,
which are common to all organic molecules. Plastics, for
example, exhibit characteristic absorption patterns in the
SWIR region as a result of their carbon-based structure
and, therefore, can be differentiated by polymer. SWIR-
HSI cameras are predestined for material-specific optical
sorting and have in particular become one of the most widely
used sensor technologies in this field in recent years. Ever
since this camera technology has also become economically
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FIGURE 7. Examples of spectra obtained using a SWIR-HSI camera for the
two plastic types PE and PP. Here, the camera used captures 256 bands in
the wavelength range between approx. 1000 nm and 2500 nm. The
occurrence of absorption bands is material-specific and can hence be
used to distinguish materials and calculate sorting decisions.

attractive due to decreasing prices, HSI has found its way into
all areas of application.

In the agricultural and food industries, SWIR sensors are
used for rice sorting [15] and wheat grain evaluation [13].
SWIR-HSI is also considered a standard method for the
detection of fungal infection in cereals [123]. In the mining
application area, HSI is cited as one of two technologies
that have contributed to the expansion of the application area
in the last decade [4]. SWIR-HSI is used to determine the
copper content in ores [35], [36] or to perform a general
mineral characterization [46], and to determine the silver,
gold, carbon, and sulfur content [47]. In the recycling sector,
SWIR or SWIR-HSI cameras are mainly used for sorting
C&DW [98], [100] and plastic sorting. With regard to the
latter, the technology has the potential to replace manual
sorting for lightweight packaging and is considered an
integral part of recycling processes [105]. A typical task in
plastics sorting that can be solved using SWIR-HSI is the
general discrimination of different polymers [72]. However,
many works focus on specific plastic types or groups, such as
the differentiation of polyethylenes and polypropylenes [73],
of PET and PLA [74] or the detection of PVC [59], a typical
contaminant in plastic recycling.

One weakness of SWIR-HSI, especially noticeable when
used in the recycling sector, is the limited detection of black
materials, such as black plastics. Black colored plastics use
mainly carbon in the production process. This causes very
high radiation absorption in the SWIR range, so that only
weak or non-usable signals can be detected. This limitation
does not apply to the MIR range. Until recently, MIR-
HSI cameras were considered too slow, too low in spectral
resolution, and as having poor signal-to-noise ratios [90].
However, recent technological developments have resulted in
the successful use of appropriate sensors in sensor-based clas-
sification. The use of MIR-HSI is particularly promising for
WEEP, since the corresponding plastics are often black [70],

[92]. It is capable of general discrimination of different
polymers, including black particles [90], and therefore it
is a promising technology for the sorting of packaging
waste [124], for example. It also has the potential to detect
different additives andmixtures [82]. Commercially available
MIR-HSI technology has also already been experimentally
verified for application in sensor-based sorting [89].

5) TERAHERTZ SENSORS
Radiation in the wavelength range between 30µm and
3mm at a frequency between 0.1 THz and 1THz is
termed Terahertz radiation. At the time of writing, the first
corresponding line-scanning sensors have been developed,
enabling the technology for in-line use. However, it is still
of scientific interest and no industrial application in the field
of sensor-based sorting is known.

The potential of the technology for sensor-based sorting,
however, has for instance been studied by means of a
line-scanner in the low terahertz range between 84GHz and
96GHz [91]. The ability to discriminate carbon-containing
black plastics and polymers in general was confirmed.

A challenge when using THz-scanners in sensor-based
sorting is that scanners in the millimeter range suffer from a
limited resolution due to the comparatively long wavelength.
A possible solution to overcome this is the use of multi-
aperture approaches.

6) LASER INDUCED BREAKDOWN SPECTROSCOPY
The elemental composition of a sample can be ascertained
using the low-destructive technique known as laser-induced
breakdown spectroscopy (LIBS), also known synonymously
as laser-induced plasma spectroscopy (LIPS). In this mea-
surement technique, a pulsed laser beam is focused on
the sample. A small portion of the sample – on the
order of a few micrograms – is vaporized by the brief,
intense laser pulse, which also creates plasma by ejecting
electrons from the atoms’ outer shells. A spectrometer
detects these characteristic emissions of the material a few
nanoseconds later, allowing identification and quantification
of the elements present in the sample [125].

The method has entered the industrial realm as a result
of recent advances that enable its use in real-time settings,
such as sensor-based sorting. One benefit of the method is
that the samples – in this case, bulk material – need little to
no pre-conditioning. A serious disadvantage of the method is
its design as a point measurement system and the need for
complex calibration routines. Due to the single line in which
the material is fed, only low throughput is possible.

LIBS-based sorting systems are typically not found in
the agricultural products and food industries but are used
in mining and recycling applications. In addition to their
dominant use for metal sorting [62], there exist studies
on the differentiation of different thermoplastics [126] or
polymers in general [71]. There are no limitations in the
characterization of black plastics. Further work evaluates the
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technology for the detection of additives and the like, such as
brominated [83], heavymetal-loaded [83], [84], and chlorine-
containing [86] polymers.

7) LASER INDUCED FLUORESCENCE SPECTROSCOPY
Laser-induced fluorescence spectroscopy (LIFS) is a
non-destructive technique that has been increasingly used
in the field of materials research and characterization in
recent years. Just like LIBS, the sample is excited by a
laser. UV lasers are used for this purpose in LIFS. The
energy input briefly lifts atoms from a stable state to
a higher, unstable level. When they return to the stable
ground state, photons with a higher wavelength are then
emitted. This leads to short-lived fluorescence in certain
materials. This fluorescence is in a wavelength range
which is slightly higher than that of the excitation, and is
observed by hyperspectral sensing in the UV-VIS range. The
intensity of the fluorescence is recorded over a time period,
which also allows the decay behavior to be observed. The
resulting spectral information over time then forms a kind
of fingerprint that can be used to characterize materials.
However, elemental analysis is not possible [127].
LIFS is used in mining applications because the described

fluorescence can be excited in almost all minerals. For
example, the evaluation of the time-resolved fluorescence
allows the differentiation of different ores [128] and is applied
in the enrichment of lignite [129]. Likewise, LIFS is used
in the recycling application area for plastic sorting [130].
In particular, there is no limitation regarding carbon black
plastics [127], [131].

8) NON-IMAGING SENSORS IN SENSOR-BASED SORTING
In addition to the dominant imaging sensors, non-imaging
sensors are also used for sensor-based sorting in rare cases.
These include acoustic sensors in particular. The material
characterization is carried out by evaluating sounds after
a collision of bulk material particles with a surface. This
methodology is called impact acoustic (IA). A schematic
representation of a possible realization of such systems is
shown in Fig. 8.
A main application of impact acoustic is the sorting

of nut-like products, e.g., chestnuts [132], hazelnuts [133]
or almonds [134]. Furthermore, the method is suitable for
detecting damaged wheat grains [135]. In this system, the
grains are fed individually to the sensing system which
consists of microphones. A laser barrier serves as a trigger
to record collision sounds. Similar setups have been proposed
for the sorting of plastic flakes [136]. Here, laser triangulation
is also used to determine the size of the flakes and is included
in the classification based on the acoustic data.

One limitation of such sorting systems is the scaling
with respect to the increase of the material throughput. The
particles must always be fed to the detection in lines. A higher
sorting width is accompanied by an increase in the number of
lines and requires a separate sensor system for each line.

FIGURE 8. Schematic illustration of an impact acoustic sorting system.

C. DATA ANALYSIS
As can be seen in Sec. III-B, imaging sensors dominate in
sensor-based sorting. Data evaluation takes place accordingly
in the form of image processing. The goal of image
processing in sensor-based sorting is to compute control
signals for the actuators to eject the particles to be removed.
For this purpose, individual particles must be detected and
classified. As data analysis platforms, Field Programmable
Gate Arrays (FPGA) [9], PC systems [23], [26] or a
combination of both [120] are primarily used.

If the sorting decision based on the classification result
is that a particle should be ejected, the location of the
detection is used to determine which actuators have to be
activated at which time to remove the particle. In the case
of binary sorting systems, the distinction of two classes,
that is, “accept” and “reject” or “product” and “residue”,
respectively, would suffice. However, to obtain further
information about the input stream, it may be of interest to
distinguish between several classes.

Currently, conventional rule-based image processing
pipelines are still dominantly used to solve this task.
However, recent research focuses on utilizing data-driven
approaches, that is, machine learning. Therefore, both
approaches are considered in what follows.

As is typically the case in machine vision applications,
image acquisition takes place under very defined conditions.
This means that the illumination of the scene is a design
parameter and is typically constant to optimize image quality.
The background of the scene can also be freely selected
during system design. A conventional processing chain then
corresponds to the typical machine vision pipeline [137]
and consists of the steps image pre-processing, information
compression and extraction, decision and action.

Optical effects, such as distortion or inhomogeneities of
the illumination, are corrected during image pre-processing,
the first step of the processing chain. In the course of
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object localization, image segmentation takes place. Due
to the constant image acquisition conditions mentioned
above, this can often be done by comparatively simple
methods, for example, by pixel-wise application of a
threshold followed by connected component analysis [138].
To detect particles completely, individual image lines of the
line-scanning sensor must be combined over time, which
in turn produces two-dimensional images of the material
stream. For further information compression and extraction,
features are calculated to describe the individual particles.
Considering a color line-scan camera, such features can,
for example, be based on color, texture, or geometry [115],
[139], [140]. The resulting feature vector is then the input
for a classifier that has the task of assigning a material
class to the detected particle. Several classification algorithms
are being used, ranging from comparatively simple rule-
based approaches, e.g., by defining thresholds [38], [50],
to machine learning methods, e.g., Support Vector Machines
(SVM) or Random Forests [13]. If spectral data need to be
classified, matching of reference spectra [77] or regression
models to map, for example, a NIR [35] or X-ray [33] signal
to material properties, is also used.

In addition to conventional image processing pipelines,
recent studies investigate the use of modern machine learning
approaches, especially from the field of Deep Learning [141],
as a replacement for several or even all processing steps.
In the most extreme case, a single model is trained end-to-
end to derive sorting decisions directly from sensor data [18].
In addition, Deep Learning is being used to re-evaluate
material characterization tasks that were previously consid-
ered intractable, such as the characterization of black plastic
based on SWIR data [142] or the selection of wavelengths
for plastics characterization in the IR spectrum [143].
As discussed in Sec. III-B, only very low reflectance is
obtained in this case. Using N-BEATS [144], a Deep
Learning-based solution originally proposed for interpretable
time series forecasting, promising detection rates have been
achieved for this task. Similarly, various VGGNet structures
were evaluated to discriminate and eventually sort typical
components of construction waste [145] and autoencoder
structures for the detection of minerals embedded in asphalt
composites [101].
For particles to be ejected, a control signal for separation

is calculated and transmitted in a final step. As discussed in
Sec. III-D, all common separation mechanisms are designed
as an array of individual actuators aligned perpendicular
to the transport direction. Accordingly, both a spatial
component, which determines which actuators in the array
are actuated, and a temporal component, which determines
in which time period the actuators are to be actuated, must
be calculated. This is also called the deflection window.
For the determination of the spatial component, the location
of the particle is used as determined by the sensor data,
and the sensor coordinates are converted into actuator
coordinates. For the temporal component, a fixed temporal
offset is added to the time of detection in the sensor data.

This offset can be calculated based on the velocity of the
particle and the spatial distance between the sensor and the
separation. However, since particle-individual velocities are
not known – except for the approachwith an area-scan camera
mentioned in Sec. III-B – an average particle velocity must be
assumed, since velocity cannot be assessed by line-scanning
cameras. This also results in the need for a uniform particle
velocity, as discussed in Sec. III-A. Furthermore, for the final
definition of these deflection windows, different strategies
can be followed. One common approach is the use of a
rectangle that surrounds the particle (bounding box) or a
targeted pulse on the geometric center of gravity [146].
In addition to achieving the highest possible result quality,

processing time plays an important role in data analysis for
sensor-based sorting. The latency between sensory detection
and separation results in a firm real-time criterion with binary
utility function, which must be met. To maximize precision
in the separation, this delay should be kept as small as
possible. It typically amounts to a few milliseconds [61].
Within this time, both the sorting decision must have been
calculated and the control signal for the separation must have
been transmitted. If the real-time barrier is broken and the
particle has already passed the separation stage, it can no
longer be removed from the material flow. Algorithmic work
is therefore concerned with reducing computational time by
selecting suitable features [147] or using approaches from the
field of approximate computing [148].

D. SEPARATION
In sensor-based sorting, the physical separation of the
material occurs, with few exceptions, via an array of actuators
positioned perpendicular to the direction of transit. After
being discharged from a conveyor belt or chute, for example,
the actuators act on the particles that need to be separated
from the material stream during the flight phase. The action
alters the path of the particles that need to be separated in
such a way that they become physically isolated from the rest
of the material and, for instance, land in different containers
or on different conveyor belts for subsequent conveyance.
Pneumatic fast-switching valves are the de facto standard for
material separation [4]. A short impulse generated by dry air
blasts separates individual particles from the material stream,
see Fig. 9.

1) PNEUMATIC SEPARATION
When using pneumatic fast-switching valves (and also alter-
native separation technologies), the effective range is divided
into a discrete grid by means of the individual elements of the
array, e.g. individual compressed air nozzles. The cell sizes of
this grid perpendicular to the transport direction define what
we refer to as the spatial resolution. Similarly, there exists a
temporal resolution, which figuratively defines the cell sizes
in the transport direction. The highest achievable temporal
resolution is usually dependent on the electronics used to
control the individual actuators, such as the bus system used
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FIGURE 9. Lateral view of the separation process by means of pneumatic
fast-switching valves.

FIGURE 10. Schematic visualization of the impact of separation
resolution. Here, the particle indicated by the red diamond is meant to be
deflected, while the one represented by the turquoise circle should
remain unaffected. Grid areas with a yellow background align with
activated individual actuators, such as the fast switching valves being
opened.

for communication or the minimum switching times of the
individual actuators. The impact of spatial and temporal
resolution is illustrated in Fig. 10. As can be seen, fine
resolution is needed to ensure that single particle separation
is possible without erroneously co-deflecting other particles
nearby. Clearly, with increasing proximity of particles (see
Sec. IV), an even higher resolution is required.

The design parameters for realizing a pneumatic separation
include the size of the nozzles and the overpressure. They

must be chosen depending on the particle size distribution and
density [3]. Their suitability for use in sensor-based sorting
also depends on switching times and achievable volume
flow [149]. Using a multi-hole probe, the volumetric flow
rate and the spatial distribution of the air flow velocity of
the valves can be measured for a steady [150] or transient
state [151]. It allows for measuring the total pressure, static
pressure, temperature, flow velocity, and orientation.

Various works also exist that study the pneumatic
deflection process in sensor-based sorting by simulation.
Computational fluid dynamics (CFD) is a popular tool
for modeling air flow, as is the discrete element method
(DEM) for modeling particles [152]. By using a DEM–CFD
coupling, the complete sorting process can be simulated and
the simulation results can be compared with those obtained
from experiments [119]. Such a simulation is a valuable tool
to identify optimal parameters for pneumatic separation, for
example, the optimal position and orientation of the valve
array for varying transport parameters, such as transport
velocity [153].

The consumption of compressed air is a significant factor
in the operating costs of sensor-based sorting systems. In the
mining field, the generation of compressed air may account
for approximately 70% of the total operating costs [50].
However, this depends heavily on the field of application
and the resulting circumstances. For example, significantly
different ratios are reported for grape sorting, an example
from the food industry [154]. In this case, the costs of the
staff, which are incurred for cleaning and the like, account
for the largest share.

2) ALTERNATIVE SEPARATION TECHNOLOGIES
The two most common non-pneumatic separation technolo-
gies used in sensor-based sorting are mechanical flaps [26]
and water jets, while the latter is rarely used due to
maintenance and cleaning problems [103]. Both are found
mainly in the field of mining. The reason for this is that they
are particularly suitable for deflecting comparatively heavy
objects. One disadvantage of mechanical flaps is that they
are comparatively maintenance-intensive due to contact with
the material. Water jets conflict with a major advantage of
sensor-based sorting, namely that it is a dry process [65].
This is also a reason why they are typically not found in the
sorting of agricultural products and foodstuffs. In general,
in many cases, the need for the use of energy-intensive drying
processes arises.

In addition, the idea of using robotics, for example,
grippers or suction valves [155], to separate the material
stream has been around for quite some time [156]. In recent
years, this idea has been revived, especially for sorting
of C&DW [157], [158]. This field of application appears
particularly interesting for robotic sorting due to potentially
very large objects [159]. Furthermore, it should be noted that
human sorting is also not an alternative due to limitations
in weight and dust generation during the process, which

VOLUME 12, 2024 6485



G. Maier et al.: Survey of the State of the Art in Sensor-Based Sorting Technology and Research

may contain hazardous materials such as asbestos. Also,
in the processing of municipal waste, especially packaging
waste [160], the combined use of robotic technologies
and optical sorting systems with pneumatic separation is
considered a promising solution.

IV. PROCESS PARAMETERS
In addition to the geometrical parameters, a group of so-called
process parameters must be considered [34]. Examples of
process parameters are the particle size distribution, material
throughput, or the characteristics of the material itself.
Another process parameter, which will be discussed in the
following, is particle proximity.

In contrast to the system parameters discussed in Sec. III,
the process parameters can only be freely selected to a
limited extent, since they are partially defined by the sorting
task itself. However, they have a decisive influence on the
efficiency of sensor-based sorting systems.

A. PARTICLE SIZE DISTRIBUTION
The particle size distribution describes an interval of the
geometric size of the particles. Sensor-based sorting systems
are fed with a particle size distribution as closely defined
as possible by means of suitable pre-conditioning, since
the particle size distribution has a decisive influence on
the selection of system and process parameters, e.g., the
achievable material throughput or the parameterization of
the separation unit. This can be achieved by, for instance,
screening or crushing. As a general rule of thumb, a size
ratio of 1:3 between the smallest and the largest particles
within the distribution has been established as a desirable
limitation [32].
In general, sensor-based sorting is used for particle sizes

as small as 1mm, e.g., for diamonds. However, in mining,
in particular, it is customary to use sensor-based sorting
systems only for significantly larger particle sizes, since
the material throughput, and thus the economic efficiency
of the sorting systems, increases with increasing particle
size. The sortable particle sizes range up to approximately
300mm [32]. There is a quasi-linear relationship between
particle size and material throughput, the latter increasing
with increasing particle size [161]. The results of certain
experimental investigations suggest a higher quality of
sorting with larger particles [115]. In general, the sorting
of small particles can be seen as a more difficult problem,
since additional boundary conditions have to be considered.
For example, it must be ensured that the spatial resolution
of the sensor is sufficiently fine to allow the data analysis
to correctly characterize individual particles. Equivalently,
a fine resolution is also required for material separation.

B. MASS FLOW, OCCUPANCY DENSITY AND PROXIMITY
To describe the amount of material processed by a
sensor-based sorting system, the terms mass flow and
occupancy density need to be distinguished. Both parameters
depend on the particle size distribution (see Sec. IV-A) as well

FIGURE 11. Visual, exemplary representation of different simulated
occupancy densities.

as the sorting width and the transport speed of the transport
medium (see Sec. III-A). Moreover, the parameters usually
exhibit a strong correlation.

The mass flow rate is defined as the weight of material
fed to the sorting system over a period of time, and thus
also depends on the density of the material to be sorted. It is
often expressed in tons per hour and is particularly relevant
for economic considerations. Mass flows of up to 250 t h−1

have been reported for sensor-based sorting [32]. If the
transport parameters are fixed, different mass flows for the
same sorting task have strong effects on the sorting quality.
Increasing the mass flow rate has a principally negative effect
on the quality of the sorting for a given sorting task [115],
[161]. Based on Monte Carlo simulation, it has been shown
that the sorting quality decreases exponentially as the mass
flow rate increases [162]. However, such results must also
be considered together with economic aspects [76]. For this
purpose, the resulting costs of sorting per ton are included
in the consideration, in addition to the sorting quality and
the mass flow. This consideration is particularly helpful if,
due to the field of application, certain limit values have to be
observed instead of maximum purity of the sorting result.

According to the above-mentioned definition, however,
it is not so much the mass flow that is responsible for the
influences on sorting quality shown above, but rather the
occupancy density [163]. The density of occupancy describes
the proportion of the sensory image that is actually occupied
by material, compare Fig. 11. It is thus, so to speak, a unit
of measure for the mass flow from the sensory point of view,
since the scene is projected onto a 2D representation. From
a data analysis point of view, the occupancy density is also
of great interest, since in many cases it is directly reflected
in the required runtimes of the algorithms used. However,
for the reasons mentioned above, the occupancy density also
strongly correlates with the mass flow. If feeding succeeds
in distributing the material evenly across the entire sorting
width, the occupancy density also strongly correlates with the
proximity of the particles.

C. MATERIAL COMPOSITION
The material composition describes the ratio of “product” to
“residue” of the input material stream to be sorted. It also
determines which of the two groups is to be deflected by
activation in the course of physical separation. Generally, this

6486 VOLUME 12, 2024



G. Maier et al.: Survey of the State of the Art in Sensor-Based Sorting Technology and Research

is the fraction that is expected to be in the minority. This is
partly because energy is required for the deflection process
and partly because the deflection process itself potentially
leads to sorting errors and should therefore be performed
as rarely as possible [161] (see Sec. Sections III-D and V).
Based on the Monte Carlo simulation [162] and experimental
studies [163], an exponential decrease in the achievable mass
flow is obtained with an increasing fraction of particles to be
deflected while fixing the sorting quality.

D. PARTICLE PROXIMITY
Particle proximity results from the number of particles fed
into the system within a period of time, their size distribution,
and the quality of the feeding and transport unit (see
Sec. III-A). High proximity has two main negative effects on
sorting quality. First, touching objects create clusters [162],
whichmust be resolved by data analysis to evaluate individual
touching particles. However, such algorithms often also rely
on assumptions about particle shapes and generate additional
computational load, whichmust be taken into account to meet
the required firm real-time requirements (see Sec. III-C).
Second, object clusters cause errors during separation, even
if the particles were evaluated individually and correctly
during data analysis. In all separation methods presented in
Sec. III-D, the deflection of one particle can falsely co-deflect
other particles located nearby. This effect has also been
studied on the basis of numerical simulation [152]. One
statistical parameter to describe particle proximity is, for
example, the smallest particle distance.

V. EVALUATION OF THE SORTING QUALITY
The efficiency of sensor-based sorting systems is typically
evaluated using the two competing parameters material
throughput and sorting quality. As discussed in Sec. IV, the
quality of the sorting typically decreases as the throughput
increases [163].
There are two potential error types that can occur during a

sorting process [152], [163]:

1) Data analysis can fail to characterize an individual
particle correctly, which can lead to confusing a particle
to be accepted with one to be rejected and vice versa.
Such errors in material recognition are influenced
by the presentation, examination, and data analysis
phases.

2) A particle may not be physically removed from the
material stream, e.g. due to poor actuator control,
although it was correctly characterized. Likewise, it can
occur that a particle that should not have been deflected
is mistakenly co-deflected. Such errors in material
separation are influenced by the phases presentation,
data analysis, and separation.

Analyzing the final sorting result does not allow one to draw
conclusions about which of the error types led to the sorting
errors.

FIGURE 12. Visualization of a confusion matrix to describe the sorting
quality.

The types of error can be visualized in the form of a
decision tree [161]. Considering a binary sorting task, many
established parameters for describing the sorting quality can
be traced back to a confusion matrix as shown in Fig. 12 [34],
[115], [164]. The terms true positive, false positive, false
negative, and true negative given in Fig. 12 are abbreviated
by TP,FP,FN and TN below.

There are three widely used parameters to describe sorting
quality [55]. They are typically based on mass ratios and can
also be expressed on the basis of a confusion matrix.

The first parameter is Recovery and calculated according
to the notation from Fig. 12 by

Recovery :=
N

P′
+ N′

· 100%. (1)

It hence describes the amount of material removed, i.e.,
rejected in the sorting process, and does not provide
information about the correctness of the sorting result by
itself.

The second parameter is Yield. It is calculated as

Yield :=
TN
N′

· 100%, (2)

hence describing the ratio of the proportion of “product” prior
to sorting to the proportion of “product” after sorting.

The third parameter is referred to as Purity and is given by

Purity :=
TN
N

· 100%. (3)

It describes the the actual proportion of material to be
recovered in the corresponding sorting fraction.

Beyond these three established parameters, further work
is concerned with quantifying the sorting performance.
An example is the parameter referred to as Separation
Efficiency which is given by

Separation efficiency (SE) % := Rd − Rc (4)

in its original definition [161], [162]. In this notation, Rd
refers to the ratio of material to be rejected that was

VOLUME 12, 2024 6487



G. Maier et al.: Survey of the State of the Art in Sensor-Based Sorting Technology and Research

successfully rejected in percent, and Rc to the ratio of
material to be accepted that was successfully accepted.
Hence, it describes the difference between the purity of the
accepted material and the product loss. With reference to the
notation used in this paper, the definition can be formulated
as

Separation efficiency (SE) % :=
TP
P′

−
FP
N′

· 100%. (5)

A key difference is the inclusion of product loss, i.e., material
to be accepted that was falsely rejected, in the parameter.

Furthermore, based on the concept of a Receiver-Operating
Characteristic (ROC) curve, which has also been used to
determine the classification and economic performance in
sensor-based sorting [28], so-called Sorting Optimization
Curves (SOC) have been proposed [164]. The approach is
intended to support the evaluation and optimization of system
configurations. For this purpose, the quality and yield are
calculated as described above. As an extension, the influential
costs are also considered, such as the composition of the input
material or the yield as given in Eq. (2). In this way, operation
characteristics can be derived for different configurations and
adjusted according to the desired sorting result.

VI. CONCLUSION
In the following, we briefly summarize this survey and
provide an assessment of potential future research directions.

A. SUMMARY AND FINDINGS
Within the identified main application fields of mining,
recycling and the processing of agricultural products and
foodstuffs, a wide variety of tasks exist, ranging from the
sorting of highly heterogeneous material streams to the
removal of rather rare occurring impurities. In addition, there
are often boundary conditions for specific areas of application
which must be taken into account in the system design, such
as easily cleanable components in the field of agricultural
products and foodstuffs. Therefore, a deep understanding
of the application area and the processing procedures is
essential.

In order to achieve advances in sensor-based sorting, the
complete sorting process must be understood and considered
holistically. This concerns both the system components used
in material feeding and transport, sensor technology, data
analysis, and material separation, as well as the consideration
of any process parameters specified by the context of
use. Conveyor belts, chutes, and free-fall transport were
presented as the most common transport mechanisms, and
their advantages and disadvantages were discussed.

The wide range of possible applications for sensor-based
sorting is largely due to the large number of applicable
and industrially available sensors. The most common sensor
technologies used in sensor-based sorting have been named
and briefly explained. Here, for the recent past, the role of
HSI is to be explicitly emphasized. The research considered
suggests a dominant application of HSI in the IR spectrum

for recycling applications and of X-ray-based systems in the
mining field. VIS technology is represented in all fields of
application. LIBS and LIFS appear to be of current interest in
both mining and recycling, but not in the field of processing
agricultural products and foodstuffs.

However, the potential of any sensor technology can only
be exploited by means of adequate data analysis. A particular
challenge lies in the development of real-time capable
systems. The difficulty of this task increases with the demand
of plant operators for ever higher material throughputs to
increase the economic efficiency of sorting plants. With
regard to the actuators used for the physical separation of
individual particles, it can be stated that pneumatic separation
by means of fast-switching valves can be regarded as the
standard. However, by achieving finer spatial and temporal
resolutions for valve control through technological advances,
sorting quality can be further improved and higher occupancy
densities can be handled.

For system design, it is crucial that the process parameters
of particle size distribution, mass flow and occupancy
density, composition, and material proximity are well known
and, as far as possible, controlled. These parameters must
also always be considered in combination due to their
dependencies. A particular challenge may be that these
parameters are rarely static for a sorting task, but are subject
to fluctuations during the sorting process, so that a certain
bandwidth must be assumed in the system design.

With regard to the evaluation of sorting quality, various
parameters have been established which, however, are ulti-
mately always based on a confusion matrix. Thus, depending
on the goal of an investigation, it is necessary to evaluate
which parameter offers the maximum information content to
answer a particular question.

B. POSSIBLE FUTURE RESEARCH DIRECTIONS
Although sensor-based sorting technology can be considered
at a mature stage for many applications, we believe that there
exist many research directions for further advances. This
is not limited to quantitative advances, i.e., developments
leading to higher sorting efficiencies, but also concerns
qualitative ones, i.e., enabling the technology for new
applications. Due to the interdisciplinary character of the
technology, it appears that there are many directions to pursue
in future research. However, in the following, we highlight
three possible future research directions, which we consider
to have a particularly high potential for future process
advances.

We expect that the development of new fields of appli-
cation for sensor-based sorting will be made possible,
in particular, by advances in sensor technology. A recent
example of this is the upgrade of MIR-HSI cameras for
industrial use. Developments in the field of LIBS and
THz sensor technology also appear promising. In addition
to specific sensor technologies, this also applies to multi-
sensor systems. The integration of more and more sensors
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coupled with intelligent data fusion algorithms also creates
opportunities to tackle previously unsolved sorting tasks.

Furthermore, it can be stated that machine learning has
become more and more important for sensor-based sorting
in recent years, just as in many other areas of application.
Although there are already some papers that address the
topic in the context of sensor-based sorting, the potential
seems to be far from exhausted. In some cases, the trend
towards data-driven evaluation processes goes hand in hand
with the development of new sensor technologies. This is
particularly true if the acquired sensor information can only
be interpreted by humans with difficulty or not at all. The
same applies to the use of multi-sensor systems as described
above. In particular, the fairly new research field of explain-
able artificial intelligence (XAI) is expected to increase
industrial acceptance for the use of such methods in the
future.

Eventually, in the wake of the fourth industrial revolution,
sensor-based sorting is going to be no longer regarded as a
closed system with the purpose of material separation but
rather as a rich source for process data. More precisely,
information about the material stream obtained via sensor
data and processed by the algorithms may not only be used to
calculate sorting decisions but also to gain valuable insights
about the stream characteristics. This allows, for example,
conclusions to be drawn about upstream conditioning steps,
or their parameterization to be optimized. However, this
requires future systems to provide data interfaces in a way
that is standardized across the industry in order to make the
information available to other systems.
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