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ABSTRACT We present a study on continuously predicting the direction to a pointing target in virtual
environments using motion and eye-tracker data throughout the pointing process. We first collect time series
data for user motion and eye-tracker in a cursorless, single-target pointing task. Results from analyzing
fixation points from different sensors and observing velocity profiles over the course of pointing provide
insights into optimally configuring features for predicting the target angles. Following this analysis, we train
a recurrent neural network that feeds on sliding window inputs for continuously operating target direction
prediction from start to finish. The input window contains historical data from past to current frames,
capturing temporal changes in the feature data. By feeding on this input, our model can predict the direction
of the target at any given time during pointing. Our findings demonstrate that incorporating eye-tracker data
into the prediction model boosts the maximum achievable accuracy by 2.5 times when compared to baselines
without eye-tracker data inputs. The results suggest that using features from both the eye-tracker and joint
motion contributes to higher prediction performance, as well as faster stabilization of output values at the
starting phase of pointing.

INDEX TERMS Gaze, pointing, prediction, eye-tracker, virtual reality.

I. INTRODUCTION
Pointing gesture is an intuitive, non-verbal mode of com-
munication that selects a position or a virtual object in
Collaborative Virtual Environments (CVE). The current
Virtual Reality (VR) devices provide various off-the-shelf
pointing interfaces, mostly using controller-based ray-casting
methods.

Head-Mounted Displays (HMDs), such as the Vive Pro
Eye and Hololens 2, are equipped with pose tracking
capabilities for heads, hands, and even pupil movements,
allowing tracking of the user’s gaze. The integration of both
head, hand and eye-tracking features in commercial HMDs
offers an affordable option for leveraging natural user motion
in real-time pointing activities, which is less artificial and
intrusive than ray-casting methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Wei .

Recent studies to infer pointing targets from user’s natural
pointing gesture mostly assume the state of fixation, in which
the user is stably pointing at a target [1]. While inferring the
target at the fixated state has many applications, our work
tackles a higher challenge of predicting a target even at earlier
phases of pointing. Previous studies addressed continuous
prediction of user intention and behavior by observing user’s
motion to predict collisions with virtual objects [2], [3] or
pointing targets [4]. Developing more accurate and earlier
predictions for pointing targets can improve the responsive-
ness and reduce time delay in interactive applications, such
as teleconference, game, and design.

User behavior before pointing fixation can be affected by
individual differences in motion and body dimensions [5].
This can pose challenges in formulating an adaptive structure
for a pointing prediction model. We address this problem by
leveraging a deep neural network structure to continuously
predict a pointing target throughout the course of the pointing
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FIGURE 1. We collect eye-tracker and body motion data of a user in a mocap suit and a VR headset inside a virtual scene. The user conducts
multiple single-target pointing tasks in the virtual environment, and the streamed sensor data is recorded. The recorded data is processed and
configured into a sliding window format to be fed into a prediction model. The model outputs predicted target azimuth and elevation angles with
respect to the user HMD’s orientation throughout the duration of recorded pointing session.

action. To develop a framework that can provide accurate
predictions for various pointing states and individuals,
we first focus on identifying useful input features for pointing
target inference.

Previous studies on inferring human pointing targets [6],
[7], [8] use tracked position and orientation of body parts,
such as the head, torso, and hands. Among the most intuitive
of such features are those rooted in the principles of ray-
casting, where a virtual ray is defined by an object orientation
or between two reference points, originating from arms,
hands, or eyes [9], [10], [11], [12]. Ray-casting vector, while
not as accurate as eye-trackers, provide useful information
for modeling human pointing at fixation pose, and for
classification and inference of pointing targets [7], [8], [13].
However, its use is not widely explored for early-prediction
of object interactions, as is the case for kinematic joint
information.

Kinematic motion data, ray-casting vectors, eye-tracker
measurements all qualify as great candidate features for
inferring or predicting pointing targets. To gain insights into
how a continuously operating model should function for this
application and to come up with appropriate input features
for our prediction model, we analyze the characteristics of
these features not only at times of fixation but also during the
course of pointing.

After analyzing the input features, we train a deep neural
recurrent network structure for receiving input values of both
motion and eye-tracker based features during progression
of pointing. For the continuous operation of our model,
we feed a sliding window consisting of the history of past
and current feature data, allowing our model to predict target
angular directions (Fig. 1). We conduct analysis to decide on
best input feature combination, network type, and window

length for achieving optimal performance. Our final recurrent
neural network model is configured to provide the maximum
accuracy and early prediction capabilities for pointing target
directions.

The contributions of our work can be summarized as
follows.

• We introduce a recurrent pointing angle prediction
model that utilizes features from data of the head,
eyes, dominant hand fingertip, and ray-casting vectors.
An ablation study on input features and sliding window
length is conducted to identify the optimal settings for
our model. Through our approach, we achieve high
accuracy in early prediction of pointing direction.

• In addition to our prediction framework, we present a
multimodal dataset consisting of eye-tracker and full-
motion capture data.We explain the appropriate steps for
merging and processing data from two different tracking
systems, resulting in thousands of high quality data
sequences for future use in pointing prediction research.

• Our collected data is analyzed through fixation point
and velocity profile analysis. The fixation point analysis
involves examining the user’s final fixation state to
determine the accuracy of crucial raw data types. In the
profile analysis, the progression velocity of sensor data
is observed for the entire sequence to evaluate how
each data type can differentiate between various target
positions.

In the following background section, we discuss contribu-
tions of contemporary works on pointing behaviors. This is
followed by explanations on user data collection procedures
in section III. In section IV, we explain how the collected data
is analyzed to identify defining features for each types of data.
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We then proceed to designing input features and outputs for
a pointing angle prediction model, based on the preliminary
data analysis. Evaluation of our model and its implications
are discussed in section VI and VII.

II. BACKGROUND
A. MODELING HUMAN POINTING AT TARGET FIXATION
A person’s final pointing pose can show variability among
individuals [14] with tendencies to over-reach or under-
reach for targets. When the human pointer fixates at a
target, another observer, looking at the final pose, can
make systematic errors in interpreting the intended target
direction by the pointer [15], [16]. Sousa et al. [6] conducted
a 1D pointing analysis on correcting such errors, while
Mayer et al. [7] used data from final pointing poses and
paired observations of such poses to model and correct
systematic human interpretation errors by observers in a
cylindrical target setup. In their work, ray-casting vector
like Eye-Finger-Ray-Casting (EFRC) is used as an effective
tool for highlighting non-linear behaviors of human pointing
interactions.

A different approach aims to train models that infers
pointing directions by feeding in input features from the
human pointer. Information on handedness and ocular
dominance was found to influence performance of pointing
behavior [14], and incorporating these elements in training
a prediction model leads to a higher accuracy in predicting
target position [13]. The modeling approach for human
pointing establishes the use of various motion and encoded
features as effective inputs for inferring target directions [8].

B. TARGET INFERENCE WITH EYE GAZE
Eye gaze serves as a fast and accurate modality for visual
attention [17], [18], [19]. Saccade, a quick eye movement
towards a target, can reveal crucial information on timing of
perceptual decision making, by studying its velocity and a
following gaze fixation to a visual target [20].
When eyes are used in selection tasks, eye-gaze aligns with

Fitts’ Law in task performance analysis [21]. In many cases,
eye movements are linked with head movements, and their
coordination is a frequently explored behavior for accurately
detecting 2D gaze [22], [23], [24], [25].
Recent study on eye and head gaze models distribution of

fixation points in augmented reality (AR) environments to
demonstrate high accuracy in target selection tasks [1]. The
same study also finds the use of non-intrusive confirmation
methods for eye movements, such as air-tapping, to be
beneficial in enhancing selection accuracy.

C. PREDICTION OF TARGETS DURING POINTING
Pointing motion involves synchronized movements of multi-
ple joints, including the torso, arms, and head. The kinematic
relationships among these joints at pointing fixation or
during pointing offer valuable information for predicting
the endpoint trajectories of the head and hands [2], [24].

FIGURE 2. Motion capture system and eye-tracker are calibrated to share
a common origin and visualized in data collection application as a user
skeleton wearing an HMD (left). Our data includes positional tracking of
dominant index fingertip (upper right), as well as eye-tracker integrated
VR headset (lower right).

Henrikson et al. [4] use a Kinematic Template Matching
(KTM) technique for continuous target prediction by using
data from head and controller movements. This technique
involves matching the end-effector trajectory with templates
stored in libraries of previously collected data to predict
the cursor point. Additionally, KTM can be applied during
pointing progression to monitor prediction errors in the early
stages of pointing, demonstrating how time-series data can be
used in continuous prediction of pointing target.

In summary, most recent works on pointing focus on natu-
ral arm-extending motion, minimizing the use of UI cursor
elements for selecting distant objects. Error modeling and
correction approaches are successful at discovering universal
patterns in human pointing and input features for target
prediction. Works on dynamic joint movements demonstrate
relevant motion characteristics that show correlation with
pointing targets. Applications with eye-tracking offer the
most accurate target prediction potentials but do not consider
the kinematics of extended arm movements or upper bodies
and focus on gaze at the time of target fixations.

To enhance target inference performance both upon point-
ing completion and during a pointing task, it is advantageous
to utilize multiple forms of sensor data such as gaze, motion,
and ray-casting features throughout the entire pointing
progression. Integrating this data into the input features of
a model structure may allow for the continuous prediction of
target directions, particularly for early prediction of pointing
targets. In this study, we collect kinematic and eye-tracking
data, processing them as input features for a target prediction
model. This approach enables us to examine the temporal
characteristics of various sensor data and input features across
the entire duration of the pointing sequence.

III. POINTING BEHAVIOR OF USERS IN VR
We gather time-series data from human subjects performing
single-target pointing tasks. The collected data will enable us
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FIGURE 3. In a spherical setup, targets are placed for discrete values of
angles and distances. For a random setup, target placements are
determined by a uniform probability density function on angle and
distance values, which is reset for different subjects.

to explore the accuracy of previously employed data features
throughout the duration of a pointing task, as well as the
relative importance among possible combinations of input
features for our model.

A. PARTICIPANTS AND ENVIRONMENT SET-UP
We recruit participants (gender: male=13, female=11) from
a local university (age: mean=26.4, standard deviation=2.5)
for data collection. All participants had normal or corrected
eyesight, and did not report motion sickness or eyesight
impairment during the recording sessions. Twelve individuals
reported previous experience in using VR devices. All
subjects were identified as right-handed.

The participants were divided into two groups to record
data in two distinct target placement scenarios: 1) a spherical
grid target setup, and 2) a randomized target placement setup.
The first group (age mean=27.0, standard deviation=2.1)
comprised 16 subjects (gender: male=11, female=5), while
the second group (age mean=25.9, standard deviation=2.9)
consisted of 8 subjects (gender: male=2, female=6).

We set up a VR environment in Unity3D Game Engine
for data collection (Fig. 1). We used 23 OptiTrack motion
capture cameras (Prime13 and Prime13W) to collect motion
data and the HTC Vive Pro Eye for gathering eye-tracking
data. Two independent threads, each connected to a motion
capture software (Motive 2.3.0) and an eye-tracking software
(SRanipal SDK v1.3.1.0), streamed and recorded data
at 120 Frames-Per-Second (FPS).

Our motion capture system tracks a full body pose and
two separately defined rigidbody objects: one for tracking the
dominant hand index fingertip and the other for tracking the
VR headset (Fig. 2).

Our motion capture system and eye-tracker have different
world origins, and we conducted a calibration for them to
share a common point of reference. We then replaced the
native Vive headset tracking system with the tracking data of

FIGURE 4. We plot absolute summation values of selected delta features
over a pointing task sequence to find local minima that corresponds to
pointing fixation. A minima closest to a center dip between the pointing
movement and the returning movement is chosen as time of pointing
fixation.

FIGURE 5. Visualization for pointing fixation time consists of
(a) histogram for all subject-target combinations (left), distributions per
target (center), and per subject (right).

the HMD rigidbody for higher accuracy and more consistent
frametime.

B. TARGET PLACEMENT AND SIZE
In our work, we use a spherical target setup and random
spatial placement for pointing tasks (Fig. 3). In the spherical
setup, a target is positioned on a spherical grid, with its
candidate position spaced uniformly across multiple levels
of azimuth, elevation, and distance. In the random spatial
placement, target locations follow a randomly distributed
uniform pattern within a specified volume, constrained by the
distance and angle ranges set in the first setup. Our aim of
employing the second setup is to avoid overfitting our model
to specific target coordinates during training.

For the spherical grid setup, we selected target depths of
0.9m, 1.7m, 2.5m, and 3.3m from the user’s HMD, allowing
for extended-arm pointing with an extended index finger for
various distances. Apart from placing targets at the center,
we adjusted additional azimuth and elevation parameters to
±30◦ and ±20◦, respectively. These parameters were set
based on a study regarding the realistic error distribution and
Field Of View (FOV) of the Vive Pro Eye [26].

Regarding the target size, we referred to guidelines from
previous works [27], [28] and set our target as a sphere with
a fixed diameter of 15.4cm. The sphere’s radius is set to be
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FIGURE 6. Bar plot visualizes pointing fixation time (a) per-subject in both spherical and randomized target
setups, and (b) per-target in a spherical setup.

20% larger than the claimed maximum error of the Vive Pro
Eye HMD at a distance of 3.3m. Throughout the recording
phase, the target was consistently colored red.

C. DATA COLLECTION PROCEDURES
Upon their arrival, each participant received a briefing
regarding the scope and intended use of the collected
data, submitted written consent to proceed, provided basic
demographic information, and changed into a motion capture
suit.

We manually placed optical markers on the suit for each
subject, set the inter-pupillary distance for the HMD, and
calibrated the eye-tracker. Next, we aligned the origin for
both the Vive and motion capture systems and projected the
user’s skeleton and HMD object into the virtual environment.
Additionally, we attached a virtual 3D hand model to the 3D
skeleton, adjusting its scale and index finger length to fit the
user. An inverse kinematic algorithm was then applied to the
index finger to enable natural finger movement.

Each participant conducted 144 pointing sessions. In the
spherical grid target setup, target placement covered all
36 combinations of angle and distance values. Pointing action

was performed four times for each target position. In the
random target setup, targets were placed randomly within
a designated target volume. Order of target positions were
randomized for all setups.

Before each pointing task, participants were shown an
approximate location of the target to ensure they had a clear
mental picture of their future pointing position. They were
instructed to maintain a forward-facing prone ready-position
in a standing pose, ensuring that each sequence starts from
the same ready pose. An audio beep triggered participants to
start pointing.

Upon initiation of the start audio cue, data recording began.
Simultaneously, a single target was positioned relative to the
user’s HMD pose. Participants pointed at the center of the
target and then freely returned to the original prone pose.
The target is then removed, and the step is repeated for the
remaining target positions.

Previous works on pointing pose instructed participants
to mark point completion time either by manual controller
inputs or encoded user motion [1], [7], [8]. This instruction
does not fit our application of collecting natural pointing
movements from start to finish. Instructing participants
to manually label their pose fixation time can introduce
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FIGURE 7. Ray projection points and their 95 percentile and 99 percentile confidence boundaries on spherical surfaces at different distances. Data
is taken ±5ms around the time of least-movement for pointing fixation. Each row applies for raw data of the head ray, left eye gaze, and right eye
gaze. Each column corresponds to different target distances from initial HMD positions.

distractions in progressing participant movements towards
pointing fixation. Therefore, instead of instructing partici-
pants to label fixation time themselves, we manually labeled
them in the post-processing step.

Regarding the pointing motion, participants were advised
to point at the target’s center as they would point at an object
for a nearby friend. We verbally instructed the participants
that they were free to point as they would do in real life.
No further advice was given to ensure that the recorded
data solely represented the participants’ normal pointing
behaviors.

Upon completion of all pointing tasks, participants took a
brief interview regarding their opinions on the experiment
setup and procedures. The whole procedure took around
45minutes, including the briefing and the calibration process.

D. POST PROCESSING
In the post-processing step, we synchronized the eye-tracker
data with the motion capture timestamps. The final synchro-
nized data measured at 120 FPS.

In eye-tracker data, we observed blinking events, causing
the loss of eye-tracking frames around 150−250 miliseconds
(ms). It is reported that eye blinking typically lasts around
250ms to 450ms and may induce horizontal and vertical eye
movements averaging at 0.6◦ and 2.1◦, respectively [29]. The
data show that participants rarely blink before completing
a pointing task, introducing minimal effect to overall eye-
tracking values. We replaced the lost eye root positions and
gaze vectors with interpolation from neighboring values.

For encoding rate of changes in values, we also calculated
delta values between subsequent frames for the motion
and eye-tracker measurements. Noise and jitters resulted
in occasional spikes in calculated delta values, introducing
significant deviations from the main profile. To suppress out-
liers, we identified outlying values beyond 1.5 interquartile
ranges, and replaced themwith the closest neighboring value.

We manually labeled the pointing completion time,
heuristically assuming that the user shows the least movement
of key features at time of pointing fixation. These features
originate from the HMD, dominant hand, and its index
fingertip, and vector product between various ray casting
features using the head, indextip, and eyes.

The HMD transform is chosen for its stated importance in
user visual attention. The transforms for the dominant hand
and the index fingertip enable us to narrow down time interval
that contains pointing fixation by showing rapid accelerations
at the pointing phase, and the following returning motion.
Finally, we consider synchronized movements of various
body parts by calculating linear Vector product between
Eye-Finger-Ray-Cast (EFRC) vectors, and Head-Finger-
Ray-Cast (HFRC) vector. These vectors originates from
each eyes or head root to intersect with the position of
the fingertip. Linear vector product between these vectors
can represent synchronization of alignment for pointing
behaviors involving the index finger.

The magnitudes of delta elements for these features were
summed up and visualized for each pointing file for each
pointing sequence file (Fig. 4. This yields a double-peaked
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profile graph, where the each of the peaks represents rapid
movement at the initial target pointing and the returning
phase, respectively. We identify all local minima in the
graph by using linear penalized summation method. Of all
the candidate minima frames, the one closest to the center
dip is chosen as the timestamp of least movement, based
on reasoning that the dip represents temporary moment of
stabilization, just before the user returns back to the prone
pose. Out of the 3450 files annotated from 24 participants in
the spherical setup, we discarded 108 files (2.9%) showing
unstable tracking values.

Before analyzing the data, we drew trajectories of projec-
tion rays for different subjects, to detect for any anomalies
in the data. Among the 24 participants, three subjects con-
sistently stood out by exhibiting the following conditions: a)
overly restricting head rotations, and b) displaying hesitations
in deciding final pointing poses. Restrictive head movements
introduces bias into our data, which does not represent natural
pointing motions. Indecision in final pointing results in more
than 2-3 random jerks and oscillations in projection point
trajectories for more than one third of all pointing tasks for
a subject.

We observed that restrictive headmovements usually result
from over-complying to instructions on maintaining prone
pose at the start, which influenced the affected participants
to fix upper body and head unnaturally. This was visualized
in projection plot where the head moved less than half when
compared to the other participants’ projections consistently
for multiple files. On the other hand, causes for sudden
multiple trajectory changes during pointing was difficult to
speculate.

Apart from being unnatural, restricted head can also
increase eye-tracker errors due to higher measurement errors
of eye trackers at higher eye rotation angles. Unpredictable
trajectories can increase spread of model prediction errors.
Consequently, we excluded additional 452 sequences from
the affected subjects no.1, no.7, and no.16.

Finally, subject no.9 (141 sequences) was also excluded
due to measurement errors in root origin calibration process.
The excluded four subjects account for a removal of an
additional 16.3% of the collected data.

IV. CHARACTERISTICS OF POINTING DATA
We analyze the ray projections and temporal profiles of
the collected raw data to identify their key characteristics.
We mainly look at: a) task completion time, b) data at the
fixation time of pointing, and c) the angular velocity profiles
of key sensor data for different target positions. The results
obtained from this analysis are used to select effective input
feature candidates for our pointing angle prediction model.
The majority of the analysis is conducted using data from the
spherical target setup.

A. TASK COMPLETION TIME
We examined the completion time of pointing for different
target positions and various subjects (Fig. 5, Fig. 6).

TABLE 1. Fixation projection RMS errors for different distances. Highest
values for each error category are highlighted in bold text.

Averaging all four repetition sessions into one (N =

20 subjects × 36 target positions), we generated a histogram
showing a positively skewed distribution (skew = 0.80).
Next, we created a Kernel Density Estimation (KDE) plot
displaying completion times for different targets in the
spherical setup and repeated this for plotting KDE for
different subjects.

The histogram, exhibiting a positive skew, underwent a log
transformation to check for normality. The transformed data
from the distributions passed the Shapiro-Wilk normality test.
The per-target analysis (N = 12 subjects × 36 targets) passed
Levene’s Test for equal variances. In contrast, distributions
from the per-subject plots (N= 12 subjects× 36 targets) were
distinctly different due to variations in completion times, and
did not have the same variance to pass Levene’s Test.

From the KDE distributions for subjects, it is evident that
the positive skew of the histogram could be attributed to
differences both between and within subjects. A one-way
ANOVA for the target placement distributions demonstrated
a significant difference (F (35, 396) = 3.09, p < 0.001) in
pointing times across target positions.

B. FIXATION-POINT ANALYSIS
We selected measurement values within ±5ms around the
point of least movement to select data at pointing fixation.
From this data, we plotted 2D projections of the HMD and
eye forward vectors onto spherical surfaces with different
distance radii (Fig. 7).

The RMS angular deviations for the left eye (M=1.49◦,
SD=0.78◦) and the right eye (M=1.13◦, SD=0.59◦) showed
lower angular errors compared to the HMD ray projection
(M=7.48◦, SD=3.01◦), by at least 4.5 times. For all target
placements, we consistently observed higher accuracy of the
right eye over the left eye, influenced by higher samples of
right-eye dominant subjects. When mean projection error of
both eyes were calculated for each of the subjects, 17 of the
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FIGURE 8. Angular velocity profile (w.r.t world origin) for targets is plotted for: (a) head, (b) right index
fingertip, (c) right eye, and (d) right EFRC vector.

24 subjects showed lower mean angular errors for the right
eye, indicating more right-ocular dominant participants in the
study.

Projection errors did not exhibit significant variations by
changes in distance (Table. 1). However, it was notable
that the maximum error was consistently observed for the
shortest distance for both the HMD and eyes. It is possible
that relatively small distance of 0.9m affected subjects to
express more diverse pointing behaviors of the body and
eye fixations, when compared to larger target distances that
necessitate users to use more uniform pointing poses.

For vertical target placements, unstable measurements at
upper targets were reported in previous work for Vive Pro Eye
testing [26]. We also report similar trend for a single target
pointing task, where up to twice the error is reported for upper
row target positions over the lower row for both eyes.

In the case of horizontal target placements, center place-
ment yielded slightly higher projection accuracy with small
asymmetry for left and right target placements for head and
eyes.

A Kolmogorov-Smirnov test for projection angular errors
for HMD and eyes revealed that they did not stem from the
same distribution. HMD errors showed amildly positive skew
(skew=0.78), but distributions for both eyes were extremely
skewed (left eye: skew=1.38, right eye: skew=1.35).

C. VELOCITY PROFILE ANALYSIS
In the profile analysis, we observed the world angular
velocities of the HMD, dominant hand, and eyes, and the
EFRC vector, a vector ray originating from eye root, passing
through the fingertip position (Fig. 8). Angular velocity is
recognized for its effectiveness in distinguishing targets at
varying azimuth and elevation angles [4].

Initially, data for all pointing sequences across the
36 positions were averaged to generate angular velocity
profiles. To reduce high-frequency noise in the raw eye data,
a low-pass filter was applied to all eye data sequences and
averaged. For gaze and EFRC, we calculated rotation from
vectors from two consequent frames. Due to the dominance
of right-eyed participants, we use right eye vector and right
EFRC for profile analysis.

To calculate angular velocity, we calculated the rotation
difference matrix between two subsequent matrices Rt+1 and
Rt . Thematrix was then converted to angle-axis configuration
to gain angular velocity �.

Q = R−1
t+1Rt = e�

Examining yaw and pitch velocity provided additional
means to differentiate symmetric angular placements of
targets in horizontal or vertical setups, by introducing
additional degrees of freedom along the x and y axes. Roll
velocity on the other hand, generally displayed redundant
information with more variance and noise for all data types.

To assess the reaction time to the start audio cue,
we calculated the overall time for the projection velocities
to reach 0.1◦ /sec. HMD angular velocity (M=141ms,
SD=15ms) was the fastest in response to the cue. This was
followed by the index fingertip (M=100ms, SD=8ms), and
the right hand (M=125ms, SD=18ms). Eyes and EFRC
vector velocities were rooted on the head movement and
displayed exactly the same response time of the HMD. It was
notable that no eye movements were detected prior to HMD
movement, even when accounting for temporal latency of
58ms for Vive Pro Eye [26], when calculating their relative
angular velocity with respect to the HMD.
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From the velocity profiles, 5 target placement samples
from the right eye showed significant lags in response time
and higher peaks in magnitude. These samples were spread
over all distances, and showed no recognizable patterns
related to horizontal, vertical, or oblique target placements.
Therefore, we considered these graphs as outliers and
removed them, attributing their unique profiles to high noise
and subject variance, before calculating mean fixation time
for the right eye.

For projection velocities to decay to 5◦ /sec from
their peaks, the right hand took the most time to
stabilize (M=1946ms, SD=331ms). This was followed
by the right EFRC vector (M=1333ms, SD=138ms),
HMD (M=1249ms, SD=162ms), and finally the right eye
(M=1177ms, SD=287ms). The eye shows faster fixation
trend in the progression plot, but its high speed and noise
levels hinder the calculation of exact fixation time.

Visually distinguishing individual graphs for different
target distances is challenging due to overlaps and noise
levels in projection error. In case of angular target placements,
it is equally difficult to visually separate target graphs
corresponding to the same line of sight for all data types.

D. DISCUSSION ON DIFFERENT DATA TYPES
Eye-tracking offers much lower projection error than HMD
projection in terms of accuracy and displays the fastest
fixation among the tested data types. The application of
eye-tracker can significantly improve the performance of
an angular prediction model. However, accuracy of the the
Vive eye-tracker drops drastically as users gaze at vertically
placed targets. For targets in oblique visual fields, the user’s
tendency to look short of a target is strong, resulting in a larger
measurement error of the eye-tracker.

The temporal velocity profile of the eyes indicates
significant variances in fixation time on a target, attributed
to randomly generated saccades, blinking, or intentional
eye movements during fixation across different subjects.
Additional variance might be added due to the quicker
movement speed of eyes during fixation and saccades.
Although the eye profiles exhibits higher velocity compared
to other data profiles, it still struggles to distinctly dif-
ferentiate between different targets. Considering the larger
measurement errors in eye deviation from the central field,
this lack of differentiation can introduce errors at the initiation
phase of eye movement. This suggests an opportunity
where the integration of sensors with different modalities
can provide more accurate data at the onset of pointing,
contributing to a more reliable prediction model.

HMD and ray-casting features like EFRC show stable
velocity profiles for differentiating between different angular
displacements of targets. They also show good response time
to start audio cue, which helps in providing pose information
from the early stage of pointing. The index finger showsmore
varied velocity profiles when compared to other features,
but can still differentiate between different target placement
angles, and provides essential data for calculating ray-casting

FIGURE 9. We construct a Fully-Connected-Network (FCN), and a
Transformer-encoder network for comparison with our GRU model.

vectors. Its flexing behavior relative to the hand can also
provide information on the detection of the user’s pointing
intention.

V. OVERVIEW OF PREDICTION MODEL
Based on the previous data analysis, we build a target
angle prediction model using a recurrent neural network
architecture (Fig. 9). Our model receives an input window
of multi-frame features to track the changing trends in
inputs for predicting angular directions toward the target of
interest. We assume an extended arm pointing gesture with an
extended index finger, following the data collection process.

To construct our model, we implemented a recurrent
layer structure of GRU cells due to their comparable
performance on long memory retention of LSTM cells, with
lower computational cost [30]. The GRU model consists of
single-stacked GRU cells, connected to a dropout layer and a
Fully Connected (FC) linear layer.

A. MODEL INPUT WINDOW
To continuously operate during pointing, our model needs to
adapt to input features from many different time periods. For
the early phase of pointing where data offers limited clues to
accurately predict the target, a time series input of multiple
frames can provide changing trends in input features and
improve the prediction accuracy. Following this assumption,
we processed our input as a sequence of sliding windows. The
window includes the history of past and current data from
both the motion capture system and eye-tracker. Our model
input takes the form of a 2-dimensional matrix where each
row represents a single frame, stacked up to form a single
input window. For each row, features corresponding to the
same frame are all concatenated and collapsed into a 1d vector
for stacking.

Results from the velocity progression analysis suggest
that choosing an appropriate window length is crucial to
capture the divergence of feature values for different target
placements. We believe a model trained with sliding window
inputs can be robust against random noise and slight data
variances between subjects or within subjects.

B. INPUT FEATURES
Input features within each frame of the input window
belong to three categories: motion features, eye-tracker
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TABLE 2. Input feature categories.

features, and ray-casting features (Table. 2). For all features,
we also calculate the difference between subsequent frames
(subsequently called delta) for representing rate of change.

a: MOTION FEATURE
Motion features take the form of a transformation matrix,
holding position and rotational information. The motion
features holds information of HMD, dominant hand, and its
index finger.

We remove HMD transformation to prevent information
leakage on global subject pose, and only use its linear and
rotational delta values. Dominant hand provide information
on relative movement of the index finger point, its position,
rotation, and delta values included as input. For the index
finger, we only use its position and linear velocity, due to
instabilities in rotation data.

We did not use joint data from the arms, legs, and
pelvis because their inclusion introduced additional subject
variances in inputs, due to different physical dimensions and
movements. All transformations are expressed with respect
to HMD pose because of the stated importance of head
movement in static pointing scenarios.

The transformation matrices for the motion features were
trimmed down to a size of (3 × 3), 6 for rotation and 3 for
translation.

b: EYE-TRACKER FEATURE
Raw eye-tracking data consists of blink detection tags, pupil
position values for both eyes, pupil forward vectors for both
left and right eyes, and combined gaze vector, all streamed
from the Tobii eye-tracker callback thread.

Among these data, we only include the gaze forward
vectors for both eyes into our input. We do not use
the combined gaze vector due to the undisclosed internal
calculation algorithm within the released software. Pupil
root values are used for calculating the ray-casting features
but are not utilized as independent features in our input.

For providing rate of change information, we compute delta
values for gaze vector elements.

c: RAY-CASTING FEATURE
Ray-casting features are included to consider the directional
relationships between the joints. Head-Ray-Cast (HRC)
assumes a cyclops eye, where the eye gaze is represented as
a single vector, pointing from the center point of the head.
We employ a EFRC vector, featured in works on target angle
prediction [7], [16]. We use an additional Head-Finger-Ray-
Cast (HFRC) vector, drawn between HMD root and index
fingertip. We also feed inner products between the HFRC and
EFRC vectors, which serve as a metric to detect convergence
of rays to the visual center point of HMD. To represent rate of
changes in values between subsequent frames, we calculated
delta values between vector elements.

C. MODEL OUTPUT
Our model’s output are azimuth and elevation angles to
the target in relation to the HMD orientation for the
current frame. Target distance prediction was excluded
after pre-testing a model that exhibited unstable oscillating
behavior in distance prediction values.

With the realistic eye-tracker accuracy of 1.1◦ at the center,
the edges of the calculated error cone began to form a parallel
line under approximately 1.69 meters for the eye-tracker
data, occasionally predicting the target distance at infinity,
or instead being fixed to a position under this distance. Based
on these observations, we believe the employed eye-tracker
lacks the accuracy for reliably inferring the distance to
pointing targets with parallax effect, thus constraining the
scope of our work to a 2D pointing prediction problem.

D. MODEL TRAINING
We divided the 20 available subjects into groups of 14,
4, and 2 for training, testing, and validation purposes.
This allocation ensures that our model encounters unseen
subject data during the validation and testing phases. Due
to the limited number of testing subjects, we created
three sets of subject combinations for training, testing, and
validation. While creating datasets, we downsampled our
data from 120 FPS to 30 FPS to reduce computation cost
and memory requirements. Each set was used to train an
individual model, and the test results were averaged to
produce the final results for evaluation.

VI. EVALUATION OF POINTING PREDICTION MODEL
We demonstrate the accuracy of our model in three aspects: 1)
an ablation study of input features, 2) an analysis for different
input window lengths, and 3) performance comparisons
for different neural network structures. Our comparison
includes overall RMS prediction errors and progression plots
illustrating errors over the pointing sequence.

For comparing performance for different models, we pro-
duce overall RMSE by averaging all angular deviance
values in all frames for all output sequence. We then plot
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FIGURE 10. Output error progression plots for a normalized pointing sequence.

TABLE 3. Overall RMS error and its standard deviation (in parenthesis)
for the ablated models, FCN and transformer models.

progression error plots to represent temporal performance
for various setups. We start by resampling all prediction
sequence data and error data series to a consistent 20-frame
duration based on the trained model’s results. Subsequently,
we calculate the RMSE series for all output sequences and
average them to generate a single, representative, progression
plot (Fig. 10). Our model requires a historical input of
20 frames or 0.67 seconds (including the current frame) for
each sequence. Consequently, all progression outputs from
the model throughout each pointing sequence start from
20 frames after the initiation of pointing.

A. INPUT FEATURE ABLATION BASELINES
We conducted an ablation study encompassing four different
input feature combinations to investigate the impact of
eye-tracker data on prediction performance (Table. 3).

Our initial baseline excluded any eye-tracker derived data,
which removes pupil vectors, ray-casting vectors, and vector
products between ray-casting features. This model achieved
an overall deviance of 6.16◦ (SD=3.45◦) or minimum 5.0◦

at 80% progression, showing lower accuracy than the mean

error deviance reported by a previous study [13], which
reports a deviation range of 3.2◦-4.0◦ for distances between
2.8m and 3.8m. The decrease in performance could be
attributed to using inputs from varied progression points and
randomized placement data during collection.

The second baseline assumed an HMD equipped with eye-
tracking, but lacking controller or motion tracker support.
With only HMD transforms and pupil vectors available, the
model delivered a significant performance leap, achieving an
RMSE of 1.71◦ (SD=1.16◦).
The third baseline excluded only the gaze vectors,

considering configurations where manual acquisition of eye
root position data is feasible even without eye tracking,
thus including ray-casting features and their derivatives. This
setup attained an angular deviance of 4.20◦ (SD=2.86◦).
We utilized all previously defined features in our final case,

achieving overall angular error of 1.48◦ (SD=0.99◦). The
fully featured model also demonstrated a faster decrease in
error values over the initial pointing period, and exhibited
improved maximum accuracy.

The error progression plots of our recurrent model
revealed distinct patterns between models using gaze-vectors
and those without them. Baselines excluding eye-tracker
gaze vector showed decreasing errors in azimuth angle
prediction during progression, only to exhibit noticeable
increases at the pointing termination, resulting in a concave
profile. In contrast, input setups featuring eye-tracking data
showed continuously decreasing trends, leading to points of
stabilization where errors remained relatively unchanged for
the rest of the progression.

B. NEURAL NETWORK BASELINES
We pick two widely used neural network architectures for
comparison with our GRU network (Fig.9): a) a simple
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FIGURE 11. Output error progression plots for different input window lengths.

Fully-Connected-Network (FCN) with dropouts and b) a
Transformer encoder model [31].

The FCN model consists of a double module structure
with a linear output layer, where each module consists of an
activated linear layer, connecting to a dropout layer. For the
transformermodel, we use two 1D transformer encoder layers
from Pytorch, connected to a sequence of linear layers.

All three models, sharing the same input and output
dimensions, use the same datasets for training and testing,
with input window length of 20 frames. Our GRU neural
network outperformed the other two models, achieving the
lowest overall RMSE value.

C. WINDOW LENGTH ON MODEL PERFORMANCES
In analyzing the impact of window length on model
performance, we observed error progression plots for window
lengths of 0.67s, 0.41s, 0.33s, and 0.17s, corresponding to 20,
15, 10, and 5 frames at a 30 FPS input sampling rate (Fig. 11).
We trimmed off starting frames of the test sequence data for
all testingmodels, so that prediction results for all comparison
cases start from the same time.

The model with the 20 frames input window achieved
the fastest saturation to max performance, and the lowest
RMSE. Models trained with 15 frame and 10 frame windows
achieved errors smaller than target radius of 7.6cm at 50% and
80% output progression, respectively. The 5-frame window
model failed to produce overall errors that fits inside our
target radius throughout the entire output progression.

VII. DISCUSSION
Our model, incorporating eye-tracker data, achieves approx-
imately 2.5 times greater accuracy than baselines that lack
eye-tracker gaze vector data in overall RMSE. The maximum
mean accuracy of approximately 1.48◦ is achieved when the

input window length is sufficiently long for capturing key
progression trends in the input window.

Feature ablation results indicate that eye-tracker gaze
vectors significantly enhance the accuracy of target angle pre-
dictions. According to raw data analysis, eye ray projection
plot shows much lower error values compared to head ray.
The stabilization of eye was also the fastest in the angular
velocity profile analysis. We believe the eyes’ high projection
accuracy, coupled with fast stabilization time, attributed to
significant improvements in the model performance. The
following model evaluation shows that overall eye-tracker
projection errors set a theoretical performance ceiling for
our neural network model. It is worth pointing out that
information from the HMD, index finger, and local eye root
positions is still essential to reach this ceiling. Comparatively,
models using only HMD transform and eye-tracker ray inputs
report lower performance than a fully-featured model.

Previous studies on eye-tracker performance have shown
that its measurement data can produce errors exceeding
10 times the specified maximum target deviation angle
range [26]. In such cases, eye-tracker data may potentially
offer less accuracy compared to data from other features,
especially during the initial phase of pointing. This can
provide explanation on why our fully featured model
performed better over the HMD and eye-tracker features
baseline. Improvements in measurement accuracy for visual
field periphery in HMD integrated eye-trackers can improve
early target prediction capabilities for our target prediction
approach.

A. LIMITATIONS AND FUTURE WORK
During training and evaluating our model, we identify three
challenges in acquiring accurate prediction values: a) subject
variances in the pointing data, 2) small sample sizes and
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follow up bias effects that hinder efficient training and testing,
and 3) dataset scales that can result in inefficient training for
larger neural network structures.

Inter-subject and within-subject variances in the data
present challenges in identifying systematic human behaviors
for the pointing features. User data typically exhibits a
positively skewed distribution for both task completion and
projection errors. These behaviors are due to occasional
slow and inaccurate movements during pointing. Inefficient
pointing cases can vary among different individuals, and
make it difficult for our model to predict fixation time or final
fixation pose of the user.

A large sample size can counter the effect of subject
variance by providing coverage for all potential human
behaviors in pointing. Our initial sample size (N=20 after
post processing) proved to be too small to account for all
potential variances in pointing. Lack of sample sizes was
exacerbated in neural network model training and evaluation,
where samples had to be split for training and testing
purposes, further lowering diversity of subjects for each of the
dataset. Furthermore, existence of only right-handed subjects
in the data introduced bias for right-handed subjects. This
is also true for eye dominance, where our data indicated
prevalence for right eye dominant subjects in the sample
[32]. Collection of larger samples should be followed by
applications of sufficient data augmentation techniques, such
as mirroring or noise augmentations.

Our recurrent model provides the optimal solution for
smaller sized datasets, but its efficacy for training with
much larger sample sizes or for predicting outputs with
higher dimensions, has to undergo further comparisons with
scale-appropriate model structures in the future.

Although we only considered static standing cases in
our research, human can also use deictic gestures during
walking. Variations in walking speed affect target prediction
errors and selection time [28], while peripheral vision also
plays a significant role in object exploration [33]. While
our work focused on static pointing with identical standing
pose, approaches to integrate dynamic pointing scenarios
with different body pose configurations in the future will
better reflect real life use for human pointing.

VIII. CONCLUSION
We present a prediction study on pointing target direc-
tion during pointing progression, employing motion and
eye-tracker-based features. Our recurrent network model
operates throughout the pointing process and significantly
improves accuracy by incorporating eye-tracking data along
with motion and ray-casting features. The addition of
motion-based features helps reduce errors at start of pointing
and maximizes the overall accuracy.

During the initial phase of pointing, eye-trackers may
provide less accurate readings due to uneven performance
over the visual field. However, sensors from other modalities
consistently offering accurate data during pointing can
partially compensate for the eye-tracker’s shortcomings.

This is evident in faster saturation of RMSE values for
our whole-feature model compared to the model with
limited input features. Improvements inHMD-integrated eye-
tracker performance and calibration techniques can enhance
maximum accuracy and earlier prediction of target positions
in future works.
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