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ABSTRACT The fast and accurate series arc fault (SAF) identification method and its hardware implemen-
tation are the key to the development of arc fault circuit interrupter (AFCI) or arc fault detection device
(AFDD). The SAF experiments under household multi-branch circuit conditions were conducted. And a
novel SAF identification model based on lightweight one-dimensional (1-D) convolutional neural network
was proposed. First, the main-circuit current signal was used as the input of themodel. The 1-D convolutional
layers and 1-D maximum pooling layers of the model were used to extract the features of the current signal.
The fully connected neural network (FCNN) was used to identify whether or not there is a SAF in the
circuit and determine the branch-circuit where the fault is located. Second, the second to fourth standard
convolutional layers of the model were improved by using depthwise separable convolution, and the batch
normalization layers were added to the model, so as to realize the optimal design of the model. Finally, the
model was deployed to an embedded device and its performance was tested. When the sampling frequency is
higher than 5 kHz, the accuracy of fault identification and fault line selection of the model in the embedded
device is higher than 98.05% and 99.11%, respectively. The average runtime of single identification is
5.26 ms. It meets the technical requirements of household AFCI or AFDD.

INDEX TERMS Depthwise separable convolution, fault diagnosis, fault line selection, lightweight design,
series arc fault.

I. INTRODUCTION
In household power supply lines, series arc fault (SAF) often
occurs due to aging of insulation and poor contact. The tem-
perature of the SAF is above 2000 ◦C, which can ignite the
wire insulation or any other inflammable materials around the
fault location in a very short time, causing a fire. SAF is one
of the main causes of home fire accident [1]. When a SAF
occurs, the root-mean-square of current is lower than that
in normal state, which makes the conventional short-circuit,
over-current and leakage current protection devices unable to
accurately identify the fault and realize fault protection [2].
It is generally believed that the installation of arc fault circuit
interrupter (AFCI) or arc fault detection device (AFDD) in
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electrical circuits is the most effective way to implement arc
fault protection.

At present, the household AFCI or AFDD products on the
market can only identify the SAF occurring in a single-branch
circuit or in the main-circuit of a multi-branch circuit, and
the identification accuracy needs to be further improved.
However, a household power supply system contains many
branch-circuits. These branch-circuits usually work simulta-
neously. A SAF may occur in each branch-circuit. If an AFCI
or AFDD is installed in each branch-circuit, it will inevitably
bring a series of problems such as the complexity of the
distribution system, the increased size of the distribution box,
and higher costs. Obviously, it is unreasonable, or at least it is
inconvenient. In this case, it is very necessary to design a SAF
identification method suitable for household multi-branch
circuit, which can identify the SAF in each branch-circuit
only by using the main-circuit current signal, and also has the
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function of fault line selection. It is of great significance for
the development of AFCI or AFDD with the above functions
and the prevention of home electrical fires.

A lot of research has been done on household SAF identifi-
cation methods. Most of them identify the SAF by analyzing
the current signals. Artale et al. [3] and Zhao et al. [4]
selected the frequency-domain and time-domain indicators of
the current signal, and used the threshold judgment method to
detect the SAF. Jiang et al. [5] adopted a short-observation-
window singular value decomposition and reconstruction
algorithm to analyze the current signal and used thresholds
to identify the SAF in residential buildings. Luan et al. [6]
applied two time-domain features of the current signal and
thresholds to detect the SAF. The time-domain features are
absolute error between adjacent current cycles, and the zero
current period of current signal, respectively. Guo et al. [7]
calculated the time-domain and time-frequency domain fea-
tures of current signals by wavelet packet decomposition and
variational mode decomposition, and identified the SAF by
using support vector machine (SVM). Qu et al. [8] extracted
four time-domain features and ten frequency-domain fea-
tures of current signals, and designed a SVM optimized by
particle swarm optimization algorithm to detect the SAF.
Zou et al. [9] constructed a highly identifiable features by
combining sensitive current components and strong discrimi-
native features, and used a standard SVM to identify the SAF.
Ferracuti et al. [10] used textural image features extracted
from gray-level co-occurrence matrix to represent the fault
indicators, and exploited the recurrence quantification plots
to detect the SAF. Wang et al. [11] proposed a signal pre-
processing method based on the improved Mel Frequency
Ceptral coefficient, and employed a fully connected neural
network (FCNN) to identify the SAF. Wang et al. [12] con-
verted the current signal into a series of sparse coefficients
and then applied a FCNN to identify the SAF.Wang et al. [13]
first determined the load category according to the funda-
mental frequency component of the current signal, and then
took the specific time-domain and frequency-domain indi-
cators as the input, and finally adopted different FCNNs to
identify the SAF occurred in different types of load circuit.
Dowalla et al. [14] presented a SAF detection and fault
location method by analyzing both current and voltage sig-
nals. The random forest classifier and k-nearest neighbor
algorithmwere adopted respectively to realize the fault detec-
tion and fault location function. Jiang et al. [15] extracted two
time-domain features by impulse factor analysis and covari-
ancematrix analysis, and a frequency-domain feature bymul-
tiple frequency-band analysis, and then utilized a threshold
and a SVM to detect the SAF. In [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], and [15], the signal analysis meth-
ods, and the threshold method or traditional machine learning
algorithms are combined to detect the SAF. Since we have to
artificially determine the signal analysismethod, construction
method of the feature vectors, and classifier, the above meth-
ods have strong subjectivity. Moreover, when the load or cir-
cuit topology varies, the generality of these methods is poor.

Recently, several deep learning algorithms based domes-
tic SAF identification methods have been proposed.
Yang et al. [16] identified the SAF in multi-load circuit by
using a temporal domain visualization convolutional neural
network (CNN). Zhang et al. [17] first arranged the normal-
ized current signals piecewise to obtain a two-dimensional
(2-D) gray matrix, and then adopted a self-normalized CNN
to identify the SAF. Zhou et al. [18] extracted morphological
features of the current signals and designed a customized
multi-scale CNN to detect the SAF. Zhang et al. [19] proposed
an adaptive SAF identification model, and used generative
adversarial networks to realize data enhancement function.
Jiang et al. [20] selected the feature vectors of the SAF from
the time-domain, frequency-domain features and wavelet
packet energy indicators of current signals, and applied a deep
neural network to identify the fault. Zhang et al. [21] first
fused the multi-layer discrete wavelet details of the current
signal into a matrix, then converted the matrix into a phase
space image, and used a deep residual network to identify
the SAF. Chu et al. [22] deployed a CNN to the embedded
device Zynq-7020, and realized the on-line detection of the
SAF occurred in household circuit. Paul et al. [23] designed a
machine learning algorithm named Efficient-ArcNet to detect
the SAF, and implemented it in Raspberry Pi 4B to verify
the practicability of the method. Wang et al. [24] deployed a
CNN to Raspberry Pi 3B to identify the SAF, and tested the
performance of the network.

In [16], [17], [18], [19], [20], [21], [22], [23], and [24],
although thesemethods have good identification performance
and generalization performance, they still have the following
shortcomings.

1) The methods in [16], [17], [19] and [21], [22], [23],
and [24] are used to identify the SAF occurred in a
single-branch circuit or in the main-circuit of a multi-
branch circuit. However, a household power supply
system has many branch-circuits, and usually multiple
branch-circuits operate simultaneously. In the multi-
branch circuit, the main-circuit current will be effected
by the load type and the number of load in each branch-
circuit. When SAF occurs in a branch-circuit, the
main-circuit current includes both the arc fault current
signal of the fault branch-circuit and the normal work-
ing current signals of all other normal branch-circuits.
These normal working current signals will weaken or
submerge the fault features of the SAF to a certain
extent. It is very difficult to accurately identify the SAF
occurred in the branch-circuit only by analyzing the
main-circuit current signal, which contains weak SAF
feature information. Therefore, whether the existing
SAF identification method for a single-branch circuit
can still be applied to household multi-branch circuit
needs further verification.

2) The methods in [2], [7], [15], [18], and [20] are suitable
for the identification of the SAF in the householdmulti-
branch circuit. But they can only be implemented in
computers, and the feasibility of implementation in
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embedded microprocessors needs to be further tested.
Up to now, the implementation of the fault identifi-
cation and fault line selection method for the SAF in
household multi-branch circuit in embedded micropro-
cessors has not been reported.

3) Although the methods in [22], [23], and [24] have been
implemented in embedded devices, they still have the
following insufficiencies. The method in [22] requires
a specially designed high-frequency coupling sensor
to detect circuit current. The detection performance of
the methods in [23] and [24] needs to be improved.
In addition, the above methods do not consider the
adaptability of the identification model to the signal
sampling frequency. When the sampling frequency
changes, the model structure needs to be adjusted and
the model needs to be retrained. It is very inconvenient
in practical application. Therefore, how to optimize the
existing identification model so that it can run in a
general-purpose embedded microprocessor is crucial
for the development of intelligent and miniaturized
AFCI or AFDD.

To solve the above problems, a CNN-based SAF identifica-
tion model was proposed in this work. The main innovations
and academic contributions are as follows.

1) A lightweight SAF identification model based on
1-D CNN was proposed to identify the SAF occurred
in household multi-branch load circuit. The model can
realize both fault identification and fault line selection
functions of the SAF only by analyzing themain-circuit
current signal. Moreover, it has strong adaptive ability
to signal sampling frequency. It provides a new solution
for the development of household AFCI or AFDD with
the fault line selection function.

2) One-dimensional (1-D) depthwise separable convolu-
tion was used to optimize the identification model,
which reduces the computational cost of feature extrac-
tion. The optimized model has lower complexity and is
much easier to be implemented in embedded micropro-
cessors.

3) The model was successfully deployed to the embedded
device Jetson nano. Its accuracy and runtime were
tested by the device, and its effectiveness was verified.

The rest of the article is organized as follows. Section II
introduces the SAF experiments, and the creation of the
dataset. Section III describes the details of the design and
optimization of the SAF identification model. Section IV
presents the hardware implementation of the model, and
discusses the effectiveness of the model under different test
conditions. Section V concludes this article.

II. SAF EXPERIMENTS AND DATASET CREATION
A. SAF EXPERIMENTS
A SAF generator was developed according to UL1699 stan-
dard, as shown in Fig. 1. It mainly consists of a static
electrode, a movable electrode, a stepper motor, a sliding
bench, an insulating basement, two insulating supports, wires,

FIGURE 1. SAF generator. (a) Principle diagram. (b) Photo.

TABLE 1. Experimental loads and their parameters.

and a control circuit board. The movable electrode and static
electrode are copper rod and carbon rod, respectively. The
diameter of the two rods is 5mm. The static electrode is
installed on the insulating basement through the insulating
support. And the movable electrode is installed on the insulat-
ing support, which is fixed on the sliding bench. The stepper
motor is used to control the reciprocating motion of the
sliding bench, so as to adjust the position of the movable
electrode. Here, the control of the stepper motor is achieved
by using the control circuit board.

Using the SAF generator, six typical household appliances
in Table 1 were selected as the experimental loads. Accord-
ing to Table 2, the SAF experiments were carried out in
single-branch, two-branch, four-branch, and six-branch cir-
cuit, respectively.

The experimental circuit is shown in Fig. 2. A commer-
cial AC power supply was used as the experimental power
supply. Its rated output voltage is 220 V and its fundamental
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TABLE 2. Experimental scheme.

FIGURE 2. Diagram of the experimental circuit.

frequency is 50 Hz. The SAF in each branch-circuit can be
simulated by connecting the SAF generator in series to the
circuit.

According to the arc-drawn method, a SAF can be gener-
ated by controlling the reciprocating motion of the movable
electrode of the SAF generator. The specific operation pro-
cess is as follows. For each experiment, first connect the
SAF generator to a branch-circuit in series, and make the
movable and static electrodes of the SAF generator contact
together. Then, power on the branch-circuit to make it run
normally. Next, slowly adjust the position of the movable
electrode by controlling the stepper motor installed in the
SAF generator, and an arc is generated in the gap between
the static and movable electrodes. In the arc burning stage,
if the fluctuation of arc voltage and arc current is very small,
the arc is considered to be approximately stable, that is,
the arc is in quasi-stable burning state. When the arc is in
quasi-stable burning state, stop adjusting the position of the
movable electrode. During the arc burning process, the factors
affecting the arc burning state are not changed deliberately.
In this case, the arc will keep burning in the quasi-stable burn-
ing state. At this time, the main-circuit current signal and the
voltage signal across the static and movable electrodes (i.e.,
arc voltage signal) are collected. If the arc extinguishes in the
process of signal acquisition, immediately adjust the position
of the movable electrode by controlling the stepper motor so
as to re-generate an arc in quasi-stable burning state in the
arc gap. In the data processing stage, the main-circuit current
signal is selected according to the arc voltage signal, and only
the main-circuit current signal when the arc is in quasi-stable
state is used to create the SAF dataset. It should be noted that
in household power supply lines, the occurrence of the SAF
is random. In order to simulate the random characteristics of
the occurrence of actual SAF as much as possible, the phase

of the SAF in each current cycle is not specially set during
the experiments.

During the experiment, an HCS-ES5 type hall current
transformer (CT) was used to measure the main-circuit cur-
rent signal. Its measuring range is 0-25 A, linearity is smaller
than 0.1%, and response time is shorter than 1µs. An HVS-
AS type hall voltage transformer (VT) was used to measure
the voltage signal across the static and movable electrodes
of the SAF generator. The voltage transformer has an inter-
nal measuring resistance of 50 �. Its rated input current is
5 mA, linearity is smaller than 0.1%, and response time is
shorter than 40 µs. A USB-3200 type data acquisition card
(DAC) was used to upload the current and voltage signals
to a computer for subsequent data analysis. The DAC has a
12-bit analog-to-digital converter, and its maximum sampling
frequency is 500 kHz. In this section, the sampling frequency
of the current and voltage signals is 50 kHz.

B. ANALYSIS OF EXPERIMENTAL RESULTS
Fig. 3 shows the main-circuit current waveforms with or
without SAF in different branch-circuits.

In normal state, i.e., there is no SAF in themulti-branch cir-
cuit, the main-circuit current waveform is a sine wave when
the load of the branch-circuit is a light bulb, induction cooker,
and hair dryer, respectively.When the load is an angle grinder,
the current waveform is a triangular wave.When the load is an
electric drill, there are a few low amplitude burrs in the current
waveform. When the load is a computer, there is obvious
‘‘flat shoulder’’ phenomenon in the current waveform, which
is similar to the main-circuit current waveform when a SAF
occurs in the light bulb, electric drill, angle grinder, or hair
dryer branch-circuit. So it is easy to cause misjudgment in
identifying the SAF.

In arc fault state, i.e., a SAF occurs in any branch-circuit,
there are different degrees of ‘‘flat shoulder’’ phenomenon
and burrs in the main-circuit current waveform. Compared
with that in the hair dryer branch-circuit, the ‘‘flat shoulder’’
phenomenon in the main-circuit current waveform is more
obvious when the SAF occurs in the light bulb or angle
grinder branch-circuit. This is because the rated current of
the above three loads is different, which leads to the different
arcing intensity when the SAF occurs. In addition, when the
SAF occurs in different branch-circuits, the characteristics of
burrs in the current waveform are obviously different. The
main difference are as follows. In the light bulb or angle
grinder branch-circuit, burrs appear at the edge of the ‘‘flat
shoulder’’ position in the current waveform. In the computer
branch-circuit, a great deal of burrs is concentrated in the ‘‘flat
shoulder’’ position in the current waveform. In the induction
cooker branch-circuit, burrs appear near the peak and trough
of the current waveform. In the electric drill branch-circuit,
burrs appear at the edge of the ‘‘flat shoulder’’ position,
as well as near the peak and trough of the current waveform.
Furthermore, the amplitude of the burrs at the edge of the ‘‘flat
shoulder’’ position is much higher than that at other positions.
Different from the random burr generated by electromagnetic
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FIGURE 3. Main-circuit current waveforms with and without SAF.
(a) Two-branch circuit. (b) Six-branch circuit.

interference, the above burr characteristics have certain reg-
ularity. Therefore, making full use of the above waveform
features will help to reduce misjudgment and improve the
identification accuracy.

When multiple branch-circuits operate in parallel, the
amplitude of the main-circuit current is larger than that of
branch-circuit. If a branch-circuit current is very small, the
signal features generated by the SAF in the branch-circuit
may be weakened or submerged by the main-circuit current
signal, which makes it more difficult to identify the SAF
in multi-branch circuit. To address this issue, convolutional
neural network was used in this article to identify the SAF in
this application scenario.

TABLE 3. Distribution of fault samples.

C. DATASET CREATION
To retain the complete feature information of current wave-
form in the sample data, the samples were intercepted from
the measured main-circuit current signals and used as the
input of the SAF identification model. The size of input
sample will affect the accuracy and complexity of the identifi-
cation model. Under the same conditions, the more sampling
points in each sample, the more effective information it
contains, the higher the identification accuracy, and accord-
ingly, the higher the time complexity and space complexity
of the model. Therefore, it is necessary to select the most
appropriate number of sampling points for the data samples.
When the sampling frequency is 50 kHz, there are a total of
1000 sampling points in each current cycle. The test results
showed that when the number of sampling points for each
sample is 700, that is, the current waveform with 70% current
cycle length is taken as a sample, the complexity and accuracy
of the identification model described in Section III-A are well
balanced. As seen in Fig. 3, when the SAF occurs in a branch-
circuit, the waveform features of the main-current mainly
appear at the ‘‘flat shoulder’’ position, and near the peak
and trough of the waveform. Therefore, when each sample
contains 700 sampling data, the sample contains the main
feature information of the circuit waveform.

The original data of the measured main-current signal was
divided by 700 sampling points, and a total of 159794 data
samples were obtained. Among them, there are 52767 normal
samples and 107027 fault samples. Fault samples come from
six different branch-circuits, and the specific distribution is
shown in Table 3. The category label of normal sample was
set as 0, and the category labels of fault sample from L1 to
L6 branch-circuits were set as 1, 2, 3, 4, 5, and 6, respec-
tively. The sample dataset of the SAF was finally obtained.
According to the category label output by the identification
model, it can determine whether there is a SAF in the circuit
and the branch-circuit where the fault occurs. In this way, the
fault identification and fault line selection functions can be
realized.

4000 samples were randomly taken from the normal sam-
ples of the dataset, and 4000 fault samples were randomly
taken from each branch-circuit of L1-L6 to form a new
dataset, defined as Dataset2. The remaining samples in the
dataset were defined as Dataset1. In Dataset1, 80% of the
samples were used as train samples, and 20% of them were
used as test samples. Dataset1 was used to train and test
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TABLE 4. Specific parameters of DtNet.

the identification model on the computer. It was also used
to adjust the hyper-parameters of the SAF identification
model so as to achieve the lightweight design of the model.
In essence, the test set in Dataset1 is a so-called valida-
tion test. Dataset2 was pre-loaded into the embedded device
introduced in Section IV-A and used to off-line test the perfor-
mance of the identification model. So Dataset2 is a true test
set used to test the generalization performance of the model.

III. SAF IDENTIFICATION MODEL
A. CREATION OF THE IDENTIFICATION MODEL
The input of 1-D CNN is a 1-D vector. Compared with
two-dimensional CNN and three-dimensional CNN, it has
smaller time complexity and space complexity, and is easier
to run in embedded devices. Therefore, a SAF identification
model DtNet based on 1-D CNNwas designed in this section.

DtNet consists of a data pre-processing module, a feature
extraction module and a feature calculation module. The data
pre-processing module is used to perform maximum and
minimum normalization to the data samples, so as to exclude
the influence of different working current and accelerate the
convergence speed of the model training. The feature extrac-
tion module consists of 1-D convolutional layers and 1-D
maximum pooling layers. The module is used to extract data
features from the data samples, and encode each data sample
into 256 channel high-level features. The feature calculation
module is used to further calculate the extracted features
by using a FCNN with a hidden layer, and then output the
identification results by the output layer of the identification
model. There are 7 neurons in the output layer, corresponding
to category labels 0-6, respectively. These labels respectively
represent 7 operation states of the circuit, i.e., normal state,
SAF occurs in the light bulb, computer, induction cooker,
electric drill, angle grinder, and hair drier branch-circuit.

The convolution kernel size of DtNet is 3, the stride is 1 by
default, and the padding is set as valid. In order tomakeDtNet
have the ability of nonlinear expression, so as to better learn
data samples, the Relu activation functionwas introduced into
both feature extraction module and feature calculation mod-
ule. The specific parameters of DtNet are shown in Table 4.
In Table 4, S-Conv is short for standard convolution.

FIGURE 4. Accuracy and loss of DtNet.

DtNet was trained by using the train set of Dataset1.
The key parameter settings are as follows. The batch size
is set as 32, the epoch is 80, and the optimizer uses Adam
algorithm. Considering the category labels are integer data,
sparse cross-entropy function was used to evaluate the loss
between the predicted values of the identification model
and truth labels. After the DtNet was trained, its identifica-
tion accuracy was tested by using the test set of Dataset1.
As shown in Fig. 4, the identification accuracy of DtNet on
both train set and test set is higher than 98% after the 68th
epoch. It shows that the trained DtNet can meet the accuracy
requirements of identifying SAF.

B. LIGHTWEIGHT DESIGN OF THE MODEL
At present, the difficulty in the application of the SAF
identification models based on deep learning algorithms in
industrial microprocessors is mainly reflected in the con-
tradiction between the high time and space complexity of
identification models and the low computational capabil-
ity and storage performance of microprocessors. To solve
the above problem, it is necessary not only to improve the
performance of the microprocessors, but also to carry out
lightweight design of the identificationmodel. Themodel can
be optimized from the perspective of reducing its floating
point operations (FLOPs) and memory access cost (MAC),
so as to reduce its complexity and finally realize the hardware
deployment of the model.

Depthwise separable convolution (DS-Conv) can reduce
the computational cost of feature extraction through the com-
bination of depthwise convolution (DW-Conv) and pointwise
convolution (PW-Conv).

Taking the size of the input feature map as 10 × 10 × 3
and the size of the output feature map as 8 × 8 × 5 as an
example, the standard convolution and depthwise separable
convolution in Fig. 5 were respectively used for calcula-
tion. If the size of the standard convolution kernel and the
depthwise convolution kernel are both 3 × 3, the FLOPs and
MAC required to complete the above operation are shown in
Table 5. The FLOPs and MAC of standard convolution are
calculated by (1) and (2), respectively. For depthwise separa-
ble convolution, the FLOPs of each kernel in the depthwise
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TABLE 5. Comparison between standard convolution and depthwise
separable convolution.

FIGURE 5. Standard convolution (S-Conv) and depthwise separable
convolution (DS-Conv). (a) S-Conv. (b) DS-Conv.

convolution is calculated separately according to (1), and
the FLOPs of pointwise convolution is calculated according
to (1). The MAC of depthwise convolution and pointwise
convolution is calculated according to (2).

F = 2 ·M2
l · K 2

l · Cl−1 · Cl (1)

M = [M2
l−1 · Cl−1 + (K 2

l · Cl−1 + 1) · Cl +M2
l · Cl] × S

(2)

where, F represents FLOPs. It is the number of floating
point operations performed for a forward propagation of a
model or an operator. M represents the MAC, which is the
size of the memory unit that the model or operator needs
to access during the operation. The unit of MAC is Bytes.
Ml−1 andMl are respectively the size of the input and output
feature map of the convolution operator. Cl−1 and Cl are
respectively the number of the input and output channels of
the convolution operator. Kl is the size of the convolution
kernel of the operator. If the type of operation data is float32,
the variable S in (2) is 4.

As seen in Table 5, when the depthwise separable convo-
lution is used instead of the standard convolution, the MAC
increases slightly, but the FLOPs decreases significantly.
Obviously, it is beneficial to reduce the time complexity of
the identification model.

To simplify the time complexity of DtNet and achieve
its lightweight design, the second, third and fourth convo-
lutional layers in the feature extraction module of DtNet
were improved by using depthwise separable convolution.
Moreover, in order to accelerate the convergence speed of the

TABLE 6. Comparison between DtNet and Li-DtNet.

improved identification model, batch normalization layers
(BN) were introduced in the header of the model, and at the
back of both convolutional layers and fully connected layers.
The optimized DtNet was labeled as Li-DtNet. The overall
structure of Li-DtNet is shown in Fig. 6.
According to the method of training and testing DtNet,

Li- DtNet was trained and tested by using the train set and
test set of Dataset1, respectively. Then, the accuracy and loss
of Li-DtNet were tested. As shown in Fig. 7, the identification
accuracy of Li-DtNet on both train set and test set is higher
than 99% after the 52th epoch. It indicates that the trained
Li-DtNet can meet the accuracy requirements of identifying
SAF.

The performance indicators of DtNet and Li-DtNet were
statistically analyzed. The comparison results are shown in
Table 6. In Table 6, space refers to the size of the computer
disk space occupied by the model file. Accuracy refers to the
accuracy of the model on the test set of Dataset1. Table 6
shows that Li-DtNet has a higher accuracy than DtNet.
Although theMAC of Li-DtNet increases slightly, the FLOPs
of Li-DtNet decreases significantly, which is only 46.26% of
that of DtNet. So Li-DtNet achieves the lightweight of DtNet
and has better comprehensive performance. Li-DtNet can be
deployed to industrial microprocessors to identify the SAF.

IV. HARDWARE IMPLEMENTATION AND PERFORMANCE
TEST OF LI-DTNET
A. IMPLEMENTATION OF LI-DTNET IN AN EMBEDDED
DEVICE
The model Li-DtNet was deployed to the embedded device
Jetson nano shown in Fig. 8. Jetson nano mainly consists of a
Quad-Core Cortex-A57 ARMprocessor, a 128-core NVIDIA
Maxwell GPU and a 4GB 64-bit LPDDR4. It also has GPIO,
USB3.0 and other ports.

The model file of Li-DtNet is firstly converted to tflite
format file by using the TFLite converter in computer, and
downloaded to the embedded device. Then the model runs in
the embedded device through the TFLite interpreter, so as to
realize the inference and identification of data samples.

B. PERFORMANCE TEST OF LI-DTNET RUNNING IN THE
EMBEDDED DEVICE
The real-time performance and identification accuracy of
Li-DtNet were tested off-line in Jetson nano. Li-DtNet first
reads the data samples in Dataset2, which are pre-loaded
into the device, and then performs the inference identifica-
tion. The performance of Li-DtNet running in the embedded
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FIGURE 6. Overall structure of Li-DtNet.

FIGURE 7. Accuracy and loss of Li-DtNet.

FIGURE 8. Photo of Jetson nano.

device can be evaluated by analyzing statistically its runtime
and accuracy.

The runtime of the data pre-processing module and Li-
DtNet was respectively tested for 5000 times. The test results
are shown in Fig. 9. As seen in Fig. 9, the average runtime of
the data pre-processing module is 0.45 ms, and the average
runtime of Li-DtNet is 4.81 ms. It means that the average
runtime of identifying a sample is 5.26 ms. According to
IEC62606 standard [25], in AC 230 V system, the maximum
allowable break time for the SAF in 5A load circuit is 500ms.
The maximum allowable break time for the SAF in 63 A load
circuit is 120 ms. In this case, when the SAF is identified
by Li-DtNet, the fault circuit can be disconnected within
the maximum break time specified in the above standards
even if the ordinary household circuit breaker is used to
break the circuit. Therefore, the real-time performance of

FIGURE 9. Test results of the runtime.

Li-DtNet running in the embedded device meets the technical
requirements of developing AFCI or AFDD.

Li-DtNet was used to identify the data samples in Dataset2,
and the identification results are shown in Fig. 10. Fig. 10
shows that Li-DtNet can accurately judge whether there is a
SAF or not in the circuit, and the identification accuracy of
SAF is 100%. When the SAF occurs in the light bulb, induc-
tion cooker, and angle grinder branch-circuit, there are 5, 1,
and 2 misjudgments of the branch-circuit where the fault is
located, respectively. That is, when the SAF occurs in the
branch-circuit from L1 to L6, the accuracy of fault line selec-
tion is 99.88%, 100%, 99.98%, 100%, 99.95% and 100%,
respectively, and the average accuracy of fault line selection
is 99.97%. In our opinion, the reasons for the SAF misclassi-
fication of Li-DtNet are as follows: a) Under the influence of
circuit parameters, load type, arc burning environment and
other factors, the burning state of AC SAF in the circuit
changes instantaneously, which leads to the components of
the current signal are very complicated and variable. This is
one of the main reasons for SAF misjudgment. b) As seen
in Fig.3, when a SAF occurs in any branch-circuit, there are
different degrees of ‘‘flat shoulder’’ phenomenon and burrs
in the main-circuit current waveform. So the main-circuit
current waveforms in fault state have a certain degree of
similarity. In addition, when the burning state of the arc fault
is different, even for the same load circuit, the arc resistance of
the SAF is also different, which leads to a certain difference
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FIGURE 10. Test results of fault identification and fault line selection.

in the amplitude attenuation of fault current waveform and
the distortion degree of the waveform (such as the strength
of the flat shoulder and the number of burrs). This difference
may increase the similarity ofmain-circuit current waveforms
between different branch-circuits to a certain extent, thus
increasing the probability of SAF misjudgment. c) When
multiple branch-circuits operate in parallel, if a branch-circuit
current is very small, the signal features generated by the
SAF in the branch-circuit may be weakened or submerged
by the main-circuit current signal. It will also increase the
probability of SAF misjudgment.

Fig. 10 shows that when Li-DtNet runs in the embedded
device, the accuracy of fault identification and fault line selec-
tion of the SAF can meet the detection accuracy requirements
of AFCI or AFDD.

C. VALIDATION TEST OF LI-DTNET UNDER OTHER
CONDITIONS
1) VALIDITY OF LI-DTNET UNDER THE CONDITION OF
LOWER SIGNAL SAMPLING FREQUENCY
The sampling frequency of current signal may lower than
50 kHz in engineering application. Lowering the sampling
frequency of the current signal will inevitably reduce the
data sample quality, and then directly affect the identification
accuracy of the model. Therefore, it is necessary to carry out
the validity test of Li-DtNet under the condition of lower
sampling frequency.

The accuracy of Li-DtNet was tested off-line with the
embedded device at the sampling frequencies of 1 kHz,
2.5 kHz, 5 kHz, 10 kHz and 25 kHz. First, Dataset1 and
Dataset2 were down-sampled with the above five sampling
frequencies, respectively. The corresponding datasets were
obtained, and labeled as Dataset1_x and Dataset2_x. Where,
x represents the categories of the above five sampling fre-
quencies, x=1, 2.5, 5, 10, 25. For example, Dataset1_1 is the

FIGURE 11. Test results at different sampling frequencies.

dataset obtained by down-sampling Dataset1 at the frequency
of 1 kHz. Second, the linear interpolation method was intro-
duced in the data pre-processing module to up-sample the
above down-sampled data samples, so that each data sample
is a vector with the size of 700 × 1. Then, according to the
method of training and testing DtNet, Li-DtNet was trained
and tested by using Dataset1_x. The trained Li-DtNet was
deployed to Jetson nano. Finally, the accuracy of Li-DtNet
was tested. The test results are shown in Fig. 11.

Fig. 11 shows that when the signal sampling frequency is
lowered, the accuracy of the fault identification and fault line
selection of the SAF does decrease to different degrees. How-
ever, even when the sampling frequency is lowered to 1 kHz,
the accuracy of the fault identification and fault line selection
can still reach more than 90%, which indicates that Li-DtNet
has strong adaptability to signal sampling frequency.

When the sampling frequency is lower than 5 kHz, the
accuracy of Li-DtNet decreases rapidly. Therefore, it is rec-
ommended that the sampling frequency of the current signal
should not be less than 5 kHz. In this case, both the accuracy
of the fault identification and the accuracy of the fault line
selection are higher than 98%, which can meet the detection
accuracy requirements of AFCI or AFDD.

2) VALIDITY OF LI-DTNET UNDER DIFFERENT LOAD TYPES
AND CIRCUIT TOPOLOGIES CONDITIONS
In order to evaluate the validity of Li-DtNet when the load
type or circuit topology changes, additional SAF experi-
ments were carried out in single-branch, two-branch, and
three-branch circuits by using the loads in Table 7. The
experimental scheme is shown in Table 8. The experimental
circuit is shown in Fig. 12. During the experiments, the signal
sampling frequency is 25 kHz.

A total of 85570 data samples were obtained by inter-
cepting the measured main-circuit current signal with the
length of a current cycle as an interval. Among them, there
are 21344 normal samples and 64226 fault samples. Fault
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TABLE 7. Experimental loads and their parameters.

TABLE 8. Experimental scheme II.

FIGURE 12. Experimental circuit after replacing the loads.

TABLE 9. Distribution of fault samples in Dataset3.

samples come from 3 different branch-circuits, and the spe-
cific distribution is shown in Table 9. The category label of
normal sample was set as 0, and the category labels of fault
sample from Lt1 to Lt3 branch-circuits were set as 1, 2, and 3,
respectively. The above sample dataset was obtained and
labeled as Dataset3. According to the proportion of 80% and
20%, Dataset3 was divided into train set and test set.

When the sampling frequency is 25 kHz, each current cycle
contains 500 sampling points. Therefore, the input size of
Li-DtNet was set to 500 × 1. Since only four types of data
samples need to be identified at this time, the output layer
of Li-DtNet used four neurons to represent the following
four operation states of the circuit, namely, normal state,
SAF occurs in the floor fan branch-circuit, SAF occurs in
the electric blanket branch-circuit, and SAF occurs in the
computer branch-circuit.

FIGURE 13. Test results after changing the load type and circuit topology.

According to the method of training and testing DtNet,
Li-DtNet was trained and tested by using Dataset3. The test
results of Li-DtNet running in Jetson nano are shown in
Fig. 13. Fig. 13 shows that the accuracy of SAF identifica-
tion and fault line selection of Li-DtNet is 99.9988% and
99.9875%, respectively, even when the load type and circuit
topology are changed. So Li-DtNet has strong adaptability to
load type and circuit topology.

D. COMPARISON WITH EXISTING METHODS
The performance of Li-DtNet was comprehensively eval-
uated from the aspects of identification principle, signal
sampling frequency, identification accuracy and real-time
performance in an embedded device.

The evaluation results were compared with similar meth-
ods in literatures [17], [22], and [24]. The comparison results
are shown in Table 10.
As seen in Table 10, among these four methods, SCNN

does not have the function of fault line selection. Whether the
model can operate in embedded devices and its real-time per-
formance need further test and verification. HCCNN needs
to be equipped with a specially designed high-frequency
coupled current sensor, and its signal sampling frequency
is 1 MHz, which obviously put forward higher requirements
for the engineering implementation of this model. Compared
with ArcNet, which has better overall performance, Li-DtNet
has the following advantages. a) It has better adaptability to
signal sampling frequency. In the actual application process,
when the sampling frequency of the current signal needs to
be changed, the structure of Li-DtNet does not need to be re-
adjusted, so as to improve the convenience of the application
of the model. b) The average runtime of Li-DtNet is about 1/6
of that of ArcNet, so the real-time performance of Li-DtNet
is better. c) The accuracy of fault identification and fault line
selection of Li-DtNet is further improved, reaching 100%
and 99.97%, respectively. Therefore, from the perspective of
engineering application, Li-DtNet is more suitable for the
development of AFCI or AFDD.
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TABLE 10. Comparison between Li-DtNet and existing methods.

TABLE 11. Test scheme for comparison between Li-DtNet and AFDDs.

E. COMPARISON WITH AFDD PRODUCTS
To further evaluate the effectiveness of Li-DtNet, addi-
tional performance comparison tests were conducted between
Li-DtNet and two household AFDD products. The J1AFDD-
63C16 type AFDD and XM-AFD type AFDD were used in
the tests. They are labeled as AFDD1 and AFDD2, respec-
tively.

The comparison tests were carried out in a two-branch
circuit. The branch-circuits Lt1 and Lt2 in Table 7 were
used. The SAF generator shown in Fig.1 was connected in
series to Lt1 or Lt2 branch-circuit to simulate the occurrence
of the SAF in a particular circuit. AFDD1 or AFDD2 was
installed in the main-circuit of the two-branch circuit. It was
used to detect the SAF occurred in the branch-circuit. The
main-circuit current signal was measured by using an HCS-
ES5 type current transformer, and the voltage signal across
the SAF generator was measured by using an HVS-AS type
voltage transformer. The sample frequency is 50kHz. The test
scheme is shown in Table 11.
Taking group No. N1 in Table 11 as an example, the

specific test process is as follows.
a) Power on the test circuit to make branch-circuits Lt1 and

Lt2 work normally.
b) Control the SAF generator in the Lt1 branch-circuit to

repeatedly generate 50 SAFs in the branch-circuit. And the
duration of each SAF is about 2s. At the same time, the

TABLE 12. Test results for comparison between Li-DtNet and AFDDs.

main-circuit current and the voltage across the SAF generator
are collected synchronously.

c) Count the action (alarm or trip) numbers of AFDD1
during the above 50 SAF occurrences.

d) Process the current and voltage data collected during
the above 50 SAF occurrences according to the method in
Section II-C, and obtain the test dataset of N1.

e) Train Li-DtNet with the data samples obtained under
St4-St5 conditions in Table 8. Then, test the identification
accuracy of trained Li-DtNet with the test dataset of N1.
According to the above process, comparison tests were

performed under N1-N4 conditions in Table 11. The test
results are shown in Table 12. Under the test conditions of
N1-N4, neither AFDD1 nor AFDD2 acted on the SAF that
occurred on the branch-circuits of Lt1 and Lt2. While the
identification accuracy of Li-DtNet is higher than 99.451%
under the same test conditions. So the identification accuracy
of Li-DtNet is significantly better than that of these existing
AFDD products.

V. CONCLUSION
In this paper, a SAF identification model Li-DtNet was
designed based on lightweight 1-D CNN and successfully
deployed in an embedded device. The fault identification
and fault line selection functions of the SAF in multi-branch
circuits can be realized in an embedded microprocessor only
by detecting the main-circuit current. When Li-DtNet runs
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in the embedded device, the average runtime of identifying
a sample is 5.26 ms. Li-DtNet has the ability to adapt to
the sampling frequency of the current signal by using linear
interpolation method. When the sampling frequency is not
less than 5 kHz, both the fault identification accuracy and
fault line selection accuracy of SAF are higher than 98%.

Compared with similar methods, Li-DtNet has better real-
time performance, higher identification accuracy and better
adaptability to signal sampling frequency when running in
the embedded device. It can be used to develop intelligent
and miniaturized household AFCI or AFDD.

At present, the Jetson nano costs more than similar embed-
ded devices such as the Raspberry Pi. From the perspective
of reducing the cost of household AFCI or AFDD, one
of the important works in the future is to further optimize
Li-DtNet, so that it can be used in embedded devices
with lower hardware cost without reducing the detection
performance.
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