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ABSTRACT Supervisory Control and Data Acquisition (SCADA) systems are crucial for modern industrial
processes and securing them against increasing cyber threats is a significant challenge. This study presents
an advanced method for bolstering SCADA security by employing a modified hybrid deep learning model.
A key innovation in this work is integrating the Self-similarity Hurst parameter into the dataset alongside a
CNN-LSTM model, significantly boosting the Intrusion Detection System’s (IDS) capabilities. The Hurst
parameter, which quantifies the self-similarity in a dataset, is instrumental in detecting anomalies. Our
in-depth analysis of the CICIDS2017 dataset sheds light on contemporary attack patterns and network
traffic behaviors. The CNN-LSTM architecture was substantially altered by adding multiple convolutional
layers with progressively increasing filters, batch normalization for stable training, and dropout layers for
regularization. Principal Component Analysis (PCA) was applied for dimensionality reduction, thereby
optimizing the dataset. Test results demonstrate the superior performance of the model incorporating the
Hurst parameter, achieving 95.21% accuracy and 82.59% recall, significantly surpassing the standard model.
The inclusion of the Hurst parameter marks a substantial advancement in identifying emerging threats, while
architectural improvements to the CNN-LSTM model led to more robust and accurate intrusion detection in
industrial control settings.

INDEX TERMS Deep learning, intrusion detection system, supervisory control and data acquisition, self-
similarity, Hurst parameter, binary classification.

I. INTRODUCTION
Supervisory Control and Data Acquisition (SCADA) systems

advancements, ensuring the security of SCADA systems
poses a significant challenge [1]. The growing prevalence of

play a crucial role in modern industrial control systems,
serving as a vital component for monitoring and managing
various industrial processes. They form the backbone of
critical infrastructure sectors like power generation, water
treatment, and oil and gas production facilities.

The current state of SCADA systems includes advance-
ments in connectivity, data analytics, and remote access
capabilities, allowing for more efficient and centralized
management of distributed systems. However, despite these
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cyber threats has heightened concerns about the vulnerability
of SCADA systems to attacks, leading to a notable increase
in research efforts focused on enhancing their security [2].
Along with these advancements, the integration of the
Internet of Things (IoT) into SCADA systems has brought
additional complexities. These systems, traditionally isolated
from the internet and with real-time requirements, now face
challenges that impede the implementation of standard secu-
rity measures. Emerging security issues include complexity,
absence of security standards, device heterogeneity, and
security vulnerabilities in IoT devices, making safeguarding
SCADA systems against cyber threats more challenging [3].
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Neural networks (NN), the core building blocks of deep
learning (DL), are algorithms modeled after the human
brain’s structure and function, designed to recognize patterns,
and solve complex problems. They consist of interconnected
nodes (neurons) organized in layers, with each layer capable
of performing specific computations. DL involves using
neural networks with many layers (deep architectures) to
process and learn from large amounts of data. This advanced
form of machine learning enables the identification of
intricate patterns and relationships in data, making it highly
effective for tasks such as anomaly detection in SCADA
systems.

To effectively address these emerging challenges, a com-
prehensive approach is necessary. This approach must
encompass [oT device security, establishing security stan-
dards, and integrating multiple devices and protocols into
a unified and secure system. Such a strategy is crucial to
maintain the confidentiality, integrity, and availability of data
and control processes within SCADA systems.

In response to these challenges, a fresh approach is
proposed to increase the security of SCADA systems,
especially those incorporating IoT. This approach suggests
utilizing the Self-similarity Hurst parameter alongside the
CNN-LSTM (Convolutional Neural Network, Long Short-
Term Memory) to deliver a comprehensive security solution.

The choice of the Self-similarity Hurst parameter is
grounded in its proven capability to detect evolving anomalies
in time-series data, a common characteristic of cyber threats
in SCADA systems. Similarly, the CNN-LSTM model is
selected for its ability to capture both spatial and temporal
dependencies in data, offering a robust framework for real-
time anomaly detection.

In IDSs for SCADA systems, binary classification is
employed to categorize network events as either normal
or anomalous [4]. This approach is pivotal in identifying
potential intrusions, with algorithms analyzing diverse data
features to make decisive, binary judgments about each
network event’s nature.

Long-Short Term Memory (LSTMs) are particularly ben-
eficial in this context due to their proficiency in processing
and memorizing long sequences of data [5], a characteristic
typical of SCADA systems’ operations. By capturing long-
term dependencies, LSTMs can detect intricate anomaly
patterns that might be missed by other methods, thereby
enhancing the efficacy of intrusion detection systems.

To build a data-driven foundation for our security models,
we undertook an extensive Exploratory Data Analysis (EDA)
on the CICIDS2017 dataset [6]. This rigorous analysis
was critical for understanding the dataset’s intricacies and
nuances, paving the way for the development and implemen-
tation of effective security solutions.

The central research question is: “How effective is the
combined use of the Self-similarity Hurst parameter and
the CNN-LSTM model in detecting anomalies in SCADA
systems?” The study contributes by developing a hybrid
intrusion detection system that harnesses the strengths of
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both the Self-similarity Hurst parameter and the CNN-LSTM,
aiming to enhance anomaly detection in SCADA systems.

The comprehensive approach we employed in this study
successfully achieved the objective of detecting anomalies in
SCADA systems. We proposed a hybrid Intrusion Detection
System (IDS) that combines the self-similarity approach
using the Hurst parameter with a modified CNN-LSTM
model, enhancing the system’s ability to detect anomalies.

Further enhancement of the IDS was achieved with the
PCA method, contributing to a more effective analysis.
The model, structured with input, hidden, and output
layers, integrated relevant activation functions for optimal
performance. Specifically, modifications in the Recurrent
Neural Networks Long-Short Term Memory (RNN-LSTM)
included adjustments to the LSTM, dense, dropout, and
output layers, culminating in a robust solution to address the
vulnerabilities of SCADA systems.

This research introduces an innovative approach to
enhancing SCADA system security by augmenting the Hurst
parameter into the dataset as an additional feature. This novel
application, integrated with a CNN-LSTM model, advances
anomaly detection capabilities beyond the current scope in
cybersecurity literature. While the incorporation of the Hurst
parameter itself is not unprecedented, its specific use as
an augmenting feature within a deep learning framework
represents a significant methodological advancement. This
study thereby contributes to the evolving field of Al and
cybersecurity, demonstrating a nuanced application of statis-
tical measures in conjunction with deep learning techniques.
The implications of this approach are substantial, suggesting
a new direction for integrating multidisciplinary methods
to enhance the adaptability and efficacy of cybersecurity
systems.

The contributions of this research are as follows:

1- We introduce the Self-similarity Hurst parameter into
the CICIDS2017 dataset for anomaly detection in
SCADA systems using a CNN-LSTM model. This
novel approach leverages the parameter’s ability to
detect evolving anomalies in time-series data, offering
a new dimension to intrusion detection methodologies.

2- By refining the CNN-LSTM architecture specifically
for SCADA systems, this research enhances the
model’s capability to capture both spatial and temporal
data dependencies, crucial for real-time anomaly
detection.

3- The undertaking of an extensive Exploratory Data
Analysis (EDA) on the CICIDS2017 dataset sets a solid
foundation for this research, providing critical insights
into network behaviors and attack patterns.

4- The application of Principal Component Analysis
(PCA) for dimensionality reduction optimizes the
model’s performance, balancing computational effi-
ciency with the complexity of the dataset.

5- The study extends beyond theoretical innovation,
demonstrating practical applications in enhancing
SCADA system security against evolving cyber threats.
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It offers a model that is not only academically robust
but also practically applicable in various SCADA
environments.

The paper is organized as follows: Section II reviews
relevant literature on SCADA system security and the
application of deep learning in intrusion detection. Section III
details the chosen methodology, including data collection
and analysis of the CICIDS2017 dataset. The results and
their analysis are discussed in Section IV, and Section V
concludes with a summary of the outcomes and future
research directions.

Il. RELATED WORK

Cyberattack detection in SCADA IoT networks is crucial for
ensuring the reliability and security of critical infrastructure
systems. One promising approach for detecting intrusions
in these networks is the use of self-similarity analysis
in combination with machine learning and deep learning
techniques. Self-similarity analysis can effectively identify
abnormal behavior patterns in the network and, when
combined with ML/DL algorithms, can provide a highly
effective solution for detecting cyberattacks in SCADA
IoT environments. This section provides an overview of
recent studies that utilize self-similarity analysis and ML/DL
algorithms for intrusion detection in the SCADA IoT, along
with an analysis of their limitations and challenges.

Security specialists have formulated various deep learning-
based Intrusion Detection Systems (IDSs). For instance,
one study [7] explores the combination of signature-based
IDS with Long-Short Term Memory (LSTM) to identify
Distributed Denial of Service (DDoS) attacks on IoT
networks. In contrast, another research [8] investigates the
use of the Spider Monkey Optimization (SMO) algorithm
and the Stacked-Deep Polynomial Network (SDPN) in
enhancing sensor data detection in IoT frameworks, although
the complexity of SMO could lead to computational
inefficiencies [9].

Additionally, the adoption of Convolutional Neural Net-
works (CNNs) in IDS research is evident. A particular
study [8] applied CNNs to detect specific web protocol
intrusions, such as those linked to the Hypertext Transfer
Protocol (HTTP). While effective, CNNs require substantial
amounts of labeled data for training, which may not always
be available. With training on the CICIDS2017 dataset, they
underscored the capabilities of deep learning to decipher
intricate data and yield reliable results.

An innovative IDS model for Industrial IoT (IToT) net-
works that combines CNN with LSTM is described in [10].
Using a combined CNN+LSTM approach, the model boasts
commendable accuracy and F1 score metrics. Specifically,
on the UNSW-NBI15 dataset, it records accuracies of
93.21% and 92.9% for binary and multi-class classifications
respectively. The UNSW-NBI15 is an imbalanced dataset,
which could lead to overfitting in the model [11]. Meanwhile,
on the X-IIoTID dataset, its performance peaks at 99.84% for
binary classification and 99.80% for multi-class. Such robust
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results attest to the model’s prowess in intrusion detection for
IIoT contexts. Nonetheless, there’s room for refining aspects
like scalability, general applicability, and addressing certain
limitations.

Further, a novel deep anomaly detection system for
wind turbines using a Graph Convolutional Autoencoder
is presented in [12]. With an impressive Fl-score of
91%, the system accentuates the significance of Condition
Monitoring tactics. It perceives the sensor network as a
fluctuating graph, amalgamating Autoencoders with Graph
Convolutional Networks. The data encompasses readings
from four turbines spanning 20 months, meticulously sieving
out erroneous alerts. This approach may not generalize well
to other types of industrial systems due to the specific nature
of wind turbine data.

The DCNN algorithm, applied to examine network traf-
fic and identify unauthorized actions, shows remarkable
accuracy (between 99.79% and 100%) across multiple IDS
datasets [13]. Employing GPU acceleration for improved
efficiency, this technique parallels our study in deploying
sophisticated deep learning for dependable IDS in SCADA
systems. Nonetheless, the uniformity in all evaluation
metrics, specifically achieving 99.96% across Accuracy, Pre-
cision, Recall, and F1-Score, suggests potential overfitting in
the model.

Self-similarity is a concept that has been increasingly
recognized and valued in time series analysis. It denotes
the consistent behavior of a signal’s statistical attributes
even when subjected to rescaling transformations. Such a
trait becomes particularly advantageous when analyzing data
patterns that repeat at different scales, often found in SCADA
systems [14].

The Hurst parameter, also known as the Hurst expo-
nent, emerges as a crucial statistical tool in this scenario.
It measures the self-similarity degree in a time series,
providing insights into its long-term memory or persis-
tence [15]. When utilized in SCADA’s Intrusion Detection
Systems (IDS), the Hurst parameter aids in identifying
the system’s inherent patterns and behaviors, facilitating a
deeper comprehension of its standard operational stance. This
enhanced understanding is vital for spotting anomalies or
deviations that could signify potential security risks or system
malfunctions. The following sections will explore various
works on self-similarity and anomaly detection, summarized
in Table 1.

Other studies like [16] utilize cosine similarity for anomaly
detection within vehicular networks, a domain that’s still bur-
geoning. Likewise, [17] introduces an innovative approach
called dynamic evolving Cauchy possibilistic clustering
rooted in the principle of self-similarity (DECS) for crafting
an Intrusion Detection System. Yet, a comprehensive evalu-
ation of the reliability and precision of these methodologies
remains essential, especially when juxtaposed against other
established techniques in the field. While the KDD99 and
UNSW-NBI15 datasets used in these studies provide valuable
insights, their ability to mimic real-world situations can
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TABLE 1. Summary of existing studies utilizing self-similarity and

machine learning techniques for intrusion detection.

Work  Year Domain Technique Dataset
(7] 2020 IoT LSTM for DDoS Reflection-based
Networks detection (DrDoS)
IoT SMO and SDPN
[8] 2020 Networks for sensor data NSL-KDD
detection
Web CNN for HTTP
[8] 2020 Protocols intrusion CICIDS2017
detection
IIoT UNSW-NBI5, X-
(1o 2023 Networks CNN+LSTM IIoTID
. Graph .
Wind . Wind farm 1 -
[12] 2022 Turbines Convolutional failures
Autoencoder
[13] 2023 NA DCNN M‘g“ple IDS
atasets
[14] 2016 ZSS‘;%‘: Self-similarity KDD99
15] 015 Simulated  SCTEMAMYNTLHU NT2-
[13] Network HUF
Parameter)
Extracted from
. Self-similarity two real vehicles
Vehicular . I
[16] 2021 Networks (Cosine in driving and
similarity) stationary
conditions
KDD99, UNSW-
[17] 2022 NA DECS NBI5
Smart
[18] 2020 Power Self-similarity NA
Grids
o1 2016 LANand Self;;mr”tamy CADIA 2007,
(19] WAN P urs MIT normal traffic
arameter)
Self-similarity
IoT and Testbed
(201 2020 WSMN (Hurst Simulation
Parameter)

be debated, potentially affecting the universality of the
conclusions drawn.

In related work, the paper by [18] explores an innovative
approach for detecting cyber attacks on smart power supply
networks by analyzing the self-similarity property of network
traffic. The methodology examines long-term dependencies
in fractal Brownian motion and real network traffic of smart
grid systems. This approach aids in the identification of
anomalies in network traffic which could be indicative of
cyber attacks. It manifests the self-similarity in smart grid
systems’ network traffic and underscores the potential of this
approach in swiftly detecting anomalies.

A method for detecting Distributed Denial-of-Service
(DDoS) attacks is explored by leveraging the concept of self-
similarity in network traffic, as detailed in [19]. Recognizing
the resemblance between high-rate attack traffic, low-rate
attack traffic, and legitimate traffic is crucial as self-similarity
exists in ethernet traffic, which can be measured using the
Hurst parameter. This parameter is used to gauge the local
irregularity or self-similarity of traffic under a DDoS flood
attack, given that fractional Gaussian noise (fGn) is employed
as the traffic model.
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Song et al. in [20], primarily focuses on the IoT and the
Wireless Sensor Multimedia Networks (WSMN) security,
particularly in detecting and preventing network anomalies.
The technique deployed revolves around a method of forming
a set of informative features based on the evaluation of
the Hurst (H) parameter of network traffic and the Three
Sigma Rule, alongside the development of algorithms for a
new Deep Packet Inspection (DPI) system that can analyze
captured traffic, detect protocols, and determine statistical
load parameters. Real-time analysis is vital for the IoT,
but this method might struggle with achieving real-time
performance due to the extensive computational demands of
deep packet inspection.

In this research, we introduce an enhanced hybrid model
designed for anomaly detection within SCADA systems.
By integrating the insights from the self-similarity character-
ized by the Hurst parameter with the modified CNN-LSTM
model and incorporating PCA for dimensionality reduction,
our approach aims for optimized performance.

For a robust training and evaluation phase, we employed
the CICIDS2017 dataset, a detailed collection of network
traffic traces curated by the Canadian Institute for Cybersecu-
rity. This dataset provides an authentic depiction of modern
network interactions, presenting both benign and malicious
traffic patterns. Our selection of this dataset is also influenced
by its ability to surpass the limitations found in older datasets,
rendering it ideal for model validation.

Diverging from conventional methodologies, this research
carves a novel path by meticulously integrating the Self-
similarity Hurst parameter as an augmented feature into the
CICIDS2017 dataset, while developing an IDS with a CNN-
LSTM model. Unlike previous studies, the novelty here lies
not just in utilizing the Hurst parameter, but ingeniously
embedding it as an additional feature, thereby enriching the
dataset and enhancing the model’s capability to discern and
predict anomalies and potential intrusions with remarkable
accuracy and reliability.

This strategic integration of self-similarity, encapsulated
by the Hurst parameter, into the CICIDS2017 dataset, married
with a modified CNN-LSTM model, unveils a pioneering
methodology that is both theoretically robust and practically
impactful, providing a fortified defense mechanism against
evolving cyber threats in SCADA systems.

The ensuing sections delve deeper into the methodology,
implementation, and notable results derived from this inno-
vative approach, illuminating its potential to act as a linchpin
in safeguarding SCADA system security amidst an ever-
complex cybersecurity landscape.

lIl. METHODOLOGY

This research seeks to evaluate the effectiveness of integrating
the Self-similarity Hurst parameter with the CNN-LSTM in
detecting anomalies within SCADA systems. Our approach
encompassed a series of steps, starting with data preparation,
followed by Hurst parameter computation, feature selection
via PCA, training the combined model, and ultimately,
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assessing its performance. This section lays out the methods
used to answer the research question. To provide a clear
overview of the process, a pseudo algorithm summarizing
these steps is presented below.

Algorithm 1 Proposed Methodology for SCADA System
Anomaly Detection

Input: CICIDS2017 dataset

Output: Anomaly detection model performance metrics

1: Load the CICIDS2017 dataset

2: Perform data cleaning

3: Conduct statistical analysis and data visualization

4 Use Random Forest classifier for feature

importance determination

Apply PCA to reduce dimensionality, aiming for

95% explained variance

Divide the data into segments

Calculate R and S for each

Calculate the value of log(R/S) ratio

Include batch normalization and dropout layers

for optimization

10:  Combine features from PCA and Hurst parameter
for model input

11:  Train the model on the preprocessed dataset

o

LoD

12: Evaluate the model using accuracy, recall,
precision, and F1-score

13: Visualize the results

14: Analyze the model’s architecture and performance

A. DATASET DESCRIPTION

CICIDS2017 is a dataset diligently designed by the Canadian
Institute for Cybersecurity (CIC) [6] that offers an extensive
collection of network traffic patterns, making it apt for Intru-
sion Detection Systems (IDS) assessments. Selected for its
representation of real-world network activities over a week,
this dataset encompasses both harmless and malevolent traffic
patterns. It offers an advantage over older datasets, such as
KDD99, by including recent attack strategies. CICIDS2017
documents a broad spectrum of cyber attacks, including but
not limited to Brute Force, DoS, DDoS, Heartbleed, and Web
Attacks. The dataset consists of raw traffic data, packets,
and flow-driven datasets that portray both innocuous and
harmful traffic in detail. Importantly, it sheds light on aspects
of both the network and system, enhancing its value for in-
depth studies. In this investigation, we utilized CICIDS2017
to both train and assess the combined CNN-LSTM and Self-
Similarity model.

B. CICIDS2017 EXPLORATORY DATA ANALYSIS (EDA)

In our study of the CICIDS2017 dataset, we delved into an
in-depth Exploratory Data Analysis (EDA). Beginning with
a raw data inspection, the process encompassed exploration,
statistical assessments, data refinement, and visualization
stages. The final step involved using a Random Forest
classifier to gauge feature importance, setting the stage for
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effective modeling. Figure 1 shows the workflow of the
CICIDS2017 EDA.

s A = N (G N
CICIDS2017 Dataset »| Data Exploration »{ Descriptive Statistics
. J \ J . J
Y

(; R Vs A e N

3 A Class Distribution Handling Missing

> >
Rutierbetectionigi«€ Visualization i Values
. J - J \ J
Y
e N G N ( N
I Feature Importance
- -

Feature Distribution P RandomForest »| Cleaned Dataset

& /4 < J \ J

FIGURE 1. This diagram depicts our EDA process for the CICIDS2017
dataset, from raw data to feature importance via a random forest
classifier, illuminating the dataset’s intricacies vital for our hybrid ids
approach.

In the initial phase of data preprocessing, we addressed the
presence of missing values within the dataset. Considering
the extensive volume of the CICIDS2017 dataset, the
elimination of these missing values is not expected to
adversely affect the overall quality and reliability of the
dataset. To ensure that no missing values were left in the
dataset post-cleanup, the data.isnull().sum() function was
utilized as a verification tool.

Regarding the normalization process, we opted for the
Min-Max scaling technique, primarily due to its straight-
forward and uncomplicated approach. This method is
particularly effective in adjusting the data into a specific
range, which is beneficial for maintaining consistency across
different features, thereby facilitating more accurate analysis
and modeling in our study.

The CICIDS2017 dataset, a significant resource in cyber-
security, offers detailed insights into SCADA system network
traffic. Housing over 2.8 million records and 78 unique
features, it presents a wealth of information. We noted that
the average destination port value is approximately 8071, and
nearly half of the records resonate with port 80, indicating a
dominance of HTTP traffic. Any deviation here, especially
in a SCADA context, might hint at underlying threats. The
missing values are removed from the dataset as it’s a large
dataset and removing a few records won’t affect the dataset
quality.

The packet dynamics within the dataset revealed interest-
ing patterns. While the average forward packet count sits at 9,
there are outliers scaling to the hundreds of thousands. This
divergence may be indicative of SCADA system anomalies.
Additionally, the packet lengths within the CICIDS2017
dataset showed SCADA communications tend to have longer
response packets than the initiating ones.

We also noticed noteworthy patterns related to network
activity durations and extended idle periods, potential mark-
ers of SCADA system behaviors. Data anomalies, such as
negative values in ‘min_seg_size_forward’, deserve special
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attention. Moreover, the dataset’s right-skewed distribution
highlighted potential outliers, essential for SCADA anomaly
detection.

For visualization, we leveraged Seaborn, a Python-based
tool, to depict class distribution in the ‘Label’ column.
The visualization in Figure 2 underscored the imbalance
in the dataset: the ‘Benign’ class -the second highest class
in CICIDS2017- has around 2.2 million records, vastly
outnumbering the ‘DoS Hulk’ class with approximately
230,000 entries.

Class Distribution in CICIDS2017 Dataset

2.271,320

230124
158806 156 05

Class

FIGURE 2. Class distribution in the CICIDS2017 dataset with around
78.6% normal records.

This study deliberately does not address the data imbalance
aspect in the CICIDS2017 dataset to maintain a specific
focus on isolating the contribution of the Self-similarity
feature. We had previously worked on the analysis of dataset
imbalance in detail in [21]. However, since we cannot predict
the effect of balancing the dataset on the performance of
the proposed scheme, we certainly intend to study it in the
immediate future work.

The Z-score, or standard score, quantifies how far a data
point deviates from the mean of the dataset in terms of
standard deviations, and is commonly visualized using a
normal distribution curve. This metric is particularly valuable
in deep learning for outlier detection, as it adeptly measures
deviation in datasets characterized by numerous dimensions
or features [22].

In our study, we utilized the Z-score methodology to
pinpoint and exclude outliers. These outliers represent data
points that significantly diverge from the norm, potentially
leading to skewed analytical outcomes. By eliminating these
outliers, we enhance the model’s precision, minimizing
the influence of extreme values that might not accurately
represent typical network traffic patterns. This is vital for
the model’s effective recognition of patterns that signify
cyber threats. Nevertheless, we exercised caution to avoid
excessive data removal, preserving the dataset’s integrity
and its relevance to real-world scenarios. Such careful
management of outliers fortifies the robustness and reliability
of our research.
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For accurate outlier detection, we enlisted the Z-score
method. This statistical tool, proficient in pinpointing signif-
icant mean deviations, offers an objective lens for anomaly
detection.

ey

where Z is the z-score, yx is the observation value, w is the
data mean, and o is the data standard deviation. Applying this
method, we spotlighted outliers within the features, excluding
‘Label’. In the realm of cybersecurity, outliers can either
signify potential threats or be mere data noise. It’s essential
to differentiate between the two.

166 Fwd IAT Total - With Outliers
2.0
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v
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g 10
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FIGURE 3. Histograms of ‘Fwd inter-arrival time (IAT) total’ with and
without the outliers.

We observed significant outliers in the ‘Fwd IAT Total’
and ‘Bwd IAT Total’ features, informing our next steps in
the modeling process. Figure 3 displays the histograms of the
‘Fwd IAT Total’ with and without outliers. Similarly, Figure 4
shows the same for the ‘Bwd IAT Total’.

Feature importance is a crucial aspect of machine learning
and data analytics that helps in determining the significance
of each feature in predictive modeling. Essentially, it quan-
tifies the impact of each feature on the model’s outcome,
enabling us to prioritize and understand the data better.
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FIGURE 4. Histograms of ‘Bwd IAT total’ with and without the outliers.

In the context of CICIDS2017, a dataset related to
cybersecurity, feature importance can be pivotal in discerning
which attributes play a significant role in identifying potential
threats or anomalies.

The Random Forest algorithm, a popular ensemble
method, evaluates feature importance by observing how often
a feature is utilized to split the data and how much it improves
the purity of the split. This mechanism allows Random Forest
to provide a rank order of features based on their contribution
to the model’s predictive accuracy.

In our analysis of the CICIDS2017 dataset, using Random
Forest enabled us to pinpoint the top 10 features shown in
Figure 5, thereby offering valuable insights into the most
critical parameters to monitor and analyze for cybersecurity
purposes.

In summary, our EDA of the CICIDS2017 dataset empha-
sizes the importance of rigorous data inspection, especially
in SCADA systems. Discerning these data patterns and
anomalies can be the difference between a secure and a
compromised SCADA environment.

C. DIMENSIONALITY REDUCTION WITH PCA

To enhance computational efficiency and model perfor-
mance, we applied Principal Component Analysis (PCA) to
reduce the dataset dimensionality, which initially contained
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Top 10 Features in CICIDS2017

Packet Length Variance
Bwd Packet Length Std
Destination Port

Packet Length Std
Packet Length Mean
Bwd Packet Length Mean

Feature

Average Packet Size

Avg Bwd Segment Size

Total Length of Fwd Packets |

Subflow Fwd Bytes |

0.00 0.01 0.02 0.03 0.04 0.05
Importance

FIGURE 5. This chart highlights the top 10 features in the CICIDS2017
dataset based on their importance in predicting the target variable.

78 features. Our goal was to capture 95% of the dataset’s
variance, thereby retaining the most significant features for
network behavior analysis.

PCA transforms the original set of features into new,
uncorrelated variables, known as principal components.
These components are linear combinations of the original
variables, selected based on their contribution to the total
variance in the dataset [23]. The process of selecting these
components involved identifying the ones that cumulatively
explained 95% of the variance, ensuring the inclusion
of the most informative features for intrusion detection
while discarding redundant data. The retained principal
components are representations of underlying data structures
that are crucial for identifying potential security threats in
SCADA systems.

Cumulative Explained Variance by PCA Components in CICIDS2017
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FIGURE 6. The plot illustrates the proportion of total variance captured as
more components are considered. The red dashed line signifies the 95%
explained variance threshold, while the green dashed line highlights the
specific number of components required to achieve this threshold.

The Cumulative Explained Variance by PCA Compo-
nents graph, depicted in Figure 6, displays the cumulative

VOLUME 12, 2024



A. Balla et al.: Enhanced CNN-LSTM Deep Learning for SCADA IDS Featuring Hurst Parameter Self-Similarity

IEEE Access

variance explained by the initial n principal components.
This visualization was pivotal in our study, allowing us
to determine the optimal number of components necessary
for a balance between preserving critical information and
achieving dimensionality reduction. This balance is essential
for computational efficiency and ensuring model clarity in
detecting anomalies within SCADA systems.

D. HURST PARAMETER

The Hurst parameter is a statistical measure used to assess
the self-similarity of a signal or pattern, often in the context
of time series data [24]. It’s instrumental in our research for
detecting anomalies within the SCADA systems’ network
traffic, using the CICIDS2017 dataset. We calculate the Hurst
parameter for each data record to determine the degree of self-
similarity in the network traffic.

Calculation Process:

1. We start by dividing the time series data into equal-
length segments. For instance, if a dataset has 100 data
points, we might break it into segments containing
10 points each.

2. For each segment, we calculate its range R (the
difference between the highest and lowest values) and
its standard deviation S (a measure of variation from
the mean).

3. We compute the R/S ratio for each segment by dividing
its range by its standard deviation.

4. We then take the logarithm of these R/S ratios to
normalize the data.

5. The average of these logarithmic values is calculated
across all segments.

6. The Hurst parameter is determined using the formula
in (2)

_ Ellog(§)]

~ log(n)
where H represents the Hurst parameter, R represents the
range of the data, S is the standard deviation of the signal,
and n represents the time scale.

Imagine a hypothetical dataset where, after performing
the above calculations, the average logarithmic R/S value
for segments of 10 data points is 0.3. The Hurst parameter,
H, would then be calculated as (0.3/log(10)) = 0.13. This
value of H helps us understand the degree of self-similarity
in the dataset, which is critical for identifying patterns and
anomalies in network traffic.

The Hurst parameter plays a vital role in our research,
enabling us to identify deviations from typical traffic patterns
in the SCADA systems. By computing this parameter for
the CICIDS2017 dataset, we can effectively pinpoint unusual
activities, which may indicate security threats or system
vulnerabilities.

@

E. BATCH NORMALIZATION
Batch Normalization (BN) is a technique that improves
the training of deep learning models by addressing internal
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covariate shifts and stabilizing the learning process [25].
It normalizes the activations within each layer, reducing
the impact of changing input distributions during training.
BN also acts as a form of regularization, mitigating
the vanishing and exploding gradient problems. Overall,
BN enhances training efficiency, improves model perfor-
mance, and ensures a more stable and effective learning
process.

F. DROPOUT LAYERS

Dropout is a regularization method often used in deep learn-
ing models to minimize overfitting [26]. Dropout randomly
deactivates a portion of neurons in a layer with a predeter-
mined probability during training, essentially ‘‘dropping out”
their contribution to following layers for a certain forward and
backward pass. This process introduces instability into the
network while also ensuring that no one neuron gets overly
specialized, resulting in a more generalized and robust model.
Overall, including dropout layers is a simple yet effective way
to improve the generalization capabilities of deep learning
models.

G. EVALUATION METRICS

The performance of the proposed hybrid intrusion detection
system is evaluated using a set of commonly used evaluation
metrics, including accuracy (ACC), recall, precision, and
F1-score [27]. These metrics provide a comprehensive eval-
uation of the system’s ability to accurately detect anomalies
in the CICIDS2017 dataset.

Accuracy is the most widely used performance metric for
binary and multi-class classification problems. In the context
of intrusion detection, accuracy measures how accurately the
system classifies normal and abnormal network traffic [28].
Recall (also known as True Positive Rate or TPR) indicates
the proportion of network anomalies that are correctly
identified by the system, while precision measures the
proportion of correctly classified positive cases to the total
number of positive cases. The F1-score, which is the weighted
harmonic average of precision and recall, is particularly
useful in classification problems.

H. MODEL ARCHITECTURE

The proposed methodology, seen in Figure 7, presents
an improved technique for anomaly detection in SCADA
systems by leveraging the invaluable CICIDS2017 dataset.
Realizing the crucial significance of SCADA systems in
critical infrastructure, there is an evident need for effective
security solutions, particularly given their vulnerability to a
wide range of cyber-attacks.

A well-constructed neural network is at the core of our
research. This network is distinguished by its seamless
combination of Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) units, resulting in an
architecture precisely designed to detect both spatial and
temporal patterns in input sequences. This hybrid design not
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FIGURE 7. The architecture of the hybrid CNN-LSTM neural network
model for SCADA system anomaly detection, leveraging the CICIDS2017
dataset.

only provides a deep comprehension of the data but also
highlights the complexities of network traffic patterns.

The data’s journey begins with a series of preprocessing
steps that handle outliers, normalize the data, and transition
through PCA. The Hurst parameter, a standout feature,
provides profound insights into the time series’ behavior and
is smoothly included in our feature set, which is constructed
with seven different features: six principal components and
the Hurst parameter, represented as (7, 1).

The “ReLU” activation function is used by our model’s
CNN layers, which are equipped with increasing filters
(16, 32, 64) and kernel sizes of 1 and 2. This decision
is based on ReLU’s ability to overcome the vanishing
gradient dilemma and accelerate deep network convergence.
Batch normalization layers are distributed throughout this
convolutional architecture, critical pieces ensuring stable
and accelerated training by limiting any one input feature’s
overwhelming dominance.

6108

In addition to the convolutional dynamics, our model has
three LSTM layers that are gradually organized with 16, 32,
and 64 recurrent units. These LSTMs, known for their ability
to retain long-term sequential data, are critical for capturing
temporal patterns in our dataset.

The model converges the gathered features after the LSTM
layers with a dense layer packed with 128 units. This
complicated architecture results in a single-neuron output
layer primed with a sigmoid activation function, ideal for
binary classification applications.

Upon completing the training phase, the model’s mettle is
gauged through performance metrics like accuracy, precision,
recall, and F1 score. By capitalizing on deep learning’s
immense potential and the comprehensive insights from
CICIDS2017, our model heralds a new era in fortifying
SCADA system security, ensuring operations that are both
secure and steadfast.

Our neural network architecture was influenced by
previous work [29], but it diverges significantly in
the implementation details and the unique integration
of the Hurst parameter. The configuration of layers,
units, and activation functions was established through
rigorous experimentation, tailored specifically to the
CICIDS2017 dataset to optimize anomaly detection in
SCADA
systems.

We chose the ReLU activation function for its effectiveness
in deep learning models and structured the LSTM layers
to incrementally increase from 16 to 64 units based on
their performance in capturing temporal data patterns. The
incorporation of batch normalization ensures stable training
and mitigates common neural network issues. This strategic
combination of features and layers results in a robust
architecture, finely tuned to address the complexities of
network traffic in SCADA systems.

The training process for this SCADA system anomaly
detection model involves using a Sequential neural network,
composed of several layers including Conv1D, MaxPool-
ing1D, LSTM, Dense, and Dropout. This combination effec-
tively captures both spatial and temporal patterns in the data.
The details of the training phase and the hyperparameters are
shown in TABLE 2. The model employs ReL.U activation for
the Conv1D layers to introduce non-linearity and a Sigmoid
function in the output layer for binary classification. It utilizes
the Adam optimizer for efficient computation and adaptive
learning rates, paired with binary cross-entropy as the loss
function to measure performance. Key hyperparameters
include a batch size of 128, ensuring a balance between
computational efficiency and generalization, and the model
is trained over 10 epochs. Data preprocessing includes
outlier handling, normalization, and Principal Component
Analysis (PCA) to reduce dimensionality. Notably, the model
incorporates the Hurst parameter, alongside dropout layers to
prevent overfitting. This configuration is carefully designed
to optimize the model’s ability to detect anomalies in SCADA
systems.
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TABLE 2. Overview of model training process and hyperparameters for

SCADA system anomaly detection.

Aspect Description Reasoning
Enables the stacking of layers
. linearly and provides a
Model Type Sequential . .
straightforward architecture
for the neural network.
- ConvlD (16, 32, 64
filters, kernel sizes 1
&2) Conv1D and LSTM layers to
. capture spatial and temporal
MaxPooling1 D
Layers patterns. Dense and Dropout
-LSTM (16, 32, 64 .. .
. layers for decision-making
units) - Dense (128 Lo
. and regularization.
units)
- Dropout (0.25 rate)
ReLU enhances non-linearity
o - ConvlD: ReLU . i X
Activation without affecting receptive
. - Output layer: . o
Functions . i fields. Sigmoid is suitable for
Sigmoid . . .
binary classification.
Provides efficient
- computation and adaptive
Optimizer Adam . .
learning rates, enhancing
convergence.
This value represents a
balance between convergence
Learning Rate  0.001 speed and stability in a wide
range of optimization
problems in machine learning.
Suitable for binary
Loss Function  Binary Crossentropy  classification tasks, measures

Accuracy, Precision,

the performance of the model.
Provide a comprehensive

evaluation of the model's

Metrics .
Recall, F1 Score performance from various
aspects.
Reflects the dimensionality of
(7, 1) - after PCA
the processed dataset
Input Shape and Hurst parameter . .
. including PCA and Hurst
augmentation
parameter.
Balances computational
. efficiency and the model's
Batch Size 128 . X
ability to generalize across
data samples.
Determines the number of
times the entire dataset is
Epochs 10
passed forward and backward
through the network.
L Allocates a portion of training
Validation " i
Solit 15% of training data data for model validation
i
P without using the test set.
Ensures data quality,
Dat - Outlier detection standardizes feature scales,
ata
. and handling reduces dimensionality, and
Preprocessing . .
- Normalization incorporates a novel feature

(Hurst).

IV. RESULTS AND ANALYSIS
In the quest to enhance SCADA security through a hybrid
deep learning IDS leveraging self-similarity, a comprehensive
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TABLE 2. (Continued.) Overview of model training process and
hyperparameters for SCADA system anomaly detection.

- PCA for
dimensionality
reduction
- Hurst parameter
computation
Retains most of the variance
PCA in data while reducing

Components dimensions to make
computations more efficient.
Helps prevent overfitting by
randomly deactivating a
Dropout Rate 0.25 . .
portion of neurons during

training.

series of experiments and analyses were conducted. The
results obtained from these activities are detailed in this
section.

A. PREPROCESSING RESULTS

Upon our initial exploration of the dataset, we identified
a total of 2,830,743 samples with 79 features in tow.
The benign samples, comprising approximately 80.35% (or
2,273,097 samples), formed a significant portion of the
dataset. In stark contrast, the attack samples, which totaled
557,646, accounted for the remaining 19.65%.

During the preprocessing phase, our outlier analysis
revealed inconsistencies and anomalies across a majority
of the features. As depicted in Figure 8, a staggering
70 features were affected by outliers. This bar chart offers
a bird’s-eye view of the outlier distribution across each
feature, emphasizing the necessity of addressing these
irregularities to ensure the robustness and reliability of our
model.

With the aim of reducing the dataset’s dimensionality,
we employed Principal Component Analysis (PCA). Figure 9
illustrates how the initial 5 components capture a significant
chunk of the dataset’s information. The first principal
component stands out, explaining 21.51% of the variance.
Implementing this dimensionality reduction not only accel-
erates the training phase but also promises improved model
generalization by sidestepping the pitfalls of the curse of
dimensionality.

The progression of the dataset as detailed in Table 3 reveals
a meticulous approach to data preparation crucial for reliable
machine learning models. Starting with a substantial dataset,
preprocessing ensures data quality and consistency. The
significant reduction in feature count post-PCA, from 78 to 6,
highlights the effectiveness of dimensionality reduction in
capturing essential information while reducing computa-
tional load. The addition of the Hurst parameter, increasing
the feature count to 7, illustrates a strategic enhance-
ment, introducing a nuanced aspect for anomaly detection.
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Number of Outliers per Feature

Destination Port
Flow Duration
Total Fwd Packets
Total Backward Packets
Total Length of Fwd Packets
Total Length of Bwd Packets
Fwd Packet Length Max
Fwd Packet Length Min
Fwd Packet Length Mean
Fwd Packet Length Std
Bwd Packet Length Max
Bwd Packet Length Min
Bwd Packet Length Mean
Bwd Packet Length Std
Flow Bytes/s
Flow Packets/s
Flow IAT Mean
Flow IAT Std
Flow IAT Max
Flow IAT Min
Fwd IAT Total
Fwd IAT Mean
Fwd IAT Std
Fwd IAT Max
Fwd IAT Min
Bwd IAT Total
Bwd IAT Mean
Bwd IAT Std
Bwd IAT Max
Bwd IAT Min
Fwd PSH Flags
Bwd PSH Flags
Fwd URG Flags
Bwd URG Flags
Fwd Header Length
Bwd Header Length
Fwd Packets/s
Bwd Packets/s
Min Packet Length
Max Packet Length
Packet Length Mean
Packet Length Std
Packet Length Variance
FIN Flag Count
SYN Flag Count
RST Flag Count 4
PSH Flag Count 4
ACK Flag Count 4
URG Flag Count A
CWE Flag Count A
ECE Flag Count 4
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Average Packet Size
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FIGURE 8. The number of outliers detected in each feature.

The consistent sample count throughout these stages
ensures robust model training and evaluation. This thorough
data preparation process underpins the model’s potential
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FIGURE 9. Cumulative explained variance by principal components.

TABLE 3. Stages of dataset processing from initial load to feature
augmentation.

Sample

Stage Count Feature Count Description
.. Raw combined
Initial Data ) ¢34 743 79 data from multiple
Load
files.
Pre ffc ef;sin Data cleaned;
ProCessing 5 550,798 79 duplicates
(Duplicates removed
Removed) :
. Outliers detected
Af;’fg’ﬂ%j’e’ 2,520,798 79 in 70 features and
g handled.
Shga;ajje’;er Features (X) and
L 2,520,798 X:78,Y:1 Labels (Y) are
Separating X separated
and Y P ’
Aj;f::t?al;:’_ Data is split into
P 2,016,638 78 training and
(Training testing sets
Data) g sels.
Aj;{:srt?al;?- A separate testing
P 504,160 78 set is preserved for
(Testing .
model evaluation.
Data)
Dimensionality is
Afier PCA 2,016,638 6 reduced to 6
principal
components.
After Hurst Hurst parameter
Parameter 2,016,638 7 calculated and
Added added as a feature.

for accurate and efficient anomaly detection in SCADA
systems.

B. ANALYSIS OF PCA COMPONENT INTERPRETABILITY

The application of PCA in our study has led to the
extraction of principal components (PCs) that encapsulate
the most significant features of the network traffic data
in the CICIDS 2017 dataset. These components, while
reducing the dimensionality of the dataset, retain the essential
characteristics that are pivotal for anomaly detection in
SCADA systems. For instance, PC1, which explains 21.51%
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TABLE 4. Top principal components and their key contributing features.

Principal Explained
Component Variance (%)

PCl1 21.51

Top Contributing Features

Flow IAT Max,

Fwd IAT Max,
act_data_pkt fwd,

Init Win_bytes forward
PC2 10.82 Avg Bwd Segment Size,
Total Fwd Packets,
Total Backward Packets
PC3 8.69 Bwd IAT Mean,
Fwd IAT Min,
Bwd IAT Min
PC4 6.15 Down/Up Ratio,

Fwd Packet Length Mean
PC5 5.14 RST Flag Count,
Flow Packets/s,
Fwd Header Length
PC6 4.40 Subflow Bwd Packets,
Subflow Fwd Packets,
Subflow Fwd Bytes

of the variance, is heavily influenced by features like ‘Flow
IAT Max’ and ‘Fwd IAT Max’, see Table 4. These features
are indicative of the maximum inter-arrival times within
the network, which is crucial for identifying unusual delays
or rapid sequences of data packets — common signs of
network anomalies or cyberattacks. Table 4 presents the PC
components, the percentage of explained variance, and their
most influential features.

Similarly, other PCs highlight different but equally sig-
nificant aspects of network behavior. For example, PC2
focuses on segment sizes and packet counts, which are vital
in recognizing unusual traffic volumes that could signal a
Distributed Denial of Service (DDoS) attack. PC3’s emphasis
on ‘Bwd IAT Mean’ and ‘Fwd IAT Min’ further enhances
our understanding of the temporal patterns in the data flow,
which is essential in detecting advanced persistent threats
that may exhibit slow, methodical patterns of behavior
over time.

The principal components derived from PCA offer real-
world insights into network behaviors that are critical
for SCADA systems’ security. In practical terms, these
components serve as condensed representations of intricate
patterns in network traffic, enabling the model to detect
anomalies with greater accuracy. For instance, a significant
variance in PC1 could indicate irregularities in data trans-
mission intervals, a potential red flag for cybersecurity teams
monitoring SCADA systems.

Similarly, the contributions of PCs in highlighting packet
sizes and counts (as seen in PC2 and PC3) are instrumental
in real-world scenarios. An unexpected increase in packet
size or count, as captured by these PCs, could suggest an
ongoing cyberattack, prompting immediate investigation and
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response. This is particularly relevant in industrial contexts
where SCADA systems control critical infrastructure, and
any deviation from the norm can have significant implications
for operational stability and safety.

The PCs’ relation to network behavior is evident in their
ability to capture and highlight specific traffic patterns that
are generally associated with cyber threats. For example,
the focus on inter-arrival times and packet lengths aids
in identifying potential network scanning activities or the
presence of malware that often disrupts normal traffic
patterns. The nuanced understanding of these behaviors,
facilitated by the PCs, is critical in developing robust
intrusion detection systems that can effectively counter the
sophisticated and evolving nature of cyber threats in SCADA
environments.

In essence, the PCA component analysis not only sim-
plifies the computational demands of the model but also
enhances its interpretability and real-world applicability.
By distilling complex data into key features that directly
correlate with network behaviors indicative of security
threats, the PCA components play an indispensable role in
the robust anomaly detection capabilities of our proposed
model.

Distribution of Hurst Parameter
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FIGURE 10. Distribution of the Hurst parameter across the dataset.

The Hurst parameter is introduced as a distinctive feature
within our dataset to quantify self-similarity in network
traffic patterns, which is a critical aspect of modern intrusion
detection. Figure 10 illustrates the distribution of the Hurst
parameter, highlighting its variance across the dataset. This
addition is not merely an augmentation but is central to our
contribution; it enhances the model’s precision in discerning
complex and subtle anomalies, which might escape detection
by traditional IDS methods.

By employing the Hurst parameter in conjunction with
PCA, our proposed model is not only equipped to detect overt
intrusions but also equipped to unravel and flag the more
sophisticated, latent patterns that typify advanced network
threats. This strategic enhancement is pivotal in bolstering
the model’s diagnostic acumen, thereby advancing the field
of intrusion detection.
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C. MODEL PERFORMANCE AND COMPARATIVE ANALYSIS
Our endeavor to comprehend the role of the Hurst parameter
in network intrusion detection led us to design two distinct
training scenarios: one incorporating the Hurst parameter
and the other excluding it. This bifurcation serves as a
foundational step in our investigation, enabling a detailed
exploration of each training’s nuances and providing a
platform for a comparative assessment.

The training performance charts serve as a window into
the model’s learning dynamics. With the Hurst parameter
integrated, the convergence pattern as depicted in Figure 11
showcases a harmonious balance between the training and
validation phases, underscoring the model’s adeptness in
generalization.

FIGURE 11. Training and validation accuracy and loss metrics across
epochs for the model incorporating the Hurst parameter.

FIGURE 12. Epoch-wise training and validation accuracy and loss metrics
for the model excluding the Hurst parameter.

In contrast, the training evolution without the Hurst
parameter, visualized in Figure 12, divulges a more capricious
journey. While overall convergence is achieved, the validation
metrics exhibit occasional turbulence, hinting at a potential
overfitting scenario.
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FIGURE 13. Bar chart representation of the class distribution in the
training dataset.

The heartbeat of any classification task lies in its data
distribution. Figures 13 and 14 unfurl the class distributions
for the training and testing datasets, respectively. The
equilibrium observed in the training dataset ensures unbiased
learning, whereas the test data presents a slight tilt, making
recall an invaluable metric in our assessment arsenal.

Calss Distribution in Testing Data
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FIGURE 14. Class distribution for the test dataset, visualized as a bar
chart.

The confusion matrices, our compass in navigating the
landscape of predictions, further accentuate this narrative.
Figures 15 and 16 representing the matrices with and
without the Hurst parameter respectively, shed light on the
model’s nuances in classification. A discernible shift in false
negatives between the two scenarios emerges, spotlighting
the amplification in recall when the Hurst parameter is
intertwined. A synthesized view of the performance metrics
is encapsulated in Table 5.

False negatives in SCADA system IDS can have severe
consequences, including undetected cyberattacks leading to
operational disruptions and infrastructure damage, height-
ened safety risks, and significant economic losses [30].

VOLUME 12, 2024



A. Balla et al.: Enhanced CNN-LSTM Deep Learning for SCADA IDS Featuring Hurst Parameter Self-Similarity

IEEE Access

Confusion Matrix

400000
350000
° 413790 5560

300000

250000

- 200000

True Label

~ 150000

- 22437 62373 L. 100000

= 50000

Predicted Label

FIGURE 15. Confusion matrix for the model trained with the Hurst
parameter.
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FIGURE 16. Confusion matrix for the model devoid of the Hurst
parameter.

TABLE 5. Comparative performance metrics for models with and without
the Hurst parameter.

Metric With Hurst Without Hurst P-Value
Accuracy 95.21% 93.65% 0.0047
Precision 88.76% 94.41% 0.0028

Recall 82.59% 65.11% 0.0000
F1 Score 84.14% 74.99% 0.0002

These oversights can undermine public trust, result in
non-compliance with regulations, and complicate response
efforts. Prolonged undetected intrusions also expose systems
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to escalated future attacks, exacerbating the risk to critical
infrastructure integrity and public safety.

The integration of the Hurst parameter into our SCADA
Intrusion Detection System (IDS) represents a significant
advancement in its performance metrics, as evidenced both
quantitatively and statistically. The Hurst parameter, a tool
for detecting long-term trends in time series data, has been
instrumental in enhancing the system’s accuracy and overall
threat detection capabilities.

From a quantitative perspective, the implementation of
the Hurst parameter has led to notable improvements in
various performance metrics. The accuracy of the system,
which is paramount in the realm of intrusion detection,
increased from 93.65% to 95.21% with the Hurst parameter.
This improvement, while seemingly modest, is substantial
in a field where every small increment in accuracy can
have significant implications. The recall rate experienced a
more pronounced increase, soaring from 65.11% to 82.59%.
This substantial jump in recall is particularly important,
as it reflects the system’s heightened ability to detect actual
threats, a critical aspect for IDS in safeguarding sensitive
infrastructure.

However, the inclusion of the Hurst parameter did result
in a slight decrease in precision, from 94.41% to 88.76%.
Despite this, the overall balance between precision and recall,
as indicated by the F1 score, improved significantly. The F1
score rose from 74.99% to 84.14% with the inclusion of the
Hurst parameter, highlighting its role in achieving a more
effective balance between accurately identifying threats and
minimizing false alarms.

The decrease in precision can be attributed to the
Hurst parameter’s increased sensitivity to anomalies, which
heightens the system’s alertness to potential threats but also
results in more false positives.

The statistical significance of these improvements is
further substantiated by the p-values obtained through the
t-test, as shown in Table 5. These p-values are crucial for
determining the likelihood that the observed changes are
due to the Hurst parameter rather than random chance.
For accuracy, the p-value is 0.0047, for precision, it’s
0.0028, for recall, it’s remarkably 0.0000, and for the
F1 score, it’s 0.0002. These low p-values indicate a high
level of statistical significance, strongly suggesting that
the improvements in the system’s performance metrics
are directly attributable to the inclusion of the Hurst
parameter.

In summary, the integration of the Hurst parameter into
the SCADA IDS model has led to statistically significant
improvements in key performance metrics. This enhancement
is critical for the deployment of an effective IDS within
the critical infrastructure of SCADA systems. The improved
recall rate and F1 score underscore the value of the Hurst
parameter in enhancing the system’s ability to detect sophis-
ticated cyber threats, while the statistical analysis confirms
the reliability of these improvements. This advancement
suggests promising avenues for further enhancing intrusion
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detection systems in industrial control systems, ensuring
better protection against an evolving landscape of cyber
threats.

In assessing the robustness of our model, the architec-
ture’s resilience to overfitting is evidenced by the stable
performance metrics across training and validation datasets,
particularly when the Hurst parameter is incorporated. The
confusion matrices (Figures 15 and 16) reveal a consistent
decrease in false negatives, indicating the model’s enhanced
reliability in capturing true anomalies within SCADA
systems.

Regarding the complexity analysis, the model’s depth and
computational layers have been meticulously designed to
balance performance with computational demands. This is
illustrated by the strategic placement of Dropout layers,
which mitigate overfitting while maintaining model com-
plexity at a manageable level. Such architectural decisions
underscore the model’s suitability for deployment in diverse
SCADA environments, offering a robust solution without
imposing excessive computational costs.

In this study, it is pertinent to reference our previous
work on dataset imbalance [21], elucidating how it informs
the current study’s methodology. This reference provides a
backdrop against which the decision to focus exclusively
on the Self-similarity feature’s contribution can be under-
stood. Acknowledging this past work also allows for a
critical assessment of the limitations of the current study,
particularly in terms of dataset representativeness and model
generalizability. Moreover, it underscores the importance of
future research avenues, including the need for k-fold cross-
validation using varied datasets and continuous learning
approaches, to enhance the robustness and applicability of
our proposed model in the dynamic field of SCADA system
cybersecurity.

TABLE 6. Benchmarking based on the cicids2017 dataset.

Author  Algorithm  Accuracy  Precision Recall F1 Score

[8] CNN- 93.00% 86.74% 76.83% 81.36%
LSTM

[13] DCNN 99.96% 99.96% 99.96% 99.96%

Our CNN- 95.21% 88.76% 82.59% 84.14%

Work LSTM

Table 6 presents a comparative analysis of different
algorithms benchmarked using the CICIDS2017 dataset. The
study by [8] implemented a CNN-LSTM model, achieving
93.00% accuracy, 86.74% precision, 76.83% recall, and an
F1 score of 81.36%. In contrast, [13] utilized a DCNN
algorithm, achieving exceptionally high and uniform met-
rics across all categories (99.96% for accuracy, precision,
recall, and F1 score), which might indicate overfitting.
Our work, also employing a CNN-LSTM model, demon-
strated improved performance compared to [8], with 95.21%
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accuracy, 88.76% precision, 82.59% recall, and an F1 score
of 84.14%.

The implementation of a Self-Similarity Deep Learning
Hybrid IDS in SCADA systems, as demonstrated in our study,
offers substantial real-world benefits. This advanced model
significantly improves anomaly detection, allowing SCADA
operators to identify and respond to potential threats more
accurately and quickly. Its high accuracy and recall rates
enable an effective early warning system, crucial for proactive
threat mitigation.

The deep learning approach reduces manual monitoring
effort, enhancing operational efficiency, and the model’s
adaptability makes it a robust defense against evolving cyber
threats. Customizable to specific SCADA environments, this
system also aids in developing targeted cybersecurity policies
and training, while ensuring compliance with regulatory
standards. Overall, this innovative IDS represents a major
step forward in fortifying the security and operational
effectiveness of critical SCADA infrastructure.

V. CONCLUSION

This study emphasizes the need for advanced cybersecurity
in Supervisory Control and Data Acquisition (SCADA)
systems, crucial for industrial operations. We successfully
integrated the Self-similarity Hurst parameter with a CNN-
LSTM model, significantly enhancing anomaly detection
in SCADA systems. Utilizing the CICIDS2017 dataset and
Principal Component Analysis, our hybrid model achieved
a high detection accuracy of 95.21% and a recall rate
of 82.59%.

Our innovative approach, incorporating the Self-similarity
Hurst parameter into the IDS, offers new insights into
SCADA cybersecurity and improves IDS accuracy. Future
research will extend this model to diverse datasets and
operational contexts, applying k-folds and cross-validation
techniques for robust evaluation. We also plan to integrate
continuous learning methods for better adaptability in
dynamic.

The findings significantly contribute to SCADA system
security, ensuring the reliability of critical services like
electricity and water. The deep learning techniques developed
have potential applications in cybersecurity, informing policy
formulation for protecting industrial systems.

Despite challenges, such as dataset limitations and model
integration complexities, this study lays a foundation for
future advancements in SCADA cybersecurity, addressing
key areas like computational efficiency, real-time perfor-
mance, and system integration.
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