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ABSTRACT Semantic segmentation of urban remote sensing images is a highly challenging task. Due
to the complex background, occlusion overlap, and small-scale targets in urban remote sensing images,
the semantic segmentation results suffer from deficiencies such as similar target confusion, blurred target
boundaries, and small-scale target omission. To solve the above problems, a local-global feature capture
and boundary information refinement Swin Transformer segmentor (LGBSwin) is proposed. First, the dual
linear attention module (DLAM) utilizes spatial linear attention and channel linear attention mechanisms for
strengthening global modeling capabilities to improve the segmentation ability of similar targets. Second,
boundary-aware enhancement (BAE) adaptively mines the boundary semantic information through the
effective integration of high-level and low-level features to alleviate blurred boundaries. Finally, feature
refinement aggregation (FRA) establishes information relationships between different layers, reduces the
loss of local information, and enhances local-global dependence, thus significantly improving the recognition
ability of small targets. Experimental results demonstrate the effectiveness of LGBSwin, with an F1 of
91.02% on the ISPRS Vaihingen dataset and 93.35% on the ISPRS Potsdam dataset.

INDEX TERMS Boundary information, dual linear attention, feature capture, remote sensing images,
semantic segmentation.

I. INTRODUCTION
Semantic segmentation [1] is a crucial problem in remote
sensing research, and its core objective lies in semantic
category recognition on a pixel-by-pixel basis. Currently,
remote sensing image semantic segmentation has beenwidely
used in practical application scenarios such as urban planning
[2], natural resource management [3], disaster assessment
[4], and agricultural production [5], [6]. It can provide
highly accurate and efficient application solutions in various
fields [7], [8], [9], [10]. However, the high-resolution urban
remote sensing images contain a large amount of complex
information, which hinders the extraction of global structure
and semantic information of targets. Also, occlusion and
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overlap problems often lead to semantic ambiguity, making
it impossible to classify pixels correctly. The issue of tiny
targets and blurred boundary information makes it difficult
to distinguish between categories. Therefore, extracting
semantic information from urban remote sensing images
remains a daunting challenge.

The particular characteristics of features, such as tiny size,
mutual occlusion, and high similarity, made semantic seg-
mentation utilizing traditional methods laborious and costly.
In recent years, the convolutional neural network (CNN) has
exhibited exceptional capabilities in computer vision [11],
[12]. Fully Convolutional Network (FCN) [13] pioneered
architecture that enabled end-to-end CNN-based pixel-level
classification. Subsequently, encoder-decoder architectures
gained prominence, withUNet [14] utilizing skip connections
to capture spatial correlation between coding layers. SegNet
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[15] up-sampled low-resolution feature maps to enhance
the understanding of spatial information. DeepLabV3+
[16] added a decoder module that utilizes spatial features,
substantially enhancing network performance compared to
DeepLabV3 [17]. CNN had the advantage of spatial location
representation to capture finer-grained local information.

While CNN demonstrated superiority for local informa-
tion, it was difficult to accurately recognize categories by
relying only on local information. Consequently, introducing
boundary information facilitated the accurate localization of
the target at the pixel level. Currently, numerous approaches
[18], [19] have focused on enhancing models’ sensitivity
to boundary information. HRCNet [20] leveraged HRNet
[21] structures to preserve spatial information and effectively
addressed the issue of rough edges in feature maps. EDGNet
[22] utilized boundary spatial information to facilitate multi-
modal information fusion. EGRCNN [23] improved model
accuracy using the prior edge information. REFLA [24]
performed region-level segmentation based on edge feature
and label assistance, which showed better segmentation accu-
racy. RUnT [25] reduced semantic confusion due to the high
similarity between categories by combining edge features
with semantic features. EU-Net [26] designed the edge
aggregation path for extracting multilevel edge correlation
information, which effectively improves the performance of
the network. This showed that the importance of boundary
information cannot be ignored.

Although many CNN-based methods took boundary
information into account and showed excellent performance,
some shortcomings existed in long-range dependencies and
spatial modeling relationships. It was owing to the limitations
of convolutional operations. Modifying the convolution
operation to expand the receptive field has become one of
the approaches to improve the limitations of convolution.
Dilated convolution [27] expanded the receptive field by
increasing the dilated rate of the convolutional kernel.
Spatial pyramidal pooling [28], which involved pooling at
different sizes. VAN [29] proposed decomposing large kernel
convolutional operations to capture long-range relations.
LSKNet [30] dynamically adjusted its large spatial receptive
field to better model the varying contextual nuances of
different object types. In addition, several studies have
investigated the attention mechanisms to capture long-range
dependencies in feature maps. For instance, DANet [31] was
proposed by acquiring positional and spatial attention to
model extensive contextual information within feature maps
effectively. By merging the spatial pyramid structure into the
attention mechanism, SPANet [32] considerably enhanced
recognition accuracy. Eca-net [33] proposed a method based
on the adaptive selection of convolutional kernel size
to enable information interaction between channels. The
above methods indirectly encoded the global context and
focused on capturing global features by aggregating the local
features obtained from the CNN. Therefore, it is essential to
acknowledge that directly obtaining clear global contextual
information in remote sensing images remains crucial.

Transformer-based [34] methods have demonstrated
remarkable performance in computer vision with their
powerful global information modeling capabilities. By lever-
aging inter-sequence prediction and employing a multi-head
attention mechanism, the ViT [35] captured long-distance
dependence and adaptive spatial aggregation capabilities,
thus allowing for more powerful and robust representations
than CNN to be learned from massive data. Building
upon this, Swin Transformer [36] pioneered a hierarchical
feature representation scheme that achieved impressive
results while maintaining linear computational complexity.
UNetFormer [37] developed an efficient attentionmechanism
to enable the interaction of global and local information.
DCSwin [38] further utilized the Swin Transformer as a
backbone for extracting contextual information and designed
a DCFAM decoder to capture multi-scale relationally
enhanced semantic features. ST-UNet [39] designed a novel
dual-encoder structure that directs the primary encoder
of CNN to capture more diverse features through global
features. Despite these significant contributions, none of the
abovementioned methods had fully integrated three crucial
factors–local information, global contextual information, and
boundary information–in semantic segmentation for urban
remote sensing images.

This study proposes a novel network framework to
consider local information, global contextual information,
and boundary information in an integrated way called
LGBSwin. We adopt Swin Transformer as an encoder due
to its exceptional capabilities in global modeling. The main
contributions are as follows:

1) Proposed LGBSwin solves problems in semantic
segmentation of urban remote sensing images, such as
occlusion and overlapping, size disparity, and intricate
background.

2) To capture global contextual information and strengthen
long-range dependencies for irregular targets, we con-
struct a dual linear attention module (DLAM).

3) A boundary-aware enhancement (BAE) is developed
to extract boundary features and effectively resolve the
issue of boundary blurring in remote sensing targets.

4) A feature refinement aggregation (FRA) module is
proposed that not only efficiently utilizes the rich
semantic information but also retains the local details.

II. METHODOLOGY
A. OVERVIEW
Fig. 1 illustrates the overall architecture of LGBSwin.
LGBSwin adopts an encoder-decoder framework. Swin
Transformer as the encoder for depth feature extraction and
image internal correlation modeling. The output of four
stages is processed through a standard 1 × 1 convolution to
generate four features (S1, S2, S3, and S4). We employ the
DLAM to capture global multi-scale information. Addition-
ally, BAE is designed to enhance the boundary semantics
associated with objects. BAE utilizes low-level features
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FIGURE 1. The overall architecture of LGBSwin. It contains the channel linear attention mechanism (CLA), the spatial linear attention mechanism
(SLA), the dual linear attention module (DLAM), the boundary-aware enhancement (BAE), and the feature refinement aggregation (FRA).

containing local boundary details and high-level features
with global location information under boundary supervision.
By extracting boundary weights, we incorporate them into the
FRA through fusion. In the FRA, we address the problem of
neglecting small targets in high-level features by ensuring a
compelling fusion of high-level and low-level features.

B. DUAL LINEAR ATTENTION MODULE
The Swin Transformer significantly reduces memory over-
head using a multi-head attention mechanism within a
confined window. This approach, involving alternating rule
and shift window execution, inevitably limited the ability
for global modeling to some degree. To better tackle this
limitation, we design the dual linear attention module
(DLAM), which introduces linear attention in spatial and
channel dimensions to consider inter-pixel relationships to
augment the global dependency of semantic features. The
effective utilization of global dependency enables DLAM
to better understand the overall context of urban remote
sensing images. The model with DLAM not only captures
the details of various feature structures but also comprehends
the associations between them, leading to more accurate
semantic segmentation. The components of DLAM are
shown in Fig. 2.
Specifically, to optimize computational efficiency, a pre-

liminary step is undertaken in which the feature map is
treated to a 1 × 1 convolution operation to reduce the
number of channels to c/2. Subsequently, a combination
of two-branch asymmetric convolution [40] and dilated

convolution layers [27] is employed to comprehensively
gather feature information from objects of varying scales,
leveraging distinct receptive fields. Then, the fused feature
information is concatenated. The following equation can
represent this process:

T1 = fτ
(
fµ (fθ (S4))

)
(1)

T2 = fτ
(
fϕ (fθ (S4))

)
(2)

T = Cat (T1,T2) (3)

where S4 ∈ Rh×w×c is the input. T1 ∈ Rh×w×(c/2) denotes
the output of the first branch. T2 ∈ Rh×w×(c/2) represents the
output of the other branch. fθ denotes the 1 × 1 convolution.
fτ is a 3 × 3 dilated convolution with a dilated rate of
3. fµ is a composite function that specifically undergoes a
1 × 3 convolution followed by a 3 × 1 convolution. fϕ is
a composite function that undergoes 1 × 5 convolution and
5 × 1 convolution in turn. T ∈ Rh×w×c is the result of
the concatenation process performed on the outputs from
two branches. Cat(·) represents the concatenation along the
channel dimension.

Then, the feature map T ∈ Rh×w×c with global
multi-scale information is transferred to the spatial linear
attention mechanism (SLA) and channel linear attention
mechanism (CLA) for attention enhancement. Based on the
linear attention mechanism [41], the SLA and the CLA
have long-term dependencies in the spatial and channel
dimensions. In DLAM-a, the output after 3 × 3 convolution
is summed with the original input to obtain the output feature
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FIGURE 2. The components of dual linear attention module (DLAM).
DLAM-a and DLAM-b are two various dual linear attention modules. SLA
and CLA are the spatial linear attention mechanism and channel linear
attention mechanism separately, and they are the components of DLAM-a
and DLAM-b. DLAM-a is used in BGSwin.

DLA(S4) ∈ Rh×w×c, which can be expressed as:

DLA(S4) = fσ (S4 ⊕ fδ(SLA(T ) ⊕ CLA(T ))) (4)

where SLA(T ) ∈ Rh×w×c and CLA(T ) ∈ Rh×w×c represent
the SLA and the CLA, respectively. fδ is a 3× 3 convolution.
fσ symbolizes the ReLU activation function. ⊕ denotes the
element-wise addition operation. Note that with DLAM-a in
LBGSwin, DLAM defaults to the DLAM-a version if not
otherwise specified.

In DLAM-b, the output DLA′(S4) ∈ Rh×w×c can be
expressed as:

DLA′(S4) = fσ (S4 ⊕ fδ(CLA(SLA(P)))) (5)

C. BOUNDARY-AWARE ENHANCEMENT
Previous studies [42] on Swin Transformer established
layered networks by projecting flattened patches or com-
bining features from adjacent blocks and performing linear
operations. However, the above methods tended to result
in a loss of fine-grained details and boundary information,
which hindered effective segmentation. Furthermore, remote
sensing images are prone to feature occlusion, leading to
indistinct boundaries. It is well known that low-level features
retain rich boundary details of urban scenes but lack semantic
content, whereas high-level features offer precise semantic
information but possess coarse spatial resolution. In order
to effectively mine the object boundary information and
thus alleviate the problem of occlusion and overlapping of
remote sensing images, we design the BAE, which integrates

low-level features from stage II with high-level features from
stage IV. It is imperative to emphasize that the lower-level
features of stage II are chosen instead of stage I in BAE input.
It is taken into account that the stage I features are closer to
the original input, have a lot of redundant information, and
have a smaller receptive field.

Specifically, we input the low-level feature S2 to a
1 × 1 convolution to obtain feature fθ (S2). In contrast, the
high-level feature S4 is channel-adjusted and upsampled,
which can be expressed as Up4× (fθ (S4)). Then, the con-
catenate operation is performed on fθ (S2) andUp4× (fθ (S4)).
The merged feature is subjected to convolutional operations
and a sigmoid activate function to facilitate the fusion
between high-level and low-level features, evaluate channel
dependency, and adaptively learn important information
across channels to obtain the boundary feature E ′. On the
one hand, E ′ and the boundary label compute the binary
cross-entropy loss to achieve boundary supervision. On the
other hand, we multiply E ′ and S4 element-by-element, then
use the skip connection to obtain E (S4). In summary, the
input-output process of BAM can be described using the
following equation:

E ′
= fε (fω (Cat (fθ (S2) ,U p4× (fθ (S4))))) (6)

E (S4) = D
(
E ′

)
⊙ S4 ⊕ S4 (7)

where fω denotes successive passes through two 3 ×

3 convolution functions and one 1 × 1 convolution layer. fε
is a sigmoid activate function. ⊙ represents an element-level
multiplication. D(·) denotes downsampling.

D. FEATURE REFINEMENT AGGREGATION
Global semantic information plays a vital role in intricate
urban scenes. Introducing boundary information further
enhances the segmentation quality. Nevertheless, it would be
unwise to overlook local information since it retains sub-
stantial spatial details. Notably, urban remote sensing images
exhibit significant variations in target scales, necessitating
a focus on leveraging local information to delineate object
regions across diverse scales accurately. Previous research
[43] has demonstrated that different layers encompass distinct
information. Consequently, we design the feature refinement
aggregation (FRA) to effectively utilize context derived
from different layers to better address the problem of target
scale variations in urban remote sensing images, especially
for small targets. The structure of FRA is illustrated
in Fig. 3.

We employ upsampling on the output of the FRA from
the previous layer to recover the resolution. Convolution is
utilized to modify the channel dimension adaptively. Then
perform a concatenation operation between the features from
the encoder and the output of the FRA from the previous
layer along the channel dimension to achieve a fusion
of high-level and low-level semantics. The resulting fused
feature representation, denoted as F ′

i−1, encapsulates both
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FIGURE 3. The structure of feature refinement aggregation (FRA). Si stands for the feature from Swin Transformer. Fi is defined as the feature from
FRA.

high-level and low-level information:

F ′

4 = fθ (Cat (DLA (S4) ,E (S4))) (8)

F ′

i−1 = fθ
(
Cat

(
Si−1,F

2×
i

))
, i ∈ {2, 3, 4} (9)

where {Si}4i=1 represents the four-stage output of the Swin
Transformer. The four outputs of the FRA are denoted as
{Fi}4i=1. DLA (S4) and E (S4) represent the output feature
maps of DLAM and BAE, respectively. F2×

i represents the
bilinear interpolation of Fi. Each channel in the feature
map performs the role of a feature detector, emphasizing
significant image content through channel dependence.
We utilize three distinctive pooling strategies to incorporate a
more profound knowledge of channel dependence. Primarily,
we employ adaptive average pooling and maximum pooling
layers to calculate vital features across the channels. These
extracted features are subsequently transmitted to a shared
fully connected layer. By summing the outputs of these two
pooling, denoted as PA&M . Simultaneously, we introduce
soft pooling [44] with exponential weights to derive global
weights that capture the relative significance of the channels.
The global weights are then multiplied element by element
with PA&M to obtain P. The overall process can be concisely
captured using the following equation:

PA&M = fσ
(
ψ1

(
AvgPool

(
F ′
i
)))

⊕ fσ
(
ψ1

(
MaxPool

(
F ′
i
)))

(10)

P = fε
(
ψ2

(
PA&M ⊙

(
fσ

(
ψ1

(
SoftPool

(
F ′
i
))))))

(11)

where AvgPool(·), MaxPool(·), and SoftPool(·) denote adap-
tive average pooling, maximum pooling, and soft pooling,
respectively. ψ1 and ψ2 are defined as fully connected
layers of decreasing size and fully connected layers of
increasing size, in that order. We then optimize the feature
representation by multiplying the P with the high-level
and low-level features. Finally, the superimposition of these
feature maps generates an output Fi, which can be expressed

mathematically as follows:

F4 = DLA (S4)⊙ P+ E (S4)⊙ P+ DLA (S4)+ E (S4)

(12)

Fi−1 = Si−1 ⊙ P+ F2×
i ⊙ P+ Si−1 + F2×

i ,

i ∈ {2, 3, 4} (13)

E. LOSS FUNCTION
During the training phase, we implemente a multi-task
segmentation architecture by utilizing the final layer of
the FRA to generate the segmentation map. Boundary
supervision includes the utilization of both the BAE output
E ′ and boundary label, as illustrated in Fig. 1. The multi-task
segmentation architecture involves two key components.
On the one hand, we use a mask to supervise the final seg-
mentation map, and the principal loss Lossp is a combination
of cross-entropy loss and dice loss, which can facilitate more
effective network construction and optimization. This can be
defined as:

Lossp = Lossce + Lossdice (14)

On the other hand, the boundary loss Lossb utilizes the
binary cross-entropy loss. In order to achieve a more harmo-
nized weighting between the principal loss and the boundary
loss, a balancing factor α is introduced, which serves to
multiply the boundary loss. Consequently, the comprehensive
representation of the total loss can be succinctly expressed
through the following equation:

Losstotal = Lossp + αLossb (15)

where the balancing factor α is set to 0.4.

III. EXPERIMENTAL RESULTS
A. DATASETS
Our proposed network undergoes validation using two
publicly available datasets: the ISPRS Vaihingen dataset
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and the ISPRS Potsdam dataset. The ISPRS Vaihingen
dataset comprises 33 tiles with a 9cm/pixel high resolution,
accompanied by classification labels. The classification
labels include six categories: impervious surfaces, buildings,
low vegetation, trees, cars, and background. We apply the
canny algorithm to the labels to generate boundary labels.
Consistent with the division rules defined by the benchmark
organizers, we classify 16 images in the Vaihingen dataset for
training and the remaining 17 images for testing. Similarly,
the ISPRS Potsdam dataset contains 38 patches of high-
resolution (5cm/pixel) and the corresponding classification
labels. 24 patches are set as the training set, and the other
14 patches are used for testing.

B. IMPLEMENTATION DETAILS
1) TRAINING SETTING
All experiments are implemented using PyTorch on an
NVIDIA Geforce RTX 3090Ti GPU with a batch size of
8, an optimizer set to AdamW, a learning rate of 0.0003,
and a weight decay value of 0.0025. To facilitate effective
training, the original images and their corresponding labels
are cropped to dimensions of 512 × 512. Prior to training,
image enhancement techniques are applied to augment the
dataset. Image enhancement is performed in the following
ways: random rotation, random resizing, flipping along the
horizontal or vertical axis, and adding Gaussian noise.

2) EVALUATION METRICS
We employ the following evaluation metrics to assess the
performance of LBGSwin: overall accuracy (OA), mean
intersection over union (mIoU), and F1 score (F1). These
three evaluation metrics are based on a confusion matrix
that contains four terms: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). For each
category, mIoU is defined as the ratio of the intersection
and concatenation of predicted and true values. The above
evaluation metrics are calculated as follows:

OA =
TP+ TN

TP+ FP+ FN + TN
(16)

mIoU =
TP

TP+ FP+ FN
(17)

precision =
TP

TP+ FP
(18)

recall =
TP

TP+ FN
(19)

F1 = 2 ×
precision × recall
precision + recall

(20)

C. ABLATION STUDY
To assess the efficacy of the LBGSwin component, we com-
prehensively evaluate three crucial modules within the
network. We use the Swin Transformer as a baseline network
for ablation experiments on the Vaihingen datasets and the
Potsdam datasets. The experimental configuration specifics
and quantitative outcomes are meticulously documented in

FIGURE 4. Comparison results before and after using DLAM in the
baseline. (a) Image. (b) Ground truth. (c) Results of Swin-S. (d) Results of
Swin-S+DLAM.

Table 1. The hyperparameters are kept consistent in all
experiments.

1) THE EFFECTS OF BASELINE
We choose Swin-S: C = 96, window size = 8 × 8, block
numbers = {2, 2, 18, 2} pre-trained on ImageNet as the
backbone of the encoder, which is recovered to the exact
resolution as the original input image using an upsampling
operation. Table 1 shows the performance of Swin-S as a
baseline in the Vaihingen and the Potsdam.

Table 2 presents a comparison of three distinct backbones,
namely Swin-T, Swin-S, and Swin-B, while simultaneously
maintaining DLAM, BAE, and FRA. ThemIoU for Swin-S in
the Vaihingen dataset reveals a 1.26% increase compared to
Swin-T. Swin-S displays amIoUmetric of 0.73% greater than
Swin-B in the Vaihingen. In a similar vein, Swin-S exhibits a
higher level of excellence in the Potsdam.

2) THE EFFECTS OF DUAL LINEAR ATTENTION MODULE
Table 1 illustrates that when DLAM is considered in the
baseline, there is an increase of 1.01% on the mIoU and 0.6%
on F1 in the Potsdam. More intuitively, the comparison of
the visual segmentation results is shown in Fig. 4. In the
second row, the use of DLAM-a enables the model to
discern the segment of the rooftop that exhibits a dissimilar
coloration from the rest of the roof and accurately classifies
it within the ‘‘Building’’ category. The third and fourth rows
present a resemblance in coloration between the balcony
and the road, resulting in potential confusion. However, the
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TABLE 1. Results of module ablation experiments.

FIGURE 5. Comparison results of attention ablation experiments. (a) Image. (b) Ground truth. (c) Results of CBAM. (d) Results of self-attention.
(e) Results of SE block. (f) Results of ECA. (g) Results of SA. (h) Results of DLAM-b. (i) Results of DLAM-a.

TABLE 2. Results of different baseline.

model utilizing DLAM-a proves the capability to discern the
distinction between the two objects. The results indicate that
the employment of DLAMprovides the ability to augment the
model’s capacity to capture global information effectively.

To further explore the role of attention modules, we com-
pared DLAM-a, DLAM-b, and other attention mechanisms.
We remove the SLA and CLA from LGBSwin and use other
attention modules. The results are shown in Table 3, where

TABLE 3. Results of the attention ablation experiments.

DLAM-a is highest in the mIoU and F1 in the Vaihingen and
Potsdam, outperforming other attention mechanisms such as
CBAM [45], self-attention [34], SE block [46], ECA [33],
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FIGURE 6. Comparison results before and after using BAE in the baseline.
(a) Image. (b) Ground truth. (c) Results of Swin-S. (d) Results of
Swin-S+BAE.

TABLE 4. Results of different balancing factor α.

and SA [47]. The visualization results are shown in Fig. 5.
In the third row, the buildings are similar to the road colors
and can be correctly classified using DLAM-a. It is indicated
that DLAM enhances the global modeling capability and
improves the recognition accuracy of similar categories.

3) THE EFFECTS OF BOUNDARY-AWARE ENHANCEMENT
Table 1 demonstrates that adding BAE to the baseline
enhances the mIoU by 1.66% in the Vaihingen and 1.96%
in the Potsdam. Fig. 6 displays the efficiency of BAE
in capturing boundary details. In the first row, the model
introducing BAE uses the boundary information to identify
buildings that are similar to roads. In the third row, the model
with the addition of BAE extracts more precise building
boundary information. The above outcomes show that the
sensitivity of BAE to boundary information can boost the
ability to recognize target boundaries.

4) THE EFFECTS OF FEATURE REFINEMENT AGGREGATION
As can be seen from Table 1, the model performance is
significantly improved by adding FRA to the baseline. In the

FIGURE 7. Comparison results before and after using FRA in the baseline.
(a) Image. (b) Ground truth. (c) Results of Swin-S. (d) Results of
Swin-S+FRA.

FIGURE 8. Comparison results of different balancing factor α. (a) Image.
(b) Ground truth. (c) Results of the α with 0.3. (d) Results of the α with
0.4. (e) Results of the α with 0.5.

Vaihingen, mIoU increases by 4.91%, and F1 rises by 3.07%.
In the Potsdam, mIoU boosts by 2.63%, and F1 improves by
1.29%. More specifically, Fig. 7 visualizes the comparison
results. The small target size of the cars renders it tough to
segment cars in a dense car situation (e.g., the second row).
With the addition of FRA, the model can segment the ‘‘Car’’
category more accurately. This shows that introducing local
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FIGURE 9. Comparison of visualization results on the Vaihingen. (a) Image. (b) Ground truth. (c) FCN. (d) UNet. (e) DeepLabV3. (f) SPANet. (g) DANet.
(h) DCSwin. (i) BANet. (j) UNetFormer. (k) LSKNet. (l) Proposed method.

information by FRA can improve the segmentation accuracy
for small-scale categories.

In addition, as shown in Table 1, we explore the joint
impact between modules. In Vaihingen, adding DLAM and
BAE raises mIoU and F1 by 5.03% and 3.42%, respectively.
The insertion of DLAM and FRA boosts mIoU by 6.78%
and F1 by 4.48%. When BAE and FRA are combined, mIoU
increases by 6.45%, and F1 climbs by 4.29%. When all three
modules (DLAM, BAE, and FRA) are used simultaneously,
mIoU is significantly improved by 7.05%, F1 gains a
significant increase of 4.67%, and OA rises by 2.05%.

5) THE EFFECTS OF LOSS FUNCTION
The loss function designed for the LGBSwin, the joint
loss Losstotal used in this study, has notably enhanced
the performance of the network, with the mIoU metric
reaching 83.71% and 87.73% for the Vaihingen and the
Potsdam, respectively, verifying the effectiveness of the loss
function. Table 4 illustrates the performance comparisons
of different balancing factor α values. Upon examination
of Fig. 8, it becomes apparent that the model exhibits
superior performance when the α is set to 0.4, denoted
as a result (d). The model demonstrates a high level of
accuracy in segmenting dense cars and tiny buildings in both
the first and second rows. The model reveals sensitivity to
segmentation boundaries in the third row. The presence of
‘‘Low veg’’ obstructing the road in the fourth row is prone
to category confusion, and the model enhances the precision
of identifying confusing categories.

D. PERFORMANCE COMPARISON
In order to evaluate the efficacy of LBGSwin, we conduct
a comparative analysis with established methodologies on
two distinct datasets, namely the Vaihingen and the Potsdam.
Experiments are conducted under consistent conditions.
In the context of the comparison model configuration,
we select classical CNN-based semantic segmentation mod-
els, including UNet, DeepLabV3, and so on. In addition,

our comparison also includes Transformer-based network
models, such as DCSwin.

Table 5 presents a comparative analysis of different meth-
ods applied to the Vaihingen. The mIoU achieves a value of
83.71%, the F1 score is 91.02%, and the OA is 91.53%.When
comparing LBGSwin to the CNN-based model DeepLabV3,
it is shown that LBGSwin exhibits a 5.1% gain in mIoU, a
3.13% rise in F1, and a 2.76% improvement in OA. Compared
with DCSwin, which also uses Swin Transformer as the
backbone, we observe that the IoU of ‘‘Imp. Surf.’’ and
‘‘Building’’ are not optimal. However, the advantage of the
proposed method lies in the accurate semantic segmentation
of the overall scene, as evidenced by the 0.49% increase
in mIoU. Compared to LSKNet, which can dynamically
adjust the receptive field, LGBSwin’s mIoU and F1 are
ahead by 0.62% and 0.38%, respectively. Based on the
evaluationmetrics, it is obvious that our method demonstrates
greater performance compared to the other methods. Fig. 9
visualizes the superiority of LBGSwin. In the first row,
LGBSwin eliminates car segmentation errors induced by light
shading. This demonstrates the global modeling capability
of LBGSwin, which effectively improves the segmentation
accuracy of occluded objects. LBGSwin performs strongly
in small target segmentation within the dense car zone in the
second row, effectively using local information. In the third
row, LGBSwin successfully segments the shadow-disturbed
buildings, verifying the global context capture capability of
the model.

Table 6 illustrates the results of comparing different
methods on the Potsdam dataset. The mIoU, F1, and OA
metrics reached 87.83%, 93.35%, and 91.87%, correspond-
ingly. Compared to SPANet using spatial pyramid attention,
LBGSwin demonstrates a notable increase in mIoU by
7.23% and an improvement in F1 by 4.22%. Compared to
UNetFormer, which uses a lightweight ResNet 18 as its
encoder, LBGSwin demonstrates better performance with
a 1.33% increase in mIoU and a 0.72% increase in F1.
Compared with DCSwin, LBGSwin’s excellent performance
in other categories makes up for the disadvantage in ‘‘Imp.
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FIGURE 10. Comparison of visualization results on the Potsdam. (a) Image. (b) Ground truth. (c) FCN. (d) UNet. (e) DeepLabV3. (f) SPANet. (g) DANet.
(h) DCSwin. (i) BANet. (j) UNetFormer. (k) LSKNet. (l) Proposed method.

TABLE 5. Comparison of different methods on the Vaihingen dataset.

Surf.’’, enabling mIoU to achieve optimal performance.
This comprehensiveness advantage stems from the model’s
ability to effectively mine complex urban information and
differentiate between multiple classes of features. BANet
[48] is a bilateral structure that combines Transformer and
convolution, and LBGSwin is still 1.21% higher on the F1
metric. Compared with LSKNet, the F1 and OA of the
proposed method increase by 1.12% and 1.25%, respectively.
The results mentioned above illustrate the advancements
achieved by the LBGSwin. Fig. 10 displays the segmentation
capability of LBGSwin. In the first and second rows,
LBGSwin avoids the interference of ‘‘Low veg’’ and roads,
and successfully recognizes the ‘‘Building’’ region. In the
third row, ‘‘Low veg’’ is exceedingly similar to roads, and
LGBSwin correctly divides the ‘‘Low veg’’ category. This
indicates that LBGSwin leverages boundary information to
boost segmentation accuracy for similar categories.

Calculating costs is crucial for evaluating the network.
Table 7 demonstrates the comparison of the computational
costs of the involved methods. Specifically, the table contains
mIoU for the Vaihingen dataset, FLOPs, and parameters.
Compared to UNet, LGBSwin has a significant advantage
in terms of computational cost. This indicates that the
proposed method utilizes computational resources more
efficiently while maintaining high performance. Compared
to DCSwin, which also uses Swin-S as a backbone, our
method performs better in terms of both computational cost

TABLE 6. Comparison of different methods on the Potsdam dataset.

TABLE 7. Comparison of the computational costs.

and performance. Although our parameters are lower than
DCSwin, some models still perform better in this regard, and
future work could consider optimizing the model structure
to reduce the number of parameters. Overall, the proposed
method balances computational cost and performance in
urban remote sensing semantic segmentation tasks, showing
potential superiority. LGBSwin is highly competitive in
scenarios with high requirements for semantic segmentation
accuracy.

IV. CONCLUSION
In this study, we propose LGBSwin as a novel approach
for acquiring features in remote sensing images to enhance
semantic segmentation. The DLAM incorporates spatial
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linear attention mechanisms and channel linear attention
mechanisms to enhance global modeling capabilities. The
BAE is designed to tackle the issue of boundary ambiguity
by leveraging boundary information. The FRA establishes the
interaction between local and global information, alleviating
semantic ambiguity resulting in the loss of local information.
Furthermore, a combinatorial loss function is employed to
optimize the LGBSwin network. Experimental results show
that the proposed method achieves better performance on
two public datasets in terms of both numerical metrics and
visual results. In future research, we will further achieve
more balanced and superior segmentation performance for all
categories while maintaining a high level of mIoU.
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