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ABSTRACT This article investigates the extraction of complex refractive indices from the amplitude and
phase of the transmitted electric field. In the first step, an incident plane wave has been assumed and the
amplitude and phase of the transmitted plane wave is calculated analytically. In this calculation, different
values of the complex refractive index have been assumed for the non-magnetic material under test. In fact,
the real part and imaginary part of the refractive index are assumed in the range of [1–10] and [0–1],
respectively. Furthermore, a general study is made by an assumption of the material thickness to simulation
wavelength ratio in the range of [0.01–20]. Due to examining themeasurement noise, noisy data are produced
for different values of signal-to-noise ratio in the range of [25–40] dB. Due to the difficulties of estimating
the refractive index confronted in the theoretical or iterative methods, a Long short-term memory (LSTM)
network is proposed and used for the estimation of complex refractive index based on the amplitude and
phase of the transmitted electric field. It is shown that the estimation accuracy of about 97% can be achieved
in the trained network. Furthermore, the estimation accuracy as a function of thickness-to-wavelength ratio,
signal-to-noise ratio, and the values of real and imaginary parts of the refractive index are studied in detail
and shown that higher estimation accuracy can be achieved. The simulated results have been confirmed
by the measurement for the thickness-to-wavelength ratio below 0.1 and a good agreement has been found.
Therefore, the proposed method can replace analytical or repetitive methods as an optimal and more accurate
method.

INDEX TERMS Electromagnetics, wave propagation, inverse scattering, parameter characterization, deep
learning.

I. INTRODUCTION
Over the past few decades, the need to extract electromagnetic
parameters of the materials has grown exponentially due
to their wide-ranging applications in medical imaging [1].
To determine this Refractive Index (RI), time-domain spec-
troscopy can be used on a variety of materials, such as
dielectrics [2], semiconductors [3], and superconductors [4].
Evaluating the electromagnetic parameters of the material
under test (MUT) heavily relies on analyzing the ratio of
the reflected or transmitted waves to the incident wave [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sandra Costanzo .

The complex RI can be extracted analytically [6], for plane
wave excitation although the accuracy is degraded for high
loss or high dispersion materials [7]. Furthermore, higher
accuracy can be achieved based on iterative algorithms like
Newton-Raphson [7] and Nelder-Mead for appropriate initial
values [7]. However, the low speed or non-convergence of
data analysis limited the applications of these algorithms in
real-time processing [7]. If the thickness of the MUT is near
or more than the wavelength, the accuracy of the parameters
is degraded due to phase ambiguity in both analytical and
iterative methods [7].
Recently, the Artificial Neural Network (ANN) has been

applied to this application. In [8], the Bayesian regularization
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algorithm is used for the extraction of the electromagnetic
parameter of the material in the microwave regime. In this
calculation, the Debye model has been used for the dispersion
and a thin layer of the powder of the material is studied in
the coaxial test setup [9]. Similarly, the Levenberg-Marquardt
(LM) algorithm is used to train a neural network for the
extraction of the complex RI of low-loss thin material in the
transmission mode of the THz-TDS setup [10]. For the ANN
methods [8], higher accuracy of the parameter extraction is
achieved [10], [11].

This research shows that deep learning can be used as an
alternative approach to address these issues. By leveraging
deep learning methods, we can significantly reduce the
complexity and time required to solve the problem while still
achieving high precision in the extraction of complex RI.
Recurrent neural networks (LSTM) [12], have been used for
RI extraction upon plane wave excitation of materials with
different thicknesses.

As mentioned earlier, the accuracy of the extraction of the
refractive index is mainly affected by the material thickness-
to-free space wavelength ratio (d/λ0) [13]. Typically, as the
(d/λ0) ratio increases, the accuracy of refractive index
estimation decreases [14]. To address this issue, it aims to
develop a network that can be used for a wide range of (d/λ0).
Another significant issue is the effect of measurement noise
on the estimation accuracy. However, real-world measure-
ments often involve noise [15], which an significantly affect
parameter estimation accuracy. In this work, the accuracy of
estimation of different values of signal-to-noise ratios (SNRs)
is studied in detail.

The remainder of this paper is organized as follows.
In Sect. ‘‘Data Preparation’’ The analytical background of the
study is studied and the classification of data in the matrix
form will be discussed. Then, in Sect. ‘‘Implementation
of LTSM Neuronal Network’’, the deep learning method
for the implementation of the proposed neural network
is examined. The performance analysis and estimation
accuracy of the proposed network based on the simulation
and measurement results are studied in the ‘‘Performance
Analysis and Discussion’’ section. Finally, some conclusions
are remarked.

II. DATA PREPARATION
The flow chart of the proposed method is shown in
FIGURE 1. In the first step, the transmitted electric field is
calculated analytically for different values of the complex
refractive index and thickness-to-wavelength ratio. Further-
more, noisy data are also produced for the incorporation of
measurement noise. Then, the prepared data are classified
and matrices are formed for training the proposed deep
learning network (FIGURE 1.a). After that, a Long short-term
memory (LSTM) is formed, and trained, and the accuracy
is validated (FIGURE 1.b). Finally, the performance of
the proposed network is analyzed in detail as a function
of complex refractive index, thickness-to-wavelength ratio,

and signal-to-noise ratio. based on the above-mentioned
procedure, the rest of the article is dedicated to the detailed
study of each issue.

III. THEORETICAL BACKGROUND
In this research, the extraction of complex refractive indices
has been done by the study of traveling waves through
the material [16]. For this purpose, the temporal profile of
the pulse that travels through the material is obtained by
convolving the radiated waveform with the impulse response
of the material in the time domain [17]. The impulse response
of the MUT can be obtained by comparing two electric fields
in the frequency domain: the incident electric field Einc(ω)
and the transmitted electric field, signal Etx(ω). Therefore,
we have

H̃MUT (ω) =
Etx(ω)
EinC (ω)

(1)

H̃MUT (ω) =
4ñ(ω)

(ñ (ω) + 1)2
e−iñ(ω)2π (d/λ)/c

= AeiϕMUT (2)

ϕMUT (ω) = (n (ω) − 1)
2π
d/λ

(3)

ñ (ω) = n+ ik (4)

H̃MUT and ϕMUT stand for the complex frequency response
and its phase forMUT. Furthermore, ñ (ω), d , and λ represent
the complex refractive index, the MUT thickness, the free
space wavelength, and the complex propagation constant.
The real part and imaginary part of the refractive index
are denoted by n and k , respectively. Due to two unknown
parameters n and k , consistent results can be obtained by
solving equation (2). Therefore, a deep learning network is
utilized to determine the values of n and k from H̃MUT (ω)
and will show that highly accurate results can be obtained.

IV. MATRIX FORMATION
As mentioned earlier, the process of generating simulated
training sets involves creating an input pulse using a function
in MATLAB that produces a shape similar to that of an
experimentally measured pulse. This pulse is then propagated
through a material with given parameters for refractive index,
thickness, and transmission coefficients. The values of n, k,
and frequency are varied to generate a range of simulated
samples, which are used to train a neural network using a
supervised learning approach. The neural network accepts an
input array of floating point numbers and produces an output
array based on the input. The length of the dataset is expected
to affect the prediction loss of the model. It is important to
note that while the given data describes the basic process
for generating simulated training sets and training a neural
network using supervised learning, there may be additional
steps or considerations depending on the specific application
and goals of the projects.

In this research, 20,000 data points within a specified range
of parameters have been generated, as follows,

n ∈ [0, 10] (5)
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FIGURE 1. Flow chart of the proposed algorithm for the estimation of complex refractive index.

k ∈ [0, 1] (6)

d/
λ ∈

[
1
100

, 20
]

(7)

In noiseless simulations, the following matrix representa-
tions have been used. The dimension index of the vectors is
denoted by m, in which m = 20000. It is worth mentioning
that a uniform random generator is utilized for the generation
of data in the above-mentioned ranges. The generated vectors

and the matrix representation are as follows,

d/λ = [(d/λ)1, (d/λ)2, (d/λ)2, . . ., (d/λ)m−2, (d/λ)m−1, ]

(d/λ)m Thickness/wavelength (8)

A = [A1,A2,A3,A4, . . . ,Am−2,Am−1,Am]

Amplitude (9)

8 = [81, 82, 83, 84, . . . , 8m−2, 8m−1, 8m]

Phase (10)

VOLUME 12, 2024 11127



A. Ghorbani et al.: General Study for the Complex Refractive Index Extraction

n = [n1, n2, n3, n4, . . . , nm−2, nm−1, nm]

Real part of refractive index (11)

k = [k1, k2, k3, k4, . . . , km−2, km−1, km]

Imaginary part of refractive (12)

The generated data matrix which is used for training the
deep neural network is:

n1 n2 · · · nm−1 nm
k1 k2 · · · km−1 km

(d/λ)1 (d/λ)2 · · · (d/λ)m−1 (d/λ)m
A1 A2 · · · Am−1 Am
81 82 · · · 8m−1 8m



FIGURE 2. Noiseless data distribution of (a) n and (b) k.

In FIGURE 2.a and FIGURE 2.b the histogram of the
generated data has been plotted. As shown in this figure, the
values on n and k are approximately distributed uniformly
in the range of [1,10] and [0,1], respectively. Furthermore,
the mentioned distributions are shown for different ranges,
as shown in FIGURE 3.a and FIGURE 3.b. This is shown
clearly that an approximately uniform distribution has been
achieved in each range of d

/
λ.

In the noisy scenario, a white Gaussian noise generator
is used for the production of noisy data, because the noise
generated in a spectrum analyzer can be modeled as Gaussian
noise [18]. For each noiseless data, l = 5 noisy data are

FIGURE 3. Noisy data distribution for different ranges of d/λ for (a) n and
(b) k.

generated that fulfill the following conditions:

SNR =
Psignal
Pnoise

=(
Asignal
Anoise

)
2

(13)

SNR(dB) = 10log
(
Psignal
Pnoise

)
= 20log(

Asignal
Anoise

) (14)

Here, the values of SNR = 25, 30, 35, and 40 are assumed.
The amplitude and phase distribution of the prepared data
for l=100 are plotted in FIGURE 4.a and FIGURE 4.b,
respectively. The noisy data has been generated by a Gaussian
random generator in which the standard deviation relatives
to SNRs [19]. As can be seen in this figure, a Gaussian
distribution is formed as expected.

For the noisy data: m index is the number of data,
m = (l + 1) × 2×104, (15)–(19), as shown at the bottom
of the next page

The generated noisy data matrix which is used for training,
as shown in the equation at the bottom of the next page.

V. IMPLEMENTATION OF LTSM NEURAL NETWORK
The main goal of this research is the development of a neural
network for the estimation of the values of n and k based on
the transmitted electric field.
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To achieve this goal, a deep learning model is trained in
which the amplitude and phase of transmission coefficient
in addition to d/λ are assumed as the inputs, and n and
k are regarded as the output features. Once the network is
trained, the output features can be estimated based on the
input parameters.

In this research, an LSTM (Long Short-Term Memory)
network is proposed for this purpose. this type of network
is a recurrent neural network that can retain information over
long periods. LSTMs are well-suited for training, predicting,
and classifying different types of data [12].
To ensure that the deep learning network generalizes

well to unseen data, techniques such as cross-validation,
regularization, and data augmentation have been imple-
mented during training and continuously monitor the model’s
performance [20].

In this research, the proposed LSTM network consists of
three LSTM layers, a Dense layer, and a Sigmoid activation
function. The prepared data are divided into three categories:
training data (70%), validation data (15%), and testing
sets (15%). Furthermore, the number of epochs is limited
to 3000. Here, the dropout layers within the network are
implemented to avoid overfitting. The implementation of the
model has been done using Python version 3.7.13 and the
TensorFlow 2 Deep Learning framework.

If The output of the neural network includes a two-order
vector including the real part of the refractive index and
the imaginary part of the refractive index. In our network
activation function is sigmoid, and optimizer is rmsprop,
batch size is 64 drop out is 0.2 and the maximum number
of epochs is 3000. The utility cost function MSE has been
used to calculate the difference between the real value and
the estimated value [21].

MSE =
1
N

m∑
i−1

(fi − yi)2 (20)

VI. PERFORMANCE ANALYSIS AND DISCUSSION
The loss diagrams of the proposed model for n and k are
shown in FIGURE 6.a and FIGURE 6.b. As shown in this
figures, the values of MSE are achieved at 0.03%, and 0.03%
for real and imaginary parts of the refractive index in the [0.1,
1] range for d/λ, respectively. Furthermore, the identity of
validation loss to training loss reveals avoidance of overfitting
in the proposed network. The training procedure and the
estimation of one sample of complex refractive index take
8280 and <1 seconds using a system equipped with an Intel
Core i7-10700K processor and 16GB RAM.

The evaluation method of the proposed network can be
studied in four categories. In the first category, the complex

d/λ =


[( d

λ

)
1,

( d
λ

)
1, . . . ,

( d
λ

)
1

]
1×(l+1) ,[( d

λ

)
2 ,

( d
λ

)
2 , . . . ,

( d
λ

)
2

]
1×(l+1) , . . . ,[( d

λ

)
m ,

( d
λ

)
m ,

( d
λ

)
m

]
1 × (l + 1)

 (15)

A =

[
[A11,A12, . . . ,A1l]1×(l+1) , [A21,A22, . . . ,A2l]1×(l+1) , . . . ,

[Am1,Am2, . . . ,Aml]1×(l+1)

]
(16)

8 =

[
[811, 812, . . . , 81l]1×(l+1) , [821, 822, . . . , 82l]1×(l+1) , . . . ,

[8m1, 8m2, . . . , 8ml]1×(l+1)

]
(17)

n =

[
[n1, n1, . . . , n1]1×(l+1) , [n2, n2, . . . , n2]1×(l+1) , . . . ,

[nm, nm, nm]1×(l+1)

]
(18)

k =

[
[k1, k1, . . . , k1]1×(l+1) , [k2, k2, . . . , k2]1×(l+1) , . . . ,

[km, km, km]1×(l+1)

]
(19)

n1 n2 · · · nm−1 nm
k1 k2 · · · km−1 km

(d/λ)1 (d/λ)2 · · · (d/λ)m−1 (d/λ)m
A1,0 A2,0 · · · Am−1,0 Am,0
81,0 82,0 · · · 8m−1,0 8m,0
A1,1 A2,1 · · · Am−1,1 Am,1
81,1 82,1 · · · 8m−1,1 8m,1
A1,2 A2,2 · · · Am−1,2 Am,2
81,2 82,2 · · · 8m−1,2 8m,2
A1,3 A2,3 · · · Am−1,3 Am,3
81,3 82,3 · · · 8m−1,3 8m,3
A1,4 A2,4 · · · Am−1,4 Am,4
81,4 82,4 · · · 8m−1,4 8m,4
A1,5 A2,5 · · · Am−1,5 Am,5
81,5 82,5 · · · 8m−1,5 8m,5
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FIGURE 4. The distribution of (a) amplitude and (b) phase for
(S/N)=40 dB.

FIGURE 5. Used LSTM network architecture.

refractive index has been estimated for different values of
d/λ as explained in A. In the second category, the statistical
analysis of the network loss in the estimation of the refractive
index has been done for different values of d/λ as studied in
B. Considering the noise effect on statistical network loss is
the issue of the second category and analyzed in C. Finally,
the proposed network has been used for the estimation of the
complex refractive index based on the measurement results,
as discussed in D.

A. NETWORK EVALUATION IN REFRACTIVE INDEX
ESTIMATION
In the first step, the evaluation of the proposed method has
been done by comparing the estimated and accurate values
of the complex refractive index of MUT. In this comparison,

FIGURE 6. Used LSTM network architecture. Training validation loss
progress as a function of Epochs for (a) the real part and (b) the
imaginary part of the refractive index.

different values of d/λ and complex refractive index have
been considered as represented in TABLE 1. In this table, it is
clearly shown that the relative error in the estimation of the
complex refractive index is less than – for 0.04< d/λ<12.
Here, the values of 0<n<10 and k<1 are considered.

B. STATISTICAL EVALUATION OF THE NETWORK IN THE
ESTIMATION OF COMPLEX REFRACTIVE INDEX
In this subsection, the performance of the proposed network
has been studied statistically in the estimation of complex
refractive index. For this purpose, the MSE parameter has
been considered for different ranges of d/λ, as shown
in FIGURE 7. In this figure, four ranges of [0.01,0.1],
[0.1,1], [1,5], and [5,20] are considered for d/λ. based on
the presented results in FIGURE 7, it can be concluded
that an estimation accuracy is slightly degraded for higher
values of d/λ. This conclusion follows analytical results,
although more precise results are achieved in the proposed
method [22].
More precise statistical analysis has been done by consid-

ering the same length for d/λ ranges, as shown in FIGURE 8.
In this figure, the 0.01<d/λ<20 range is divided into 11 one-
decade wavelength ranges. It is expected that these ranges to
overlap. Considering one-decade wavelength ranges, higher
MSE in the estimation of n and k belongs to higher values of
d/λ, as depicted in FIGURE 8.a and Figure 8.b, respectively.
This conclusion follows the previous one and analytical
methods [22].
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TABLE 1. The estimated complex refractive index for different values
of d/3.

FIGURE 7. MSE for different ranges of d/λ for (a) n estimation results and
(b) k prediction results.

The analysis of MSE for the prediction of n and k as
a function of wavelength range is shown in Figure 9.a
and Figure 9.b, respectively. In this figure, it is clearly

FIGURE 8. Prediction Loss for different ranges of d/λ(a) n prediction
results and (b) k prediction result.

shown that the accuracy of the prediction remains rel-
atively constant from one-octave to one-decade ranges.
This conclusion indicates the appropriate performance of
the proposed network, which can perform an estimation
with minimized error almost independently of the interval
length.

To analyze the error estimation as a function of the
refractive index values, a one-decade range of 0.1<d/λ<1
has been considered. Then, the trained network is used for
the estimation of 1000 complex refractive index values.
Afterward, the MSEs in the estimation of n and k have been
calculated and plotted in FIGURE 10.a and FIGURE 10.b,
respectively. Due to the presented data in this figure, it can be
concluded that lower values of n or k can be estimated more
accurately.

C. STATISTICAL EVALUATION OF THE NETWORK IN THE
ESTIMATION OF COMPLEX REFRACTIVE INDEX
CONSIDERING NOISE EFFECT
After evaluating the performance of the proposed network
with noise-free data, we will further investigate the effect
of noise on the estimation error. For this, data are generated
for four values of SNRs as explained earlier, and are used
for training the proposed network. Then, this network has
been used for the estimation of 1000 values of complex
refractive indices in two one-decade ranges 0.1<d/λ<2 and
2<d/λ<20. Afterward, the MSEs of prediction are calculated
and plotted, as shown in FIGURE 11. Here, the MSE of
estimation of n and k are plotted in FIGURE 11.a and
FIGURE 11.b. Considering the presented results in this
figure, three aspects can be highlighted. First, The estimation
error decreases with an almost linear slope as a function of
the signal-to-noise ratio in the logarithmic scale. Second,
the estimation error remains constant for SNR=40dB and
noiseless data. This fact determines the necessary value of
the signal-to-noise ratio to operate the system with minimum
error. Third, similar to the noiseless network, the estimation
accuracy degraded for higher values of d/λ by considering
noise.
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FIGURE 9. The analysis of MSE as a function of the wavelength range.
(a) MSE of n prediction for d/λ in [0.2,2] and (b) MSE of k prediction for
d/λ in [0.2,2], (c) MSE of n prediction for d/λ in [2, 20] and (d) MSE of k
prediction for d/λ in [2, 20].

D. MEASUREMENTS
After evaluating the performance of the proposed network
with noise-free and noisy data, we further assessed our

FIGURE 10. The distribution of MSE for the estimation of (a) n and (b) k.

FIGURE 11. Prediction Loss for different ranges of d/λ with considering
noise, MSE for prediction of (a) n and (b) k.

method using measurement results. We utilized two double-
ridged horn antennas manufactured in our antenna laboratory.
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FIGURE 12. Experimental measurement setup.

TABLE 2. The estimated complex refractive index for different values of
d/3.

Additionally, we employed a VNA (8720D Microwave
Vector Network Analyzer). As shown in FIGURE 12,
a Plexiglas sheet is positioned between two antennas to
measure the phase and amplitude of the transmitted field. The
thickness of sheet is 4 mm.

The distance between the two antennas is 65 cm. In our
case, the far-field range of the antennas are about 32 cm at the
2.6 GHz. Therefore, the assumption of plane wave radiation
is valid for the frequency range of [1- 2.6] GHz and the
complex transmittedwave (S21) is measuredwith andwithout
the Plexiglas sheet. After the calibration process, these data
are used for the estimation of the complex refractive index for
the sample range of 0.01 < d

λ
< 0.1, as depicted in TABLE 2.

In this table, the values of the complex refractive index are
estimated at the frequencies of 1GHz, 1.5GHz, 2GHz, and
2.6GHz and are in good agreement with accurate ones.

VII. CONCLUSION
In this paper, the extraction of complex refractive index
has been considered for non-magnetic materials. Due to
the limitation of theoretical or iterative methods, an LSTM
neural network has been proposed for this purpose. The
phase and amplitude of the transmitted plane wave are
assumed as the inputs while the real and imaginary parts
of the complex refractive index of MUT are considered
as the outputs. The proposed network has been trained for
values of 1<n<10, 0<k<1, and 0.01<d/λ<20 and used
for estimation of n and k. It is shown that the complex

refractive index can be estimated with an error of less than
0.1% while the estimation accuracy arises by decreasing the
material thickness-to-free space wavelength ratio of MUT.
Furthermore, the analysis shows that the estimation accuracy
remains relatively constant for different ranges of material
thickness to free space wavelength from one decade to one
octave. Furthermore, the estimation accuracy degraded for
higher values of real or imaginary parts of the refractive
index. Finally, the performance of the system was evaluated
for noisy data, which is an important issue in measurement
setups. Considering Signal to noise ratio in the range of
[25-40] dB for inputs, it is shown that the prediction error
decreases linearly as a function of SNR. Furthermore, the
same prediction error is achieved on the assumption of
SNR=40 dB and a noiseless network. Therefore, the required
signal-to-ratio to achieve the best performance of the network
can be determined.
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