IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 11 December 2023, accepted 1 January 2024, date of publication 8 January 2024,
date of current version 16 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3350737

==l RESEARCH ARTICLE

WBIN-Tree: A Single Scan Based Complete,
Compact and Abstract Tree for Discovering
Rare and Frequent Itemset Using

Parallel Technique

SHWETHA RAI“!, PREETHAM KUMAR"“2, K. NAKUL SHETTY “3,
M. GEETHA"1, AND B. GIRIDHAR"!

! Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
2Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka
576104, India

3Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka
576104, India

Corresponding author: M. Geetha (geetha.maiya@manipal.edu)

ABSTRACT Data analytics is an integral part of strategic decision making in various fields but not limited to
business, education and healthcare systems. Existing research works focus on the discovery of itemsets with
rare antecedents and consequent or frequent antecedents and consequent. Analysis of association among
itemsets with rare antecedents and frequent consequent is equally important to gain valuable insights before
making crucial decisions. Mining these itemsets from large datasets is time and resource intensive process.
Expedition in the process of mining aids in quick decision making and hence, the entire dataset needs
to be stored in the RAM. In this paper, a novel Weighted Binary Count Tree (WBIN-Tree) is proposed
and implemented in CUDA to exploit the power of GPU and discover rules with rare antecedent and
frequent consequent using parallel approach. WBIN-Tree stores the entire dataset in an abstract, complete
and compact form in the RAM using single database scan. WBIN-Tree is compared with existing sequential
and parallel algorithms by varying the data size and dimension. The performance evaluation of WBIN-Tree
showed promising results, proving to be the most time and space efficient algorithm to store the entire large
dataset in the RAM. However, based on the size of the GPU, the performance drops when executed on
datasets with large dimensions which could be handled by processing the attributes in batches. Additionally,
a case study is included to understand the importance of mining association rules with rare antecedent and
frequent consequent by executing the algorithm on breast cancer dataset.

INDEX TERMS Association rule mining, frequent itemsets, parallel mining, rare itemsets, WBIN-tree.

I. INTRODUCTION

Data analytics has emerged as an important area of research
due to increasing competitions in various fields of science,
business and education. Several companies hire data analysts
to analyse raw data and discover hidden information from
large and complex datasets to improve the performance and
deliver better results based on strategic decisions. Association

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen

Rule Mining (ARM) discovers meaningful relationships
among the items that appear either frequently or rarely in a
dataset [1]. If the occurrence of the itemset satisfies the user-
defined minimum support threshold, then it is considered as
frequent itemset otherwise, it is considered rare [2]. Frequent
Itemset Mining (FIM) and Rare Itemset Mining (RIM) are
first step in discovering strong association rules from large
volumes of data where FIM involves identifying items that
occur together frequently and RIM involves identifying items
that occur infrequently in a dataset [3], [4]. While FIM is

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 6281

https://orcid.org/0000-0002-5714-2611
https://orcid.org/0000-0002-0736-7687
https://orcid.org/0000-0002-4842-211X
https://orcid.org/0000-0002-6150-7601
https://orcid.org/0000-0002-2195-7050
https://orcid.org/0000-0002-6502-472X

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

useful for discovering information based on most frequent
behaviors, RIM is useful for identifying unusual or outlier
behaviors. For example, identifying outliers in medical data
is important for early detection of diseases by identifying
unusual patient behavior. The detection of outliers also
ensures the quality of medical data [5]. Apriori [6], FP-
Tree [7], PWC-Tree [8] and BIN-Tree [9] are some of the
ARM algorithms to discover frequent and rare itemsets in the
fields of medicine [10], business [11] and education [12].

Data analysis on useful itemsets from large datasets can be
expedited if it is available in the main memory for immediate
processing based on the user request. One of the challenges
in accomplishing this feat is the number of database scans
required by an algorithm to read the dataset from secondary
memory and store it in the main memory. Multiple database
scans are time-consuming and resource-intensive, especially
on large datasets, and single scan algorithms have a large
footprint in the main memory [6], [13]. Furthermore, existing
single scan based mining algorithms were implemented based
on either candidate generation or prefix tree based techniques.
Both techniques require huge amount of memory space.
Further, if the database is large it will not fit in the main
memory. Additionally, mining the itemsets using sequential
algorithms requires less resources and are efficient for small
datasets. However, the mining becomes tedious when the
sequential algorithm is applied on large datasets. Hence, the
parallel mining approaches mentioned in [14] and [15] helped
in fast discovery of interesting itemsets from the datasets.

ARM algorithms discover strong and interesting associa-
tion rules to uncover associations among the rare or frequent
itemsets based on antecedent and consequent rule concept.
Furthermore, association among rare antecedent and frequent
consequent is also of equal importance with regard to the
medical dataset, providing a way to identify previously
unnoticed instances. Medical datasets containing patient
records with their diseases and symptoms may contain rare
symptoms but frequent occurring disease. Analysing such
cases is important because any negligence will lead to crucial
situations. Support, Confidence and Lift are traditional
evaluation measures to discover strong association rules
among the itemsets which are then analyzed and conclusions
are drawn according to the dependency of the itemsets [5],
[16], [17], [18]. Null-invariant evaluation measures are used
in ARM to assess the significance of discovered strong
rules. These measures take into account the prevalence of
the antecedent-consequent itemsets in the dataset and are
therefore robust to imbalanced datasets [19].

The need for a space efficient and single scan based
algorithm to store the entire dataset in the RAM inspired
the design and implementation of novel Weighted Binary
Count Tree (WBIN-Tree) to discover rare and frequent
itemsets (RFI) from large datasets. Additionally, there is
no research work pertaining to association of itemsets with
rare antecedents and frequent consequent which is addressed
in this paper. The remainder of the paper are as follows.

6282

Existing works related to RFI mining are summarized in
Section II and Section III discusses the terminologies and
definitions used in the paper. The methodology followed
to implement WBIN-Tree is described in the Section IV.
The performance evaluation based on the results and its
discussion is given in Section V and Section VI respectively.
A case study is discussed in Section VII and Section VIII
gives the concluding remarks and research gap for future
enhancements.

Il. RELATED WORK

The traditional ARM algorithms involve multiple database
scans to discover RFIs. These algorithms were able to store
partial dataset in the RAM and are inefficient to discover
itemsets from large dataset. Hence, several algorithms were
proposed by various authors to handle large datasets using
single database scan.

Frequent itemsets were discovered using a recursive hash-
ing procedure in Perfect Hashing and Pruning algorithm [20].
Weighted Count tree (WC-Tree) proposed by Geetha M et al.
discover frequent concepts. WC-Tree stored the entire dataset
from the database in the RAM using a single scan. The
transactions were encoded and stored as a single node in the
tree. There was a significant reduction in the main memory
space utilized by WC-tree algorithm [21]. Shahbazi et al.
designed SPFP-Tree using single database scan to discover
frequent patterns and handle incremental datasets. However,
the prefix-paths of the tree were restructured according
based on two hash tables which introduces computation and
memory overhead [22]. A a hash based technique was utilised
in SS-FIM algorithm to store the power set of all items in
the transaction with its count [23]. Vijayakumar Kadappa
and Shivaraju Nagesh implemented a Local Support-based
Partition Algorithm (LSPA) to discover frequent itemsets
from the partitioned database. Local support counts were
computed and global support count for the itemsets were
determined from the local support counts. The experimental
evaluation showed that LSPA outperformed Apriori, Partition
and FP-Tree algorithms in terms of database access time [24].

FCFP-Tree is a single scan based algorithm to store the
itemsets and avoids database re-scanning. The tree was
restructured based on the position of the itemsets in the head
table. A string format was used to store all single paths as a
compressed single node [25]. An Improved Apriori algorithm
creates a 0-1 matrix where ‘1’ indicates the presence and
‘0’ indicates the absence of the item in the transaction [26].
Postdiffset algorithm is similar to Diffset algorithm [27] that
discovers frequent itemsets. The initial looping in Postdiffset
algorithm was based on tidsets process and the result diffset
was obtained in the second looping [28].

Rare itemsets were discovered by Rare-Eclat algorithm
using a vertical representation of the database. In each
iteration if the Sp(itemset) < minge,, then it does three
things on i and (i"41) columns. In IF-Tidset, it finds the
(iN(i+ 1)) and saves the result in the database. In IF-Diffset,

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

it finds diffset(i N (i + 1)) and saves the result in the database.
In IF-Sortdiffset, the itemsets were sorted in the descending
order depending on the itemsets’ equivalence class to find
diffset(i N (i 4+ 1)) [29].

ARIMA generates all frequent and rare candidate itemsets.
The union of all rare itemsets collected at each level of
candidate itemset generation gives a list of rare itemsets
in [30]. SSP-Tree was constructed based on the frequency
of the itemsets stored in the header table. The header table
maintains the sorted order of itemsets and the tree was
restructured before every insertion step accordingly [13].
The work in paper [5] also uses the SSP-Tree to store
the data for incremental mining and to find the outliers
in the medical records. Shafiul Alom Ahmed and Bhabesh
Nath implemented an updated SSP-Tree algorithm named
Improved Single Scan Pattern Tree (ISSP-Tree) [31]. The
algorithm avoids multiple database scans for the tree
construction and stores the each transaction as a branch in
the tree. ISSP-Tree has a header table that contains a link
to connect same items in the tree. ISSP-Tree introduces
another link in the header table that connects the last node
of same item. However, ISSP-Tree also restructures the tree
before transaction insertion consuming more time. Mahmoud
A. Mahdi et al. designed FR-Tree for rare pattern mining
and to identify essential frequent and rare rules from the
dataset [32]. The algorithm was designed based on F-Tree to
cluster the transactional data [33]. The rules were categorized
into two classes, frequent itemsets with high confidence and
rare itemsets with high confidence.

An empirical analysis was conducted by Anindita Borah
and Bhabesh Nath on a tree-based rare and frequent pattern
mining techniques [34]. It was found that the algorithms
based on tree data structures are more suitable for dense
datasets as the transactions will share a common prefix
path and hence could be represented in a compact form.
When the tree data structure was executed on sparse data,
as there was limited or no common prefix paths, the tree data
structure would itself be large. This feature is the limitation
on the main memory capacity to store the entire dataset in
the RAM. PWC-Tree and BIN-Tree were implemented by
Shwetha et al. to discover both frequent and rare itemsets
from the main memory without any information loss [8],
[9]. However, PWC-Tree is space inefficient for a dataset
with large dimension and BIN-Tree is time-inefficient during
mining process.

Parallel mining algorithms such as Bigminer [14],
Gminer [15], SGminer [35] and SS-FIM [36] were proposed
to improve the mining process to discover the frequent
itemsets. Even though there are several single-scan based
algorithms to discover rare and frequent itemsets, none of
these store the dataset in a complete, compact and abstract
form without re-structuring the tree based on frequency of
the items before insertion of the transaction into the tree.
Hence, this paper proposes a complete, compact and abstract
tree data structure to store the entire dataset using a single

VOLUME 12, 2024

TABLE 1. Sample database, SD, with five transactions.

T;q Transaction items
1 1,2,3,55,56,57
2 1,2,3,47,48,49,50,51
3 4
4
5

1,2
1,23

database scan and without re-structuring the tree based on
item-frequency.

IIl. PRELIMINARIES

In this section, some of the basic terminologies and
definitions related to rare itemsets, frequent itemsets and
evaluation measures to discover strong and interesting rules
are illustrated with examples based on the sample database,
SD, given in the Table 1. The database contains 5 transactions
and 57 items. The first column represents the transaction ID
(Tiy) and the second column represents the items in each
transaction. For further understanding, minimum frequent
support threshold, ming.q, is set to 0.5 and minimum rare
support threshold, min,., is set to 0.2.

Definition 3.1: Tree data structure: A non-linear data
structure with single node called as root that has zero or more
sub-trees containing child nodes is called a tree data structure.

Definition 3.2: Completeness: A tree is said to be com-
plete if the entire dataset that is stored in the tree data structure
is retrieved without any loss in information.

Definition 3.3: Compactness: A tree is said to be compact
if the space taken by entire dataset in the main memory is less
than its actual size.

Definition 3.4: Abstraction: A tree is said to be abstract
if the information in the entire dataset that is stored in the
encoded format in the tree data structure.

Definition 3.5: Transaction database: A group of s trans-
actions, T ;={t1, t,....t;} is called a transaction database
where each ¢;, i=1,2,....s represents a transaction.

Definition 3.6: Itemset: A group of x items, I = {ij,
i2,....ix}, in Ty is called as an itemset. Here iy, ip,....,i
represents individual items in the transaction.

In SD, 1={1,2,3,4,47,48,49,50,51,52,53,54,55,56,57}

Definition 3.7: 1-Itemset: A group of any / items from I is
called as I-Itemset.

Definition 3.8: Support: The support of an itemset, Sp(/),
from I represents the number of times it appeared in the T .
The support computation is shown in equation (1).

Sp(l) = [{t € Tap : I <t})
| Tap|

In Example 1, Sp(1)= % =0.8, Sp(2,3)= 2 = 0.6 and Sp(4)=
£ =02

Definition 3.9: Rare Itemset: The occurrence of an
itemset in Ty is between min, e and ming,.
In SD, itemset {4} is considered to be rare itemset.

Definition 3.10: Frequent Itemset: The occurrence of the
itemset in Ty, > user defined minimum threshold minge,.

6283

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

In SD, itemset {1} and {1,2} are considered to be frequent
itemsets.

Definition 3.11: Association Rule: It is an inference of
the form X — Y, where YCI, XCI and XNY= ¢.

Definition 3.12: Strong Association Rule: An associa-
tion rule is said to be strong if X and Y are frequent and it
satisfies the confidence threshold value.

Definition 3.13: Confidence: Confidence of a rule (X —
Y) indicates the probability of the presence of Y in dataset
along with X in the dataset. The confidence value may not
always show two dependent items. Two unrelated items in
the database may also show a high confidence value [6].
Confidence is computed as shown in equation (2).

Conf(X - Y) = M 2)
Sp(Y)

Definition 3.14: Lift: Lift is an indicator to evaluate the
strength of a rule X— Y. If the lift of X—Y is 1 then it
indicates that the existence of X does not affect Y, if the
value is less than one then it infers that the probability of
the existence of Y when X is present is less. If the value
is greater than 1 then the inference is that the probability
of the existence of Y is more when X is present in the
transaction [37]. Lift is calculated as shown in equation (3).

Lift(X — Y) = w 3)
Sp(Y)

Definition 3.15: Conviction: The output of Conviction
ranges from 0 to oo; 1 indicates that the itemsets are
independent, oo indicates that the rule holds 100% of the time
and less than one indicates that the rule is of lower interest.
Conviction is calculated as shown in equation (4).

Com(X —) = — =3P @)
1—Conf(X = Y)

Definition 3.16: Kulczynski: The value of Kulczynski
ranges from O to 1. The value close to 1 indicates a strong
association between the itemsets, value close to O represents
a weak association and 0.5 means neutral which is typically
an uninteresting rule. Kulczynski is calculated as shown in
equation (5).

Kule(X - Y) = %(Conf(X — YY)+ Conf(Y — X)) (5)

Definition 3.17: Cosine: The value of Cosine ranges
from O to 1. If the value is close to 1, then it indicates a
stronger association between the two itemsets, if the value
is close to 0, then the strength of association is lesser and
0.5 means there is no correlation between the itemsets. Cosine
is calculated as shown in equation (6).

Sp(XUY)
VSp(X) * Sp(Y)

Definition 3.18: Strong and Interesting Association
Rule: An association rule, X — Y, is said to be strong and
interesting if Cos(X — Y) > 0.5 and Comv(X — Y) = oo.

Definition 3.19: Parallelism: Executing one instruction
on multiple data at same time is called parallelism.

Cos(X = Y) = (6)

6284

L Child Pointer

T Next Pointer
FIGURE 1. Structure of a node with Weight and Count.

Count

Weight

IV. PROPOSED METHODOLOGY

The process of mining RFI from large databases can be
accelerated if the entire dataset is stored in the RAM.
Hence, an attempt is made to store the entire database
in a compact, complete and abstract tree data structure in
the RAM. WBIN-Tree, a tree data structure is proposed
to store the entire dataset using a single scan of the
database in the main memory. Rare and frequent itemsets
are discovered from the data stored in the tree without any
information loss using parallel processing. Further, strong
and interesting association rules containing rare antecedents
and frequent consequent are mined to uncover previously
unknown information. The following subsections discuss the
structure of the node in the proposed tree data structure, the
tree construction process and a description of mining process
to discover itemsets from the proposed tree data structure.

A. WEIGHTED BINARY COUNT TREE

Weighted Binary Count Tree (WBIN-Tree) is a compact,
complete and abstract tree data structure used to store data
in the primary memory. Each node in the tree represents
a transaction from the dataset where each item in the
transaction is represented using a bit. A collection of these
bits represents the transaction and it is known as bitset. The
presence of an item in the transaction is represented as ‘1’ and
absence as ‘0’ in the bitset.

1) NODE STRUCTURE

A node in WBIN-Tree comprises Weight and Count fields.
The ‘Weight’ field holds the bitset representation of the
transaction and the Count field represents the occurrence of
transaction in the database with same items. Hence each node
in the tree represents a transaction with its occurrence in the
database. The node structure is shown in Figure 1.

2) WBIN-TREE CONSTRUCTION

The proposed WBIN-Tree is constructed using a single
database scan. Each transaction is read one by one and the
Weight of the transaction is computed using bitset. If the tree
is empty, then a node is created with the transaction Weight
and its Count is initialised to 1. This node is inserted as the
first child of the root node. If the tree not empty, then the node
is inserted based on the following conditions: it is traversed
based o is not empty then the t

The steps to construct WBIN-Tree is as follows:

1) Weight(traversed_node) is equal to new node: the count
of traversed_node is increased by 1.

2) Weight(traversed_node) C Weight(current transac-
tion):

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

a) Traversed_node has children: move to the child of
the traversed_node.

b) Traversed_node does not have children: create a
new node and insert the new node as the child of
the traversed_node.

3) Weight(current transaction) C Weight(traversed_
node): create a new node and insert it as the parent
of the traversed_node. Move all the siblings of the
traversed_node as the siblings of the new node whose
Weights are not proper subset of Weight(current
transaction).

4) Weight(current transaction) and Weight(traversed
node) are not proper subset of each other:

a) Ifthe traversed_node has sibling node to the right,
then move to the right of the traversed_node.

b) If the right of traversed_node is NULL, then
create a new node and insert it its right.

Algorithm 1 describes the method to construct the WBIN-
Tree. Line 2 in the algorithm represents the transaction in
bitset format which is the Weight of the transaction. Lines
3 and 4 create a new node if the tree is empty and lines
5 to 30 describe how the node insertion step is carried
out in WBIN-Tree based on different conditions given in
Section IV-A2.

3) WBIN-TREE: MINING RARE AND FREQUENT ITEMSETS
The itemsets from the WBIN-Tree are discovered using
following steps:

1) Create a Hash Map, HM.

2) For each traversed node of WBIN-Tree, generate the
subset of itemsets marked as present using parallel
approach.

3) Insert the subset into HM if it is not present in the HM
and initialise the count with the count of the traversed
node.

4) Otherwise, add the count in the HM with traversed node
and update the count in the HM with the result.

5) Iterate through HM at the end and display all the subsets
whose count is between rare and frequent support
threshold values.

Algorithm 2 represents a brief procedure regarding mining
process designed to discover RFI from the WBIN-Tree.
Algorithm 3 represents the procedure to identify the itemsets
present in the bitset representation. The parallel subset
generation method is described in Algorithm 4.

B. ILLUSTRATION OF THE WBIN-TREE

A sample database with the Weight of each transaction is
given in Table 2 and corresponding WBIN-Tree constructed
for the sample database. A detailed illustration of the steps
followed to construct the tree is shown in the Figure 2.

To begin with, WBIN-Tree is empty and the first trans-
action, T1, is read from the database. The Weight of T1 is
calculated as 00110, Count is set to 1 and inserted as the child
of the WBIN-Tree root node. Transaction T2 is inserted as the

VOLUME 12, 2024

Algorithm 1 Weighted_Binary_Count_Tree()

Input: 7,4 a transactional database

Output: Weighted Binary Count Tree: a complete, compact
and abstract tree data structure

1: for each transaction T, € Ty, do

2 Weight, < bitset representation Ty

3: if the WBIN-Tree is empty then

4: Nyeyw < createNode(Weighty)

5. else

6 complete <— 0

7 traverse_node < root.child

8 while complete # 1 do

9 if Weight;= Weight(traverse_node) then

10: complete < 1

11: count(traverse_node) < count(traverse_node)
+1

12: else if Weighty A
Weight(traverse_node)=Weight(traverse_node) then

13: if traverse_node has no child then

14: create a node N,,,, < createNode(Weighty)

15: traverse_node.child < Ny,

16: complete <« 1

17: else

18: insert traverse_node as child of
traverse_node

19: end if

20: else if Weight; A Weight(traverse_node)=Weight;
then

21: Nodey,,, < createNode(Weighty,)

22: traverse_node is replaced by Node,e,

23: insert traverse_node as the child of Node,,.,

24: complete < 1

25: else

26: insert traverse_node to the right of tra-
verse_node

27: end if

28: end while

29: end if

30: end for each

TABLE 2. Sample database with transactions’ weight using Bitset.

Tip Items | Weight
1 1,2 00...0110
2 34 00...011000
3 1,3 00...01010
4 1,23 00...01110
5 4 00...010000

sibling of T1 as the Weight of T2 is not a subset or a super
set of Weight of T1. Transaction T3 is also inserted based on
the same condition into WBIN-Tree. The next transaction,
T4, is read and its Weight is compared with the Weight of
T1. Weight T1 is a subset of Weight of T4 and hence, T4 is
inserted as the child of T1. The Weight of transaction TS5, is a

6285

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

{a) WBIN-Tree initially

0...011000:1

0...011000:1 0...01010:1

(e) WBIN-Tree after inserting T4

FIGURE 2. WBIN-Tree for the sample database in table 2.

subset of Weight of transaction T2. Hence, T2 is inserted as
the child of TS and TS as the sibling of T1.

C. THEORETICAL ANALYSIS

WBIN-Tree algorithm is constructed for a Ty, with ¢
transactions containing i unique itemsets. Hence, the entire
transactions are read in (t x 1) time from the database. The
insertion operation in WBIN-Tree is in O(t) for a Ty, with t
transactions. During insertion, if there are (t-1) nodes in the
tree, then (t-1) comparisons are made before node insertion
and (t x 1) steps are taken to read each transaction from the
secondary database. Thus, the tree construction operation is
in O((t x i) + t2)). Further, WBIN-Tree consumes (txXx)

6286

(b) WBIN-Tree after inserting T1

0...011000:1 0...01010:1

0...01010:1

0...010000:1

0..11000:1

() WEBIN-Tree after inserting TS

bytes to store the dataset where x is the size of one node in
the tree.

V. PERFORMANCE EVALUATION

The performance evaluation of the proposed tree data
structure is assessed based on time taken to construct the
tree and the space taken to store the entire dataset in
the RAM by varying the data size and dimension. The
experiments are also extended to evaluate the time taken to
discover RAM and rare itemsets using sequential and parallel
approaches. Several experiments are conducted by executing
WBIN-Tree algorithm on secondary datasets described in
the Section V-A to analyse the algorithms’ significance
against existing sequential and algorithms. The experiments

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

Algorithm 2 Weighted_Binary_Count_Tree_Mining()

Algorithm 4 Generate_Subset()

Input: WBIN_Tree, min,are, mingreq
Output: Frequent and Rare itemsets

1: Create a Hash Map HT

2: for each Bitset By € WBIN_Tree node N do

3 arr < findSetBit(Br)

4 subset_List < Generate_Subset(arr)

5. for each subset_element e € subset_List do
6 index < HashKey(e)

7 if e is not in HT then

8 HT[index].element < e

9 HT[index].count <— N.qty

10: else
11: HT[index].count «<— HT[index].count + N.qty
12: end if

13: end for each

14: end for each

15: for each HT[index].element in HT do

t6: if HT[index].count> min., then

17: freqiiss < freqiiss Y HT[index].element

18: else if HT[index].count > minfe, and
HT[index].count < min,,, then

19: rarejiyy <— rareji; U HT[index].element

20: end if

21: end for each

Algorithm 3 findSetBit()
Input: Bitset By
Output: An array arr containing the elements present in By

1: k<0

2: #pragma omp parallel shared(arr) do
3: #pragma omp for

4 for each bit i € By do
5: if By (i) is set then
6 arr[k] <1

7 end if

8 k «<k+1

9 end for each

10: end #pragma omp for
11: end #pragma omp parallel

are conducted in two ways to evaluate the time and space
efficiency of the algorithms: by varying the data dimension
and data size.

A. DATASET DESCRIPTION

The algorithms are executed on both sparse and dense
datasets. The description of seven secondary datasets used
in the experimentation is given in Table 3. The datasets are
downloaded from SPMF site commonly used in experimental
analysis of RFI mining algorithms [38]. The Acute Inflam-
mation dataset is collected from UCI Repository [39] and

VOLUME 12, 2024

Input: List of node elements in array arr
Output: List of subsets subset_list

1: n < number of elements in arr
2: No_of _Threads Th < 2"
3: parfori < O0to Thdo
4. for j<«Otondo

5: ifi & 1 «j then
6 subset_list[Th;] < subset_list[Th;] U arr][j]
7 end if
8 end for
9: end par for

TABLE 3. Description of the datasets.

Dataset #Transaction #Items Avg.length Type
Acute Inflammation 120 11 8 Real
Breast Cancer 317 16 13 Real
Chess 3196 75 37 Real
Mushroom 8124 119 23 Real
Connect 67557 129 43 Real
Skin 245057 11 4 Real
KDDcup99 927393 135 16 Real

Breast Cancer dataset is collected from Kaggle website [40].
Chess, Acute Inflammation, Skin, Connect, Breast Cancer
and Mushroom are dense datasets and KDDCup99 is a sparse
dataset. In Table 3, #Transaction indicates the total number of
transactions, #ltems indicates the total number of items and
Avg.length gives the average number of items in a transaction
in the dataset.

B. EXPERIMENTAL SETUP

The implementation of all sequential algorithms are done
using C++ and executed on a Ubuntu 18.04.5 LTS x64
OS with 8GB RAM, Intel Core i5 at 3GHz processor. The
proposed parallel algorithm is implemented in CUDA and all
parallel algorithms are executed on Google Colab.

C. EXPERIMENTAL EVALUATION: TREE CONSTRUCTION
The efficacy of the proposed WBIN-Tree in terms of space
and time to store the entire dataset in the RAM is assessed
in this section. The significance of WBIN-Tree algorithm
against existing WC-Tree, PWC-Tree, BIN-Tree and SSP-
Tree algorithms are analysed by running the experiment on
various secondary datasets. The experiments are conducted
in two ways to evaluate the time and space efficiency of the
algorithms: varying data dimension and data size.

1) VARYING DATA DIMENSION

A comparative evaluation on time and space taken by WC-
Tree [21], PWC-Tree [8], SSP-Tree [41], BIN-Tree [9] and
WBIN-Tree algorithms to construct the trees and store the
entire dataset in the RAM is done by conducting experiments
based on varying data dimension of the datasets. The
experiments are carried out to observe the performance of

6287

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

(a) Chess
» Y WGC-Tree J K4
© PWC-Tree 5
Q WBIN-Tree o
o L i)
o 1.5 BIN-Tree 19}
2 SSP-Tree -
£ =
)
)
E 1€
- c
S 2
3 18
<>1<) >
& |
(- ; ‘ ‘
6 8 10 12
Number of Items in a Transaction
(c) Mushroom
(2]
%) | sesssmas WC-Tree 1o
'8 10 PWC-Tree CC)
Q WBIN-Tree o
3] o)
o 8r BIN-Tree 10
n SSP-Tree c
£ ©
o 6 1
E £
s L lc
5§ S
=] 2
3 ol 13
e <
X |
O L L L
6 8 10 12 14

Number of Items in a Transaction

(b) Connect

250 [=eemmsas WC-Tree
PWC-Tree
WBIN-Tree
200 ¢ BIN-Tree
SSP-Tree
150 1
100
50 r
0
6 8 10 12
Number of Items in a Transaction
(d) KDDCup99
1200t WC-Tree
PWC-Tree
1000 WBIN-Tree
BIN-Tree
800 | SSP-Tree

6 8 10 12
Number of Items in a Transaction

FIGURE 3. Figures 3(a)- 3(d): Time taken to construct WC-Tree, PWC-Tree, BIN-Tree, WBIN-Tree and SSP-Tree by varying

data dimension.

the algorithms due to the number of items present in the
dataset. The proposed and existing algorithms are executed
on Mushroom, KDDCup99, Connect and Chess datasets.
Since Skin dataset has only four data attributes per row, it is
excluded from this experimentation.

The execution time of PWC, WC, BIN, SSP and WBIN
trees to store various datasets in RAM is shown in Figure 3.
It is observed from the figure that during tree construction
step, WBIN-Tree outperforms BIN, WC, PWC and SSP tree
algorithms. There is an exponential increase in the time to
construct SSP-Tree as the number of items increase in the
dataset. SSP-Tree is restructured before the insertion of every
transaction which adds to the execution time which makes
it time-inefficient. Further, the execution time of PWC-
Tree increases gradually with the increase in transaction
length. PWC-Tree requires extra time to create additional
REMNODES to store larger Weights, hence takes more time
than WBIN-Tree to construct the tree. For datasets with
smaller transaction length, WBIN-Tree and WC-Tree shows
similar performance during tree construction. However, WC-
Tree fails to store a valid encoded value with the increase
in transaction length leading to a loss of actual data. Thus,
the performance of the WC-Tree drops as the number of
attributes increases indefinitely. BIN-Tree algorithm uses a
tree construction approach similar to PWC-Tree; during tree

6288

construction, in BIN-Tree, the common elements among the
parent and child node are removed from child node before
node insertion. This additional operation adds up to the cost
of tree construction. Hence, BIN-Tree is inefficient compared
to WBIN-Tree during tree construction.

Memory utilised by WC-Tree, PWC-Tree, BIN-Tree,
WBIN-Tree and SSP-Tree is shown in Figure 4. There is an
exponential increase in the memory consumed by SSP-Tree
and PWC-Tree with the increase in number of items in the
transaction. It can also be observed that the memory utilised
by WC-Tree, BIN-Tree and WBIN-Tree are overlapping but,
for a large KDDCup99 dataset there is a slight increase in the
memory utilised by WC-Tree. Hence, BIN-Tree and WBIN-
Tree are the most efficient data structures among the tree
data structures designed and implemented to store the entire
dataset in the RAM. SSP-Tree stores each item as a node of
the tree, whereas WC-Tree and PWC-Tree store the Weight
of the transaction, an integer, as a node of the tree in the
RAM. BIN and WBIN trees represent each item as a bit
and each transaction as a bit vector, the most basic unit of
memory representation. The bit representation of each item
is the most compact representation of the item compared to
integer representation, Consequently, there is an increase in
the node’s capacity and tree’s capacity to store more items and
transactions respectively. Hence, BIN-Tree and WBIN-Tree

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

«10° (a) Chess
25 y i i
........ WC-Tree
ot PWC-Tree
WBIN-Tree
BIN-Tree

SSP-Tree

Memory Allocated in Bytes

6 7 8 9 10 11 12 13
Number of Items in a Transaction

(c) Mushroom

........ WC-Tree
PWC-Tree
WBIN-Tree
oL BIN-Tree
SSP-Tree

Memory Allocated in Bytes
[

! I "
6 7 8 9 10 1 12 13
Number of Items in a Transaction

%10% (b) Connect

w 15T ; ; ;
Q| eeseees WC-Tree
> PWC-Tree
2 WBIN-Tree
= BIN-Tree
3 10 ¢ SSP-Tree
©
o
o
< L
~ 5
S
€
—

0

6 7 8 9 10 11 12 13
Number of Items in a Transaction

(d) KDDCup99

PWC-Tree
WBIN-Tree
BIN-Tree
SSP-Tree

w
T

Memory Allocated in Bytes
— N

o

7 8 9 10 11 12 13
Number of Items in a Transaction

FIGURE 4. Figures 4(a) - 4(d): Memory space occupied by WC-Tree, PWC-Tree, BIN-Tree, WBIN-Tree and SSP-Tree by

varying data dimension.

are space efficient than PWC-Tree, SSP-Tree and WC-Tree
algorithms.

The outcome of time and space utilization of WC-Tree,
PWC-Tree, BIN-Tree, WBIN-Tree and SSP-Tree based on
varying data dimension show that for a smaller dataset
with a fewer items WC-Tree and BIN-Tree algorithms are
nearly as efficient as WBIN-Tree during tree construction
though WC-Tree takes more space than BIN-Tree and WBIN-
Tree. However, for a large dataset with large number of
items, BIN-Tree and WBIN-Tree are equally space efficient.
Nevertheless, WBIN-Tree is evaluated as the most time
efficient algorithm to store the dataset in the RAM.

2) VARYING DATA SIZE

The size of the dataset is crucial in data mining and as the
size of the dataset increases the performance of the mining
algorithm also changes in terms of space and time. Therefore,
an extensive study to understand the impact of varying dataset
size on the efficiencies of WC-Tree, SSP-Tree, PWC-Tree,
BIN-Tree and WBIN-Tree are carried out by executing the
proposed algorithms on Connect, Chess, KDDCup99, Skin
and Mushroom datasets. The significance of the proposed
algorithms over existing algorithm is evaluated by the varying
size of the dataset.

The time taken by WC-Tree, PWC-Tree, BIN-Tree,
WBIN-Tree and SSP-Tree algorithms for reading the data
from the secondary memory and storing it in the tree
data structure is noted after executing these algorithms on
Chess, Skin, Mushroom, Connect and KDDCup99 datasets.

VOLUME 12, 2024

The analysis on the results show a few interesting insights
regarding the time efficiency of the algorithms on varied
type of datasets. It can be observed in Figure 5 that for
smaller datasets with large number of items like Chess and
Mushroom there is a subtle increase in the time taken by
WC-Tree and BIN-Tree algorithms with the increase in the
number of transactions. PWC-Tree shows a gradual increase
whereas SSP-Tree depicts an exponential increase in time
taken to construct the tree with the increasing number of
transactions in the dataset. A similar behaviour is observed
by these algorithms when executed on large KDDCup99
and Connect datasets. WBIN-Tree algorithm outperforms
WC-Tree, PWC-Tree, BIN-Tree and SSP-Tree algorithms
when executed on any type of dataset. It is also revealed
that WC-Tree is efficient during tree construction of Skin
dataset, where the average transaction length is four, despite
its limitations on data dimension, when compared to SSP-
Tree, PWC-Tree and BIN-Tree algorithms .

Another set of experiments are carried out to determine the
space efficiency of WC-Tree, PWC-Tree, BIN-Tree, WBIN-
Tree and SSP-Tree on increasing data size. The memory
utilized in terms of bytes for various datasets is shown
in Figure 6. A huge amount of memory is consumed by
SSP-Tree to store the datasets of different size. There is
a slight increase in the memory utilized by BIN-Tree and
WBIN-Tree algorithms with the increase in the number of
transactions of various datasets under consideration. It can
also be observed that there is a gradual increase in the memory
occupied by WC-Tree & PWC-Tree. Furthermore, BIN-Tree

6289

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

(2] [2]
2 (a) Chess e (b) Connect
8 j j j Q30F i i i
(&) (&)
8 0.3F =eeeeees \;VWCCT,Te; $ \F,'Vvsg;ereee
£ WBIN-Tree £ 20t WBIN-Tree
02+ BIN-Tree [)) BIN-Tree
kS SSP-Tree E SSP-Tree
i~ 10+t
co01f _ 10
2 9
(3) 0,‘ A : - - - 8 or - - ; ; ...‘L..u.-‘- ‘
L% 500 1000 1500 2000 2500 3000 L% 1 2 3 4 5 6 7
Number of Transactions Number of Transactions %104
(2] (2]
° (c) Mushroom ° (d) KDDCup99
Q0.8 T T T S 300 . . :
3 S I o
D o6t ‘;’VVSCTrTerZe 2 PWG-Tree
= WBIN-Tree £ 200 WBIN-Tree
(0] 0 4 L BIN-Tree [} BIN-Tree
e SSP-Tree e SSP-Tree
= F 100
c02f -
o | L eamass o
§ 0 s § 0
20 2000 4000 6000 8000 2 2 4 6 8 10
Number of Transactions Number of Transactions «10°
n -
° (e) Skin
Qar T "]
o3
(0]
N | esssssas WC-Tree
c PWC-Tree
5 2r WBIN-Tree T
£ Sop Tee
= 1+ |
c
o
830" ‘ ‘ —rreee |
&S 0 0.5 1 1.5 2 2.5

Number of Transactions «10°
FIGURE 5. Figures 5(a)- 5(e): Time taken to construct WC-Tree, PWC-Tree, BIN-Tree, WBIN-Tree and SSP-Tree by varying data

size.

and WBIN-Tree are are space efficient than PWC-Tree, WC-
Tree and SSP-Tree with a prominent difference in the amount
of space consumed to store the datasets. Thus, it can be
concluded that BIN-Tree and WBIN-Tree are suitable for
datasets regardless of the size. Furthermore, a dip in the
amount of memory occupied by SSP-Tree when executed
Mushroom dataset with 2000 transactions is noted. The tree
is restructured based on the support of the itemset and number
of prefix paths vary based on the support values. SSP-Tree is
a prefix tree and if there are more common prefix paths, then
the amount of memory occupied will be less in these type of
trees which will lead to dip or increase in the amount of main
memory utilization.

D. EXPERIMENTAL EVALUATION: MINING RARE AND
FREQUENT ITEMSETS

Sequential algorithms are effective for the discovery of
interesting itemsets from small datasets. As the size of the
dataset increases it is tedious to use sequential algorithms due
to the limited usage of resources by the algorithms. The limi-
tation can be overcome by exploiting the available resources’
capability using parallel algorithms. The effectiveness and
limitations of WBIN-Tree are evaluated by comparing it with
two sequential mining algorithms BIN-Tree and SSP-Tree

6290

and two parallel algorithms GMiner and Frontier Expansion
to discover RFI. BIN-Tree is chosen for the comparison
because it was found to be equally space efficient during
tree construction and SSP-Tree is chosen due to its nature
of storing each itemset as a node in the tree data struc-
ture. Furthermore, WBIN-Tree involves parallel technique
during mining hence, it is compare with existing parallel
algorithms.

The performance of WBIN-Tree against sequential algo-
rithms are analysed by executing those on Connect, Chess,
KDDCup99, Mushroom and Skin datasets. RFI are discov-
ered by varying the minimum frequent threshold from 10%
to 90% and keeping the minimum rare threshold constant
at 0%. Execution time graphs for mining the itemsets in
Figures 7(a) to 7(e) show that WBIN-Tree outperforms SSP-
Tree and BIN-Tree when the thresholds are set low. However,
if the average transaction length is less than 5, then SSP-
Tree shows a better performance compared to WBIN-Tree
and BIN-Tree algorithms. This is because, the time taken to
send and receive the data to and from GPU is more compared
to time needed to discover RFI. It can also be observed that,
when the database is large and the number of itemsets to
be discovered is also large, then WBIN-Tree performs better
than SSP and BIN tree algorithms.

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

(%] %]
2 10t (a) Chess T (b) Connect
aQ ' ' ' ' @ 15F ' : :
£ £
B S s L LI WC-Tree | E 10 w=% WC-Tree]
8 PWC-Tree © PWC-Tree
3 WBIN-Tree | O WBIN-Tree
=z 2r BIN-Tree | <=(5F BIN-Tree -
N SSP-Tree - mume
5 6 A EEEEEEEREEEEENENRREEENE
£0 : : : : : 1 g Of : n n " :]
s 500 1000 1500 2000 2500 3000 % 1 2 3 4 5 6

Number of Transactions Number of Transactions x10%
%]
8 Lot (c) Mushroom T (d) KDDCup99
73 ' ' ' =10
i3] i9) ' ' '
= s LLLLELLT] WC-Tree =
el L PWC-Ti 1
% 2 WBIN-‘I'r?eee é -------- \QIV(J.CTrTieee

BIN-Ti 5r -]

icg SSP-'I[re:e § WBIN-Tree
=1t 1= BIN-Tree
2 M < SSP-Tree
el =
o
£ 0f : : \ . {8 0 ; . . :
s 2000 4000 6000 8000 g 2 4 6 8

Number of Transactions Number of Transactions «10°

(e) Skin
6000 ooeeeess WC-Tree i i
PWC-Tree
WBIN-Tree
4000 BIN-Tree

SSP-Tree

2000 r

Memory Allocated in Bytes
o

0.5 1
Number of Transactions

1.5 2 25

x10°

FIGURE 6. Figures 6(a) - 6(e): Memory space occupied by WC-Tree, PWC-Tree, BIN-Tree, WBIN-Tree and SSP-Tree by

varying data size.

WBIN-Tree is proved to be efficient on large datasets
when compared with sequential algorithms. Additionally,
there are a few existing parallel algorithms implemented for
the discovery of frequent itemsets from the dataset. Hence,
the performance of WBIN-Tree is compared with existing
two publicly available parallel algorithms for frequent itemset
mining: GMiner [15] and Frontier Expansion [42]. GMiner
is implemented on CUDA platform and its implementation
is publicly available at [43]. Whereas, Frontier Expansion
exploits the capacity of multicores and the implementation
is publicly available at [44]. The algorithms are executed
on Connect, Skin, Chess, Acute Inflammation and Breast
Cancer datasets by setting the minimum frequent support
count threshold to 40%.

The behaviour of the proposed and existing parallel mining
algorithms to discover RFI are observed after conducting
multiple experiments by varying the number of transactions
in each dataset.

E. THEORETICAL EVALUATION

The theoretical analysis of time and space efficiencies of
WBIN-Tree against existing algorithms are discussed in this
section. All algorithms are constructed for a transaction
database with n transactions containing i unique itemsets.
The node insertion operation in WBIN-Tree is in O(n) for

VOLUME 12, 2024

a database with n transactions. Before inserting any node,
it is compared with the nodes present in the tree. If all the
(n-1) nodes present in the tree are unique, then it requires
(n-1) comparisons before inserting a node into the tree and
(n x 1i) steps to read each transaction from the secondary
database. Thus, the tree construction operation of WBIN-
Tree is in O((n x i) + n2)). The total tree construction time
for constructing WC-Tree, BIN-Tree and PWC-Tree is in
O((n x i) + n?)). Hence, theoretically the complexity of
proposed algorithm during tree construction is same as WC-
Tree, BIN-Tree and PWC-Tree algorithms.

The memory allocated for PWC-Tree is ((nxy) + (mxz))
bytes, where n is the number of transactions, m is the total
number of remaining nodes utilized, y is the size of a node
and z is the size of a REMNODE in the tree respectively.
WC-Tree occupies (((n-1)xp) + (I1xq)) where 1 is the total
number of LNodes in the tree and p and q are the size of
the Node and LNode in the tree respectively. Whereas, the
memory space utilized by BIN-Tree and WBIN-Tree is (nxx)
bytes, where x is the size of one node in the tree. The size of
x is always less than y because the itemsets are represented a
bitset where 1 bit represents 1-itemset whereas, y is the size of
the node based on integer datatype. Hence, WBIN-Tree and
BIN-Tree are space efficient when compared to WC-Tree and
PWC-Tree.

6291

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

0-10 0-20 0-30 0-40 0-50 0-60 0-70 0-80 0-90

" (a) Chess . (b) Connect
"g T T T T T T T "g 40 F T T T T T T T
S} S}
825 13
5] 2] 30 L -
R= L i K= WBIN-Tree
o v BIN-T:
E WBIN-Tree E20f e
= R = SSP-Tree
= 1.5 BIN-Tree o
.2 SSP-Tree L 10r]
5 1L 1 B
LE 0-10 0-20 0-30 0-40 0-50 0-60 0-70 0-80 0-90 LE 0-10 0-20 0-30 0-40 0-50 0-60 0-70 0-80 0-90
Support Threshold: min rare - min freq Support Threshold: min rare - min freq
P . . (¢) Mushroorp . . P . . (d). KD]?Cup?9 . .
g g
3 S 800 [-
175] 60 - - 2}
k= WBIN-Tree .8 600 WBIN-Tree A
qé BIN-Tree g | BIN-Tree |
=40 SSP-Tree = 400 SSP-Tree
& §200 [1
§ 20 £ 5 § 0E ; ; ; ; ; ; ; 5
& 0-10 020 0-30 040 0-50 0-60 0-70 0-80 0-905_]< 0-10 0-20 0-30 0-40 0-50 0-60 0-70 0-80 0-90
Support Threshold: min rare - min freq Support Threshold: min rare - min freq

) (e) Skin

< 4 T T T T

=]

S}

Q

a23r :

s ! =szzzam WBIN-Tree

g 2+ == == BIN-Tree b

= SSP-Tree

S 1r :

g

= ey —————

1> L L L n L n L Il I

Q

4

o

Support Threshold: min rare - min freq
FIGURE 7. Figures 7(a) to 7(e) represent the execution time for discovering rare and frequent itemsets from SSP-Tree, BIN-Tree and WBIN-Tree for

various datasets.

VI. DISCUSSION

The time efficiencies of BIN-Tree, WC-Tree, PWC-Tree and
SSP-Tree with respect to WBIN-Tree to read the dataset from
the secondary memory and store it in the main memory,
based on varying data dimension, are given in Table 4. The
representation, x4p 1 is read as algorithm B mentioned in the
row of the table takes x% more time/space than algorithm
A mentioned in the column. The representation, x4p | is
read as algorithm A mentioned in the column takes x%
more time/space than algorithm B given in the row of the
table. The results in the table is self-evident that WBIN-
Tree is the most efficient algorithm among other algorithms
considered in the experiments to read the dataset from the
secondary memory and store it entirely in the main memory
without any information loss. WC-Tree takes longer time to
construct the tree when compared to WBIN-Tree as each
item in the transaction must be mapped to its corresponding
prime number and then the Weight is calculated whereas,
in WBIN-Tree the item’s corresponding position in bitset is
set if it is present in the transaction. The efficiency of WBIN-
Tree is greater than 95% when compared with PWC-Tree

6292

TABLE 4. Time efficiency comparison with WBIN-Tree algorithm to
construct the tree based on varying data dimension (in percentage).

WBIN
Algorithms Chess Mushroom Connect KDDCup99
BIN 711 841 771 791
wC 731 90 1 93 1 891
PWC 971 98 1 98 1 98 1
SSP 99 1 99 1 99 1 99 1

and SSP-Tree for varying data dimension. In addition to
the mapping of items to its corresponding prime number,
common factors between parent and child node must be
removed from the child node before its insertion into the tree
which adds to the time taken to construct the tree. SSP-Tree
requires restructuring of the tree based on the support of each
item in the transaction before inserting the transaction into
the tree adding to the tree construction cost. In BIN-Tree the
additional step of comparing the parent and child node and
removal of common factors from child node, similar to PWC-
Tree, makes the algorithm less time efficient than WBIN-Tree
even though both use the same data structure to store the data.

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

(2]}
©
8 (a) Chess S (b) Connect
c : . : 815 : . T T
8 3f 13
> (2]
o =
=2t WBIN-Tree 12 WBIN-Tree 1
£ GMiner = GMiner
=L Fonter | Sos ;_/]
S =
80 - - - : ; X 0
1w 500 1000 1500 2000 2500 3000 3500 1 2 3 4 5 6 7
Number of Transactions Number of Transactions «10%
3 (c) Skin 3 (d) Acute Inflammation
$15 : : : : S4 . " "
[&] [&]
[0 (0]
(2] (] 3 L 4
£ 1t {1 £
o WBIN-Tree o WBIN-Tree
£ GMiner E2r GMiner 1
= L Frontier L Frontier
= 05 c
il oflr]
5 5
[&] [&]
g o : . . . 8o n n n
L 0 0.5 1 15 2 25 W 40 60 80 100 120
Number of Transactions %10° Number of Transactions

4 "

3 .
WBIN-Tree
GMiner
Frontier

—_

(e) Breast Cancer

-_ -

n

n n

Execution Time in seconds
n

0 N
50 100 150

200 250 300 350

Number of Transactions
FIGURE 8. Execution time taken to discover frequent and rare itemsets from the datasets using WBIN-Tree, GMiner and

Frontier Expansion algorithms.

TABLE 5. Space efficiency comparison with WBIN-Tree algorithm to store
the entire dataset in the tree based on varying data dimension (in
percentage).

WBIN
Algorithms Chess Mushroom Connect KDDCup99
BIN 0 0 0 0
wC 751 741 76 1 741
PWC 721 721 724 724
SSP 971 921 94 1 96 1

The space efficiency of the algorithms are compared
similarly by executing those on various datasets with different
size as shown in Table 5. The maximum data dimension
considered such that it is the maximum information stored
in WC-Tree without information loss. BIN-Tree occupies
the same amount of space as compared to WBIN-Tree to
store the entire dataset as these two data structures use same
representation of the data. WC-Tree and PWC-Tree occupy
comparable amount of space in the main memory. Since
common factors are stored in the parent node, PWC-Tree
requires less number of REMNODEs and WC-Tree will
require large nodes thus increasing the need for memory.
SSP-Tree is based on prefix tree and hence leaves a large
memory footprint.

The time efficiency of the proposed and existing algo-
rithms based on varying data size are compared with respect

VOLUME 12, 2024

TABLE 6. Time efficiency comparison with WBIN-Tree algorithm to
construct the tree based on varying data size (in percentage).

WBIN
Algorithms Chess Mushroom Connect Skin KDDCup99
BIN 57t 731 811 691 821
wC 781 851 967 141 901
PWC 921 981 981 881 981
SSP 981 991 991 971 991

to WBIN-Tree and the percentage wise average run time
on different datasets is shown in Table 6. The performance
of WBIN-Tree against BIN-Tree, WC-Tree, PWC-Tree and
SSP-Tree is found to 50% more efficient on any size of
dataset. There is a slight difference in the performance of
WC-Tree and WBIN-Tree when executed on the Skin dataset
where the number of attributes are less in the dataset. The
common factor removal procedure in the BIN-Tree and PWC-
Tree algorithms add to tree construction cost and hence with
the increase in the number of transactions in the dataset the
efficiency of the algorithms decrease. The performance of the
SSP-Tree depends on the number of transactions that require
restructuring of the tree before inserting it into the tree. The
restructuring of the tree before insertion of every transaction
decreases the efficiency of the algorithm.

The average space efficiency of the WC-Tree, PWC-Tree,
BIN-Tree and SSP-Tree with respect to WBIN-Tree based

6293

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

TABLE 7. Space efficiency comparison with WBIN-Tree algorithm to store
the entire dataset in the tree based on varying data size (in percentage).

WBIN
Algorithm Chess Mushroom Connect Skin KDDCup99
BIN 0 0 0 0 0
wC 761 741 751 711 744
PWC 721 721 721 6381 721
SSP 971 941 951 901 971

TABLE 8. Speed up comparison with WBIN-Tree to discover rare and
frequent itemsets.

Dataset BIN
Chess 2.2
Mushroom 3.62
Connect 2.33
Skin 0.764

KDDCup99 29

on varying data size is given in Table 7. The table contains
the average value of space utilised by different datasets
considered during the experiments conducted. BIN-Tree and
WBIN-Tree occupy the same amount of space in the main
memory whereas the efficiency of WBIN-Tree against WC-
Tree vary between 71% to 76% based on the size of the dataset
and length of the transaction. WBIN-Tree is 72% more
efficient than PWC-Tree on datasets with bigger transaction
length and more than 90% space efficient when compare to
SSP-Tree. The compact and abstract representation of the
dataset helps is efficient memory space utilization whereas,
prefix trees like SSP-Tree occupies larger amount of space in
the main memory to store the dataset.

The speed up of parallel mining algorithm, WBIN-Tree,
against sequential mining algorithm, BIN-Tree is recorded
to identify the most suitable algorithm on different types
of datasets. It is the ratio of the execution time taken by a
sequential algorithm over a corresponding parallel algorithm
as shown in the equation 7. Parallel algorithms are not suitable
in all cases as the time taken to transfer the data from CPU
to GPU adds to the execution cost. Hence an analysis on
the speed up of the WBIN-Tree algorithm against BIN-Tree
is carried out to determine the most efficient algorithm for
different varieties of datasets.

Speed Sequential execution time)
eedup =
P P Parallel execution time

A speed up comparison to discover RFI is given in Table 8.
WBIN-Tree has a speed up factor of 2.2 when compared
to BIN-Tree for mining RFI from Chess dataset. The speed
up factor of WBIN-Tree against BIN-Tree is fairly good
on Mushroom, Connect and KDDCup99 datasets. However,
on Skin dataset where the number of items per transaction is
very less BIN-Tree shows a better performance. Hence, it can
be deduced that parallel mining is not suitable on datasets
with smaller transaction length.

A comparison of average time efficiency of GMiner and
Frontier Expansion algorithm with respect to WBIN-Tree
when executed on different datasets is given in Table 9.
It is found that WBIN-Tree is 93% and 95% more efficient
than Frontier Expansion algorithm when executed on Acute

6294

TABLE 9. Time efficiency comparison with WBIN-Tree algorithm to
discover RFI based on varying data size (in percentage).

Dataset GMiner Frontier
Chess 60 95
Connect 47 86
Skin 29 85
Acute Inflammation 43 93.33
Breast Cancer 65 93.43

Inflammation, Breast Cancer and Chess datasets with less
than 4000 transactions. As the number of transactions
increases, the efficiency of Frontier Expansion also increase.
However, WBIN-Tree is 86% and 85% faster than Frontier
Expansion when executed on Connect and Skin datasets
respectively. WBIN-Tree is 29% more efficient than GMiner
algorithm when executed on Skin dataset, a large dataset
with smaller transaction length. As the transaction length
and the number of transactions increase in the dataset,
the efficiency of WBIN-Tree increases when compared to
GMiner algorithm.

WBIN-Tree is the most time and space efficient algorithm
but the number of attributes in the dataset is limited by the size
of the GPU. The subset generation is a procedure used in the
discovery of association rules and the size of the subset must
be less than or equal to the size of the GPU. This limitation
must be addressed to cater the datasets with large dimensions.
Further, if the allocated memory for bitset is small, then the
data will not fit and the algorithm will throw error. If the
allocated memory is large and number of attributes are less,
then the memory is wasted. Hence, a dynamic method must
be employed to allocate the memory dynamically.

VII. CASE STUDY: DETECTION OF BREAST CANCER

Breast cancer is a collection abnormal cell growth found in
the breast and most commonly seen in women. An early
detection of this abnormality and a prompt diagnosis can save
several lives from further complications. ARM is one of the
techniques used to analyse the symptoms for early detection
of cancer and rare correlation among breast cancer related
micro-array data in pregnant women [45], [46]. Research
works are also carried out in various directions such as
analysis of association between overall survival of the patient
and the duration in weeks from the diagnosis of breast cancer
to surgery. These analysis help in reducing the mortality and
morbidity of the patients [47].

The analysis of association rules discovered is a technique
to uncover the association among the itemsets. Several
evaluation measures such as Confidence, Lift, Cosine are
used to discover strong and interesting association rules
among itemsets. Though Support, Confidence and Lift are the
most prominent evaluation measures used in various fields
for analysis, they have a few limitations when the association
rules contain rare itemsets in the antecedent or consequent of
the rule. These null-variant measures have a direct influence
on the datasets containing null transactions. Null-invariant
evaluation measures are used to assess the significance of

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

discovered strong rules that contain rare itemsets. Cosine
and Kulczynski are null-invariant, symmetric evaluation
measures to discover strong interesting rules. All null-
invariant measures are symmetric in nature which identifies
(X—Y) is same as (Y— X). This implication is not true in
every situation. Hence, in addition to null-invariant measures,
asymmetric and null-variant measures such as Confidence,
Lift and Conviction are considered in this research work
for the analysis of strong and interesting rules. Interesting
association rules are discovered from Breast Cancer [40]
dataset among strong association rules that are discovered
based on the five evaluation measures mentioned earlier.

A. DATASET COLLECTION

The Breast Cancer dataset is collected from Kaggle web-
site [40] and it contains 317 records of patients who have
undergone surgery to remove the tumour. In a few rows the
data related to patient’s mortality were missing and hence
ignored. Six attributes having categorical values, gender of
the patient (Male-1, Female-2), tumor stage(I-3, II-4, III-5),
Histology (Infiltrating Ductal Carcinoma-6, Infiltrating Lob-
ular Carcinoma-7, Mucinous Carcinoma-8), HER2 status
(Positive-11, Negative-12), Surgery_type (Lumpectomy-13,
Simple Mastectomy-14, Modified Radical Mastectomy-15,
Other-16), Patient_Status (Alive-9, Dead-10) found in the
dataset are considered. The Patient_status is NULL there is no
information available whether the patient is alive or deceased
or if the patient didn’t visit after the surgery. These type
of records in the dataset are considered as transactions with
missing values and such records are not considered.

B. PERFORMANCE EVALUATION

Rare and frequent itemsets are discovered by executing
WBIN-Tree algorithm on the Breast Cancer dataset by
setting frequent threshold to 40% and rare threshold to
10%. Lift, Conviction, Kulczynski and Cosine evaluation
measures are applied on 72 association rules containing rare
antecedents and frequent consequent. The distribution of
rules is shown in Figure 9. Out of the 72 rules discovered,
Lift and Conviction measures identified 21 rules as strong
and interesting, whereas 51 rules are identified as poorly
correlated rules. However, none of the rules are identified
as strongly correlated and all 72 are found to be negatively
correlated by Cosine measure. Furthermore, Kulczynski
identified 59 poorly correlated rules and 13 strong and
interesting rules from the association rules discovered.

The null-variant measures discovered 21 interesting rules
with values slightly higher than 1. There are no rules
discovered by Conviction with oo, indicating that the rule
holds 100% of the times. The null-invariant Cosine measure
value is below 0.5, indicating that there are no strongly
correlated rules with rare antecedent and frequent conse-
quent in the Breast Cancer dataset. Kulczynski discovered
13 strongly correlated rules from the discovered association
rules that are identified as poorly correlated as per Lift and
Conviction measures. Hence, there are no interesting rules

VOLUME 12, 2024

BREAST CANCER

rules -ve correlated

= # rules +ve correlated E14# rules no correlation

80
70
60
50
40
30
20
10

51§

Number of Rules Generated

Kulc Cos Conv Lift

Evaluation Measures

FIGURE 9. Number of rules discovered using evaluation measures: Lift,
Conviction, cosine for breast cancer dataset.

TABLE 10. Sample association rules discovered and its values based in
evaluation measures: Lift, Conviction (Conv), Cosine (Cos) and Kulczynski
(Kulc) for breast cancer dataset.

SI. No. Rules Lift Conv Cos Kulc

1 5,12,15—6,9 1.0938 1.1386 0.2692 0.3675
2 5,12 —6,9 1.1068 1.1609 0.3737 0.4242
3 5,6,12— 9 0.9945 09779 0.3542 04784
4 6,12,15 — 4 0.8005 0.7923 0.2513 0.2967

with rare antecedent and frequent consequent as per the
values calculated using the evaluation measures.

Four association rules discovered with their evaluation
measures values are shown in Table 10. The first rule
discovered shows that based on Lift and Conviction values
among the patient records under consideration, women who
were in third stage tumor of breast cancer(5), negative
HER?2 status (12) and have undergone Modified Radical
Mastectomy(15) are strongly correlated with Infiltrating
Ductal Carcinoma (6) type of cancer and alive post surgery
(9). Similarly, second rule shows that women who were in
third stage tumor of breast cancer(5) and negative HER2
status (12) are strongly correlated with Infiltrating Ductal
Carcinoma (6) type of cancer and alive post surgery (9).
However, Cosine and Kulczynski values show that the
rare itemsets in antecedents and frequent itemsets in the
consequent of these two rules are poorly correlated. Further,
third and fourth rules are poorly correlated as per all four
evaluation measures.

The analysis on rules given in Table 10 summarizes that
even though Cosine measure is showing a negative correlation
among the rare and frequent itemsets, it can be concluded that
based on the Lift and Conviction values the patient in third
stage of tumor can undergo Modified Radical Mastectomy
which shows a high survival rate post surgery. This kind of
association among rare symptoms and frequent disease shows
interesting hidden information that will be useful to medical
practitioners for early diagnosis of the disease.

VIIl. CONCLUSION

WBIN-Tree is a compact, complete and abstract tree data
structure designed and developed to read the dataset from
the secondary memory using a single database scan. The
performance of WBIN-Tree to read and store the dataset

6295

IEEE Access

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

is compared with existing PWC-Tree, BIN-Tree, WC-Tree
and SSP-Tree algorithms. The results revealed that WBIN-
Tree more space efficient than WC-Tree, PWC-Tree, SSP-
Tree algorithms and equally space efficient when compare to
BIN-Tree algorithm. Nevertheless, WBIN-Tree is the most
time efficient during tree construction when executed on
large datasets. The performance of WBIN-Tree for mining
is compared with sequential and parallel algorithms. The
experimentation results revealed that for a dataset with
average transaction length less than 5 the sequential mining
methods utilised in SSP-Tree and BIN-Tree are more efficient
than WBIN-Tree. However, for a larger dataset WBIN-
Tree outperforms existing sequential and parallel mining
algorithms. Since most of the real time data sets have larger
data dimensions, WBIN-Tree is the most efficient algorithm
to discover the association rules among the itemsets.

Strong and interesting association rules among the itemsets
with rare antecedents and frequent consequent are useful
especially in the medical field. A combination of rare
symptoms causing a frequent disease is usually ignored and it
may lead to serious problems. Hence, the association rules are
discovered using Lift, Confidence, Conviction, Cosine and
Kulczynski evaluation measures. These evaluation measures
are employed based on its null-in-variance and symmetric
properties. At present, WBIN algorithm is executed on a
small Breast Cancer dataset. It can be executed on a large
primary or secondary dataset, if available, for discovering
more interesting rules.

WBIN-Tree can be used to discover the association
rules that contain rare antecedents and consequent, frequent
antecedents and consequent, rare antecedents and frequent
consequent or frequent antecedents and rare consequent from
datasets of various sizes in different fields of research such
as medicine, security and business. However, the number of
attributes in the dataset that can be stored in WBIN-Tree is
limited by the size of the GPU during mining. This limitation
can be handled by dividing the attributes into sub-attributes.
The memory for the bitset data structure used in WBIN-
Tree is reserved using static allocation. Static allocation
leads to several concerns during run time. Hence, a dynamic
allocation of the bitset memory may be employed to utilize
the memory suitably.

REFERENCES

[1] A. Methaila, P. Kansal, H. Arya, and P. Kumar, “Early heart disease
prediction using data mining techniques,” Comput. Sci. Inf. Technol. J.,
vol. 28, pp. 53-59, Aug. 2014.

P.Jia, J. Zhang, B. Zhao, H. Li, and X. Liu, ‘‘Privacy-preserving association
rule mining via multi-key fully homomorphic encryption,” J. King Saud
Univ.-Comput. Inf. Sci., vol. 35, no. 2, pp. 641-650, Feb. 2023.

C.-H. Chee, J. Jaafar, I. A. Aziz, M. H. Hasan, and W. Yeoh, ‘““Algorithms
for frequent itemset mining: A literature review,” Artif. Intell. Rev., vol. 52,
no. 4, pp. 2603-2621, Dec. 2019.

S. Darrab, D. Broneske, and G. Saake, “Modern applications and
challenges for rare itemset mining,” Int. J. Mach. Learn. Comput., vol. 11,
no. 3, pp. 208-218, May 2021.

A. Borah and B. Nath, “Incremental rare pattern based approach for
identifying outliers in medical data,” Appl. Soft Comput., vol. 85,
Dec. 2019, Art. no. 105824.

[2]

[3]

[4]

[5]

6296

[6]
[7]
[8]

[9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,”
in Proc. Int. Conf. Very Large Data Bases, vol. 1215, 1994, pp. 487-499.
J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” ACM SIGMOD Rec., vol. 29, no. 2, pp. 1-12, Jun. 2000.

S. Rai, M. Geetha, P. Kumar, and B. Giridhar, “Partial weighted count
tree for discovery of rare and frequent itemsets,” Engineered Sci., vol. 20,
pp. 284-295, Jun. 2022.

S. Rai, M. Geetha, P. Kumar, and B. Giridhar, “Binary count tree:
An efficient and compact structure for mining rare and frequent itemsets,”
Engineered Sci., vol. 17, pp. 185-194, Jan. 2022.

F. Liu and X. Zhang, “Hypertension and obesity: Risk factors for thyroid
disease,” Frontiers Endocrinol., vol. 13, Jul. 2022, Art. no. 939367.

B. Xiao and G. Piao, “Analysis of influencing factors and enterprise
strategy of online consumer behavior decision based on association rules
and mobile computing,” Wireless Commun. Mobile Comput., vol. 2022,
pp. 1-9, Mar. 2022.

N. Jia and Z. Madina, “An association rule-based multiresource mining
method for MOOC teaching,” Comput. Math. Methods Med., vol. 2022,
pp. 1-7, Feb. 2022.

A. Borah and B. Nath, “Identifying risk factors for adverse diseases
using dynamic rare association rule mining,” Exp. Syst. Appl., vol. 113,
pp. 233-263, Dec. 2018.

K.-W. Chon and M.-S. Kim, “BIGMiner: A fast and scalable distributed
frequent pattern miner for big data,” Cluster Comput., vol. 21, no. 3,
pp. 1507-1520, Sep. 2018.

K.-W. Chon, S.-H. Hwang, and M.-S. Kim, “GMiner: A fast GPU-
based frequent itemset mining method for large-scale data,” Inf. Sci.,
vols. 439-440, pp. 19-38, May 2018.

M. A. Benatia, D. Baudry, and A. Louis, “Detecting counterfeit products
by means of frequent pattern mining,” J. Ambient Intell. Humanized
Comput., vol. 13, no. 7, pp. 3683-3692, Jul. 2022.

P. Lenca, B. Vaillant, P. Meyer, and S. Lallich, ‘“Association rule
interestingness measures: Experimental and theoretical studies,” in Quality
Measures in Data Mining. Berlin, Germany: Springer, 2007, pp. 51-76.
A. Verma, K. Dhalmahapatra, and J. Maiti, ‘“‘Forecasting occupational
safety performance and mining text-based association rules for incident
occurrences,” Saf. Sci., vol. 159, Mar. 2023, Art. no. 106014.

M. Hahsler. A Probabilistic Comparison of Commonly Used Interest
Measures for Association Rules. Accessed: Feb. 27, 2023. [Online].
Available: https://mhahsler.github.io/arules/docs/measures

H. Najadat, A. Shatnawi, and G. Obiedat, “A new perfect hashing and
pruning algorithm for mining association rule,” Commun. IBIMA, vol. 4,
pp. 2524-2531, Jan. 2011.

M. Geetha and R. D’Souza, “An efficient discovery of frequent
concepts using weighted count tree,” Inst. Comput. Sci., Social Informat.
Telecommun. Eng., vol. 539, pp. 367-370, Jan. 2012.

N. Shahbazi, R. Soltani, J. Gryz, and A. An, “Building FP-tree on
the fly: Single-pass frequent itemset mining,” in Machine Learning and
Data Mining in Pattern Recognition. Berlin, Germany: Springer, 2016,
pp. 387-400.

Y. Djenouri, D. Djenouri, J. C. Lin, and A. Belhadi, “Frequent itemset
mining in big data with effective single scan algorithms,” IEEE Access,
vol. 6, pp. 68013-68026, 2018.

V. Kadappa and S. Nagesh, “Local support-based partition algorithm
for frequent pattern mining,” Pattern Anal. Appl., vol. 22, no. 3,
pp. 1137-1147, Aug. 2019.

J. Sun, Y. Xun, J. Zhang, and J. Li, “Incremental frequent itemsets mining
with FCFP tree,” IEEE Access, vol. 7, pp. 136511-136524, 2019.

L.-N. Sun, “An improved apriori algorithm based on support weight matrix
for data mining in transaction database,” J. Ambient Intell. Humanized
Comput., vol. 11, no. 2, pp. 495-501, Feb. 2020.

M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets,” in Proc.
9th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, New York,
NY, USA, Aug. 2003, pp. 326-335.

M. Man, W. A. W. Abu Bakar, M. M. A. Jalil, and J. A. Jusoh, “Postdiffset
algorithm in rare pattern: An implementation via benchmark case study,”
Int. J. Electr. Comput. Eng., vol. 8, pp. 4477-4485, Dec. 2018.

M. Man, J. A. Jusoh, S. 1. A. Saany, W. A. W. A. Bakar, and M. H. Ibrahim,
“Analysis study on R-Eclat algorithm in infrequent itemsets mining,” Int.
J. Electr. Comput. Eng. (IJECE), vol. 9, no. 6, p. 5446, Dec. 2019.

L. Szathmary, A. Napoli, and P. Valtchev, ‘“Towards rare itemset mining,”
in Proc. 19th IEEE Int. Conf. Tools Artif. Intelligence, Oct. 2007,
pp. 305-312.

VOLUME 12, 2024

S. Rai et al.: WBIN-Tree: A Single Scan Based Complete, Compact and Abstract Tree

IEEE Access

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

S. A. Ahmed and B. Nath, “ISSP-tree: An improved fast algorithm for
constructing a complete prefix tree using single database scan,” Exp. Syst.
Appl., vol. 185, Dec. 2021, Art. no. 115603.

M. A. Mahdi, K. M. Hosny, and I. Elhenawy, “FR-tree: A novel rare
association rule for big data problem,” Exp. Syst. Appl., vol. 187, Jan. 2022,
Art. no. 115898.

M. Mahdi, S. Abdelrahman, R. Bahgat, and I. Ismail, “F-tree: An algo-
rithm for clustering transactional data using frequency tree,” 2017,
arXiv:1705.00761.

A. Borah and B. Nath, “Tree based frequent and rare pattern mining
techniques: A comprehensive structural and empirical analysis,” Social
Netw. Appl. Sci., vol. 1, no. 9, pp. 1-18, Sep. 2019.

K.-W. Chon, E. Yi, and M.-S. Kim, “SGMiner: A fast and scalable
GPU-based frequent pattern miner on SSDs,” IEEE Access, vol. 10,
pp. 62502-62519, 2022.

Y. Djenouri, D. Djenouri, A. Belhadi, and A. Cano, “Exploiting GPU
and cluster parallelism in single scan frequent itemset mining,” Inf. Sci.,
vol. 496, pp. 363-377, Sep. 2019.

P. D. McNicholas, T. B. Murphy, and M. O’Regan, ““Standardising the
lift of an association rule,” Comput. Statist. Data Anal., vol. 52, no. 10,
pp. 4712-4721, Jun. 2008.

P. Fournier-Viger, J. C. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng,
and H. T. Lam, ““The spmf open-source data mining library version 2,” in
Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery Databases. Cham,
Switzerland: Springer, 2016, pp. 36—40.

J. Czerniak and H. Zarzycki, “Application of rough sets in the presumptive
diagnosis of urinary system diseases,” in Artificial Intelligence and Secu-
rity in Computing Systems. Berlin, Germany: Springer, 2003, pp. 41-51.
QUBC. Research. Real Breast Cancer Data. Accessed:
Jan. 23, 2023. [Online]. Available: https://www.kaggle.com/
datasets/amandam1/breastcancerdataset

A. Borah and B. Nath, “Rare association rule mining from incremental
databases,” Pattern Anal. Appl., vol. 23, no. 1, pp. 113-134, Feb. 2020.
F.Zhang, Y. Zhang, and J. D. Bakos, “Accelerating frequent itemset mining
on graphics processing units,” J. Supercomput., vol. 66, no. 1, pp. 94-117,
Oct. 2013.

P. Agrawal. Gminer. Accessed: Jan. 23, 2023. [Online]. Available:
https://github.com/coderbond007/GMiner

Zhangfan. Frontier Expansion. Accessed: Jan. 23, 2023. [Online].
Available: https://github.com/zhangfan0726/fim_gpu

M. Jajroudi, M. Enferadi, Z. Bagherpour, and R. Reiazi, “Association rule
mining-based radiomics in breast cancer diagnosis,” Iranian J. Med. Phys.,
Jan. 2023.

S. Bouasker, W. Inoubli, S. B. Yahia, and G. Diallo, “Pregnancy associated
breast cancer gene expressions : New insights on their regulation based on
rare correlated patterns,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 18,
no. 3, pp. 1035-1048, May 2021.

A. A. Wiener, B. M. Hanlon, J. R. Schumacher, K. A. Vande Walle,
L. G. Wilke, and H. B. Neuman, “Reexamining time from breast cancer
diagnosis to primary breast surgery,” JAMA Surg., vol. 158, no. 5, p. 485,
May 2023.

SHWETHA RAI received the M.Tech. degree
in computer science from the Manipal Institute
of Technology, Manipal, India, and the Ph.D.
degree in the area of data mining from the
Manipal Academy of Higher Education, Manipal.
She is currently an Assistant Professor with
the Department of Computer Science and Engi-
neering, Manipal Institute of Technology, Mani-
pal Academy of Higher Education. Her current
research interests include data mining and parallel

computing. She has presented several papers in national and international
conferences and her work has been published in various international
journals.

VOLUME 12, 2024

PREETHAM KUMAR received the Ph.D. degree
in data mining from the National Institute of
Technology, Karnataka. He is currently the Deputy
Registrar-Academics (Technical) with the Manipal
Academy of Higher Education, Manipal, India,
and a Professor with the Department of Infor-
mation and Communication Technology, Manipal
Institute of Technology, Manipal Academy of
Higher Education. His research interests include
data mining, image processing, bioinformatics,
advanced database management systems, operating systems, software
architecture, and software engineering.

K. NAKUL SHETTY received the M.Tech. degree
in digital electronics and communication from the
Manipal Institute of Technology, Manipal, India,
in 2008. He is currently pursuing the Ph.D. degree
in the area of microfluidics with the Manipal
Academy of Higher Education. He is also an
Assistant Professor with the Department of Elec-
tronics and Communication Engineering, Manipal
Institute of Technology, Manipal Academy of
Higher Education. His research interests include
data mining and microfluidics.

M. GEETHA received the Ph.D. degree from
the National Institute of Technology, Karnataka,
Surathkal. She is currently the Director (Stu-
dent Affairs) with the Manipal Academy of
Higher Education, Manipal, India, and a Professor
with the Department of Computer Science and
Engineering, Manipal Institute of Technology,

L™ - Manipal Academy of Higher Education. Her
Y ‘ current research interests include text mining in
7 healthcare and financial sectors, and data mining.

She has attended and presented several papers in national and international

conferences and her work has been published in various international
journals.

B. GIRIDHAR received the B.Tech. degree from
the Department of Computer Science and Engi-
neering, Manipal Institute of Technology, Manipal
Academy of Higher Education, Manipal. His
current research interests include data mining and
data protection. His work has been published in
international journals.

6297

