
Received 9 December 2023, accepted 4 January 2024, date of publication 8 January 2024,
date of current version 12 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3350741

Multi Objective Prioritized Workflow Scheduling
Using Deep Reinforcement Based Learning
in Cloud Computing
SUDHEER MANGALAMPALLI 1, (Member, IEEE),
SYED SHAKEEL HASHMI 2, (Member, IEEE), AMIT GUPTA3,
GANESH REDDY KARRI 1, (Member, IEEE), K. VARADA RAJKUMAR 4,
TULIKA CHAKRABARTI5,6, PRASUN CHAKRABARTI 5,6, (Senior Member, IEEE),
AND MARTIN MARGALA 7, (Senior Member, IEEE)
1School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh 522237, India
2Department of Electronics and Communication Engineering, Faculty of Science and Technology (IcfaiTech), ICFAI Foundation for Higher Education (Deemed
to be University), Hyderabad, Telangana 501203, India
3Department of AI & ML, J B Institute of Engineering and Technology, Hyderabad, Telangana 500075, India
4Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, Telangana 500043, India
5Department of Basic Sciences, Sir Padampat Singhania University, Udaipur, Rajasthan 313601, India
6Department of Computer Science and Engineering, Sir Padampat Singhania University, Udaipur, Rajasthan 313601, India
7School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

Corresponding author: Sudheer Mangalampalli (sudheerkietmtech@gmail.com)

ABSTRACT Workflow Scheduling is a huge challenge in cloud paradigm as many number of workflows
dynamically generated from various heterogeneous resources and task dependencies in each workflow varies
from each other. Therefore, if a workflow with more number of dependencies is not scheduled onto an
appropriate Virtual Machine i.e. with low processing capacity which leads to delay in executing workflows
and it results in increase of makespan, cost, energy consumption. In order to effectively schedule complex
workflows i.e. with more task dependencies, we propose a novel multi objective workflow scheduling
algorithm using Deep reinforcement Learning. Initially, priorities of all workflows calculated based on their
dependencies and then calculated priorities of VMs based on electricity cost at datacenters to map workflows
onto precise VMs. These priorities are fed to scheduler which uses Deep Q-Network model to dynamically
schedule tasks by considering both priorities of tasks and VMs. Extensive simulations carried out on
workflowsim by considering realtime scientific workflows (Montage, cybershake, Epigenomics, LIGO).
Our proposed MOPWSDRL compared against existing state of art approaches i.e. Heterogeneous Earliest
First Deadline, Cat Swarm Optimization, Ant Colony Optimization. Results revealed that our proposed
MOPDSWRL outperforms existing state of art algorithms by minimizing makespan, energy consumption.

INDEX TERMS Deep reinforcement learning, cloud computing, workflow scheduling, task dependencies,
makespan, energy consumption.

I. INTRODUCTION
Cloud Computing provides on demand seamless access to
its various services for wide variety of applications used by
users around the world. Cloud computing environment can
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be configured with different deployment models i.e. pub-
lic cloud in which every user around the globe can access
services in cloud platform. On the other hand, there is an
another deployment model i.e. private cloud in which only
users in that respective organization can access virtual ser-
vices in cloud platform. There is an another model available
i.e. hybrid cloud which is a mix of both public and private
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clouds in which some of the services can be accessible
to users and other services can be restricted based on the
service level agreement [1]. In order to provide services
on demand and effectively to users cloud computing model
uses different service models. In these days wide variety
of service models are available in the commercial vendor
cloud platforms but majority of the services are falls under
three categories i.e. Infrastructure -as-a-service where exist-
ing application running in on premises environment can be
migrated and deployed in cloud platform with the support of
virtual infrastructure provided by cloud vendor [2]. Platform-
as-a-service where cloud user can develop their application
on top of cloud environment by using various services and the
necessary services can be readily available to users without
installing any software to develop applications but user need
to subscribe to the respective service and make use of it
based on the subscription they chose for that service [3].
Software-as-a-service in which cloud users make use of
software already developed by various cloud vendors based
on subscription [4]. For provisioning requested resources
to customers from cloud provider, there should be an effi-
cient scheduling model to be employed in cloud computing
paradigm. Scheduling in cloud computing is a huge challenge
in this paradigm as wide variety of tasks generated from
heterogeneous resources while each task is having various
dependencies and these tasks with dependencies will create
a complex situation where each task will run after only its
dependent task completes its execution and this process is
otherwise known as workflow execution. In this paradigm,
there are huge number of workflows runs in parallel with
different processing capacities and dependencies. Therefore,
to schedule all workflows effectively on to virtual resources
an effective workflow scheduling is needed as different work-
flows have different task dependencies, task processing time
and runtime processing capacities. Therefore, an ineffective
workflow scheduling mechanism degrades makespan, energy
which also impacts quality of service of cloud provider.
These workflow scheduling major domain applications are
natural language processing, Gaming and data science where
cloud service providers faces huge challenges as these are
complex workflows especially if we consider all dependent
tasks in gaming application have various runtime capacities
and scheduling them on cloud platform is a huge challenge.
It will be a great disadvantage if workflow is not assigned to a
suitable VM but it is advantageous to the customers because
they can concentrate only on their business but not about the
infrastructure they need to use for that application. Schedul-
ing in Cloud Computing is a prodigious task as workflows
comes to cloud console with different dependencies, compu-
tation capacities, runtime processing capacities and matching
or assigning these workflows to precise virtual machines.
The main challenges involved in workflow scheduling is it
increases the complexity as many number of dependent tasks
involved in a workflow and all the type of workflows are not
of the same type. They may get variated in number of depen-
dent tasks, runtime complexity of workflow. This is a huge

challenge for Cloud Service provider to map these workflows
onto suitable VMs because of variation in task demands,
migration process, cost involved in running complex work-
flows, fault tolerant virtualization platforms [45] chosen
for scheduling. Ineffective mapping of workflows to virtual
resources ruins utilization of resources, increase in execution
time, makespan, energy consumption. Therefore, to tackle the
above issues an effective workflow scheduling mechanism is
needed. Many existing authors used various nature inspired
algorithms to solve scheduling issues i.e. ACO [5], Aquilla
optimized PSO [6], Hybrid lion- GA [7] andmany algorithms
but all these researchers developed scheduling mechanisms
based on their perception and addressed various metrics but
still this problem persists in cloud paradigm as it is a highly
dynamic situation and all existing authors and works have
not considered workflow dependencies and their priorities to
schedule tasks onto precise virtualmachineswhich incurs low
electricity costs in the respective datacenters. Many of the
existing works discussed about workflow scheduling using
metaheuristic, bio inspired and nature inspired algorithms but
all these approaches gives near optimal solutions while evalu-
ating parameters. These type of approaches are not adaptable
to dynamic workflows in cloud environments and they may
not generate schedules in an optimized manner for every time
as scheduling in cloud computing is highly dynamic situa-
tion. Therefore, to tackle this problem effectively, we used a
reinforcement learning mechanism which is a reward based
approach named as Deep Q-Network which schedules based
on the reward generated for every iteration in scheduling.
In this research, we employ a ML model i.e. DQN model fed
to scheduler which carefully identifies all incomingworkflow
dependencies, calculates priorities of tasks and then based
on their priorities it schedules tasks onto suitable virtual
machines which lowers makespan, energy consumption. The
below figure 1 gives overview of how we have chosen DQN
as our model for workflow scheduling in Cloud Computing.
It also gives a classification of overall deploymentmodels and
on which model we can implement Scheduling techniques
and what are the different Metaheuristic approaches we can
use for scheduling not limited to the mentioned approaches in
this below figure and given another classification of Machine
learning in which we are using Reinforcement learning and
under that in which category DQN is classified. The overall
deployment/automation of workflow scheduling is brought
out in Figure 1.

A. MOTIVATIONS AND CONTRIBUTIONS
Scheduling in Cloud Computing paradigm incurs vari-
ous challenges to cloud provider to employ an effective
scheduling policy to provision virtual resources effectively
to customers by benefiting in terms of makespan, energy
consumption. The main motivation behind to take up
this research is to minimize task execution on a virtual
machine while minimizing energy consumption simultane-
ously. Makespan is to be considered as one of the primary
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FIGURE 1. Functional flow of deployment/automation workflow
scheduling.

metric in scheduling paradigm as if makespan i.e. execu-
tion time on a virtual machine for a task increases and it
shows impact on the other dependent tasks in that workflow
therefore it will also cause of increase in consumption of
energywhich is a huge overhead on cloud provider in terms of
energy cost which also impacts quality of the cloud provider.
Therefore, to tackle this problem we formulated a priori-
tized workflow scheduling which uses a deep reinforcement
learning technique to carefully identifies number of depen-
dencies in a workflow, calculates priorities of workflows,
VMs based on unit cost electricity so as to carefully schedule
tasks onto VMs while minimizing makespan, consumption of
energy.

The main contributions in this research are mentioned
below.

1. A prioritized multi-objective workflow scheduling
algorithm developed using deep Q-learning network
model.

2. To schedule workflows precisely onto virtual machines
we have carefully identified number of task dependen-
cies in each workflow in turn priorities of tasks to be
considered based on size of various tasks, processing
capacity of VMs and priorities of VMs based on unit
cost electricity at the corresponding datacenter.

3. DQN model is used as methodology to schedule
dynamic workflows generated from various heteroge-
neous users.

4. Extensive simulations are conducted on workflowsim
and they are validated using realtime scientific work-
flows.

5. Proposed approach validated against existing state of
art algorithms i.e. HEFT, CSO, ACO algorithms for
minimizing makespan, energy consumption.

Rest of the manuscript is organized as mentioned below.
Section II discusses Related works, Section III discusses
Mathematical modeling & System architecture of proposed
scheduler, Section IV discusses methodology used to model
scheduler, Section V discusses Configuration settings for
simulation, results and analysis, Section VI discusses Con-
clusion and future works.

II. RELATED WORKS
This section precisely discusses various existing approaches
proposed by authors by using different ML approaches
and the parameters they considered to model the scheduler.
Authors in [8] proposed a task scheduling model in three
phases. In first phase, a short time based scheduler devel-
oped based on improved Cat Swarm Optimization to address
makespan, throughput. In Second phase, a neural-network
based scheduler is embedded into algorithm which takes
constraints i.e. load, bandwidth. In third phase a light weight
secure authentication scheme used to provide a layer of secu-
rity. Authors compared their RATS-HM(Resource Allocation
Security with Task Scheduling) with FCFS(First Come First
Serve), RR(Round Robin) algorithms. Simulation results
proved the effectiveness of RATS-HM in terms of response
time, energy consumption. Minimization of Resource Con-
sumption, task waiting time is crucial for cloud provider
while scheduling large scale workloads in cloud environ-
ment. Moreover, to automate the process of scheduling by
employing a Machine learning technique authors in [9] pro-
posed various scheduling models in which they have used
Long-short term memory (LSTM) to model scheduler and
out of all these hybridized approach i.e. Deep Reinforcement
Learning based LSTM (DRL-LSTM) has given significant
improvement in consumption of virtual resources, waiting
time over existing baseline approaches i.e. SJF(Shortest
Job First), PSO(Particle Swarm Optimization), RR(Round
Robin). Load balancing is a prominent challenge still exists
in cloud paradigm as it should dynamically distributes tasks
among various virtual resources. Authors in [10] proposed
a multi objective scheduling model which not only sched-
ules tasks but also balances tasks among different virtual
resources using hybridization of Q-learning and artificial bee
colony algorithms. It evaluated over Multi Objective Crow
search (MOCS), Multi Objective Particle Swarm Optimiza-
tion (MOPSO) approaches. Multi Objective Artificial Bee
ColonyQ-learning (MOABCQ) shown its efficacy over exist-
ing techniques by effectively scheduling and balance the load
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on tasks. Multitenancy is one of the characteristic in cloud
computing which can ensure virtual resource to be highly
available. Authors in [11] developed a reinforcement learning
based workflow adaptive scheduler to minimize completion
time of a task. Entire experimentation implemented on green
cloud simulator and this adaptive approach compared with
existing baseline approaches using synthetic and random
workloads. Simulation results revealed that tasks can be
dynamically migrated to the available resource while tack-
ling completion time of tasks using this approach. Workflow
scheduling is often disrupted under the constraints such as
increase of execution time of tasks which increases execution
cost and it directly impacts quality of service of the cloud
provider. Therefore, in [12] proposed a workflow scheduling
by hybridization of HEFT and ACO algorithms. This hybrid
approach implemented on AWS platform by considering
real time workloads. This approach evaluated over ACO,
algorithms. Simulation results revealed that Heterogeneous
Earliest First Deadline Task scheduling- Ant Colony Opti-
mization (HEFT-ACO) created great impact over existing
algorithms by minimizing makespan. Authors in [13] pro-
posed a workflow scheduling model which aims to minimize
makespan, cost by applying deepQ-networkmodel integrated
with Markov game learning approach and experiments were
conducted on AWS cloud by considering various realtime
scientific workflows against Non dominated Sorting Genetic
Algorithm-II (NSGA-II), Multi Objective Particle Swarm
optimization (MPSO), Game theory based approaches and
from extensive set of experiments and results Deep-Q-
NetworkMulti agent Reinforcement Learning (DQNMARL)
approach outperforms existing mechanisms by minimizing
above said parameters. For high computational real time
workflow applications, authors in [14] proposed a mech-
anism which tackles execution time, cost. Three variants
of HEFT based scheduler developed based on taking CPU
frequency into the consideration and then precisely sched-
uled realtime workflows onto virtual resources. Extensive
set of experiments conducted by giving realtime scientific
workflows as input to algorithm. It compared over existing
mechanisms and HEFT based scheduler proves efficacy of
scheduler by minimization of cost, execution time. Deadline
constrained workflow applications are more challenging in
cloud computing paradigm as it consists of more dependen-
cies and constraints. Therefore, authors in [15], proposed
a workflow scheduling mechanism which minimizes mone-
tary costs. Methodology used for this mechanism is divide
and conquer approach in two phases. In first phase, initial
critical paths in the workflows are removed and schedule
paths until all these sub workflows becomes linear structured
and make all linear graphs should be merged to minimize
monetary costs. Availability probability, deadline violation of
workflows, SLA violations are key factors in cloud and as
well as in fog computing as authors in [16] proposed a multi
fog computing framework where each fog node availability
prediction is calculated using Hidden Markov approach and

additionally this approach is optimized using Discrete Oppo-
sition basedHarris HawkOptimization (DO-HHO) algorithm
to minimize deadlines of workflows, SLA Violations when it
compared over existing baseline algorithms. In [17], authors
developed a enhance binary Artificial Bee Colony(ABC)
algorithm with pareto front which considers various Quality
of service conditions. Initially, task listing done by HEFT
algorithm and generation of solutions are given with greedy
approach and finally scheduling of these tasks are done with
binary ABC algorithm. Simulations for this approach con-
ducted on workflowsim. Finally, they compared Enhanced
Hybrid Artificial Bee Colony (EBABC) compared over
HEFT, Dynamic Heterogeneous Earliest First Deadline Task
Scheduling (DHEFT),NSGA-II algorithms for various scien-
tific workflows by minimizing makespan, processing cost,
resource utilization. Authors in [18] addressed a basic and
primary objectives in scheduling aspects of cloud comput-
ing. Authors induced a dynamic priority into scheduler to
tackle parameters i.e. cost, resource utilization, makespan.
Min-max algorithm is used as methodology to design Multi
Objective Normalization Workflow Scheduling (MONWS)
which tackles above said parameters while scheduling real
time workflows precisely onto VMs by checking dynamic
priority of workflows for every iteration. It compared against
state of art algorithms i.e. Min-Min, HEFT, DAG Workflow
Scheduling (DLS). Results revealed that MONWS decreases
cost by 4%, makespan by 35%, improves resource utilization
by 8% over state of art approaches. Authors in [19] pro-
posed a workflow schedulingmodel which tackles makespan,
cost in cloud-edge computing model to minimize latency,
bandwidth issues and maximize network utilization. They
have used improved firefly algorithm by inducing genetic
operators into scheduler and then used quasi-learning based
procedure. For improvisation of firefly they used 10 standard
benchmarks to check efficacy of scheduler in terms of con-
vergence. Extensive simulation results revealed that Genetic
Operators Quasi-Reflected Firefly Algorithm (GOQRFA)
shows significant improvement of parameters as mentioned
above. In [20], authors developed a workflow scheduler to
generate economic workflow schedules to minimize cost
incurred for cloud provider. Main objective of this scheduler
is to minimize idle time, total cost incurred in scheduling
process under deadline constraint posed in algorithm. This
algorithm works under three phases. In first step, based on
task type and generate compact schedules based on their
topological levels. In second step, delay operation applied
on topological structure to minimize delay rate, idle rate of
an instance. In third step, hibernate schedule is generated
based on idle rate of an instance. Simulations conducted
on Workflowsim. From results it was proved that Enhanced
Task Type First Algorithm (ET2FA) minimizes cost, idle
rate of VMs. Deadline constraints, energy consumption are
crucial challenges for scheduling in cloud paradigm. Authors
in [21] proposed two stage scheduling model in which
task clustering for fine grained tasks which were merged
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as a workflow and identifying critical path applications to
execute workflows based on Dynamic Voltage Frequency
Scaling (DVFS) technique. Extensive simulations conducted
onWorkflowsim using realtime scientific workflows. Results
shown huge impact on existing state-of-art approaches for
minimization of energy consumption, transmission costs.
Authors in [22] developed a hybridized approach to effi-
ciently schedule workflows on VMs. This approach was
modeled using two algorithms i.e. PSO, GreyWolf Optimiza-
tion (GWO). Simulations with realtime scientific workflows
are conducted on workflowsim and generated results proved
that PSO-GWO minimized execution time, cost over exist-
ing mechanisms. In [23], authors developed a scheduling
mechanism to minimize makespan, cost while balancing load
of tasks among VMs. (RVEA) i.e. Reference vector guided
evolutionary approach modeled to schedule above mentioned
multi-objective workflows. It was simulated on workflowsim
with realtime workflows given as input, results revealed
that RVEA greatly minimizes makespan, cost. In Workflow
scheduling minimizing makespan is not only a main objec-
tive but maintaining reliability for execution of workflow
while addressing budget constraint is a challenge. There-
fore, to ensure the above scenario is to be implanted authors
in [24] developed a framework which normalizes by expect-
ing budget for each workflow. It normalizes workflow by
using min-max approach. Simulation results proved that
Normalization based Reliable Budget Constraint Workflow
Scheduling (NRBWS) minimizes makespan and improves
reliability over state-of-art approaches. Energy consumption
plays a vital role in formation of green cloud computing and
it is main aspect from facet of cloud provider to minimize
operational costs based on consumption of energy. Therefore,
authors in [25] formulated a workflow scheduling model
in two categories. In first phase, a VM is selected using
budget constraints posed by various users and in second phase
workflow scheduling onto selected VMs are to be carried out
using whale optimization algorithm. Realtime workflows are
given as input to scheduler to check efficacy over state of art
algorithms. Results shown that Energy Minimization Whale
Optimization Algorithm (EM-WOA) outperformed existing
mechanisms by minimizing energy consumption. Authors
in [26], authors identified relationship between reliability
and energy consumption as reliability impacts energy con-
sumption in cloud paradigm while scheduling workflows.
Therefore, they have posed sub reliability prediction con-
straint added into workflows which breaks down to task level
and if reliability is not improved at task level then an adapt-
ability constraint update it based on reliability they achieved
at that point of time. Extensive simulations performed on
workflowsim using both real time and synthetic workflows.
Results shown that Reliability aware Energy efficient Work-
flow Scheduling (REWS) performed far better than state of
art approaches while minimizing energy consumption and
improves reliability amongworkflows. Energy cost also plays
major role in cloud paradigm as electricity price varies from

place to place and it varied across datacenters. Considering
this aspect, authors in [27] modeled a workflow schedul-
ing framework poses a deadline constraint, task sequencing
mechanism and dynamic voltage frequency scaling to adjust
tasks coming onto cloud console and schedule workflows
while minimizing energy cost. Resource failure in any sys-
tem is a crucial aspect and to minimize resource failures
and achieve fault tolerance authors in [28] proposed a multi
objective scheduling mechanism which prioritizes tasks in
workflow to make them forwarded into execution queue.
After this a Markov decision model is used to check whether
a task need to be resubmitted or not upon failures occurred
in a resource. Finally Double Deep Q-Network (DDQN) is
used to effectively allocate tasks onto respective VMs to
minimize makespan, resource usage waste and to maximize
fault tolerance. Reliability of a workflow is to be considered
as one of the key factor in scheduling process. Authors in [29]
proposed a reliability based scheduling framework which
considers allocation of tasks to a processor based on previ-
ous running and execution of tasks on that virtual instance.
Effectiveness of it compared with existing mechanisms using
realtime scientific workflows and it shows significant impact
over existing approaches by improving reliability. Authors
in [30] formulated a work flow scheduling model which
is energy and cost efficient scheduler. It is formulated by
using HEFT based approach and it involved with resource
calculation, resource selection, a slack algorithm to schedule
workflow onto a resource to minimize execution cost, energy
consumption, for improving resource utilization. Authors
in [31] proposed workflow scheduling framework based on
relationship between reliability, energy consumption. They
have divide entire scheduling process into two phases. In first
step, computational capacity of workflows are identified
and tasks with low computational capacity are sent to fog
nodes, tasks with high computational capacity are sent to
cloud resources. In second step, performance to power aware
approach used to schedule tasks appropriately onto VMs to
minimize energy consumption and to improve reliability on
cloud provider. Extensive simulations are conducted onwork-
flowsim by considering realtime scientific workflows and
Multi Objective Memetic Workflow Scheduling Algorithm
(MOWPPR) outperforms over existing approaches for men-
tioned metrics. Authors in [32] proposed workflow schedul-
ing algorithm to address constraints i.e. makespan, cost,
Reliability. It consists of a diversification and intensification
strategy by inducing genetic factors to minimize above men-
tioned parameters. It compared over state of art approaches
and results proved Resource Aware Multi Objective Schedul-
ing Algorithm (RA-MOMA) improved reliability, makespan
and cost. Authors in [33] tackles privacy, security issues while
minimizing monetary costs of deploying workflows in hybrid
cloud. This approach carried out as a three level security
workflow scheduling model developed by incorporating an
encryption mechanism at first level and at the other two
levels scheduling of workflows based on cost and as well
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as security preservation by using Privacy and Security aware
List Scheduling (PSLS), Privacy and Security aware Simu-
lated Annealing (PSSA) by hybridizing simulated annealing
algorithm. Results shown evident proof that PSLS achieve
lower costs over existing algorithms whereas PSSA achieve
minimal running time over state of art mechanisms. In [34],
hybrid mechanism formulated to address scheduling of work-
flows in cloud computing. BAT and HEFT algorithms are
used to model scheduling mechanism. Workflowsim used as
a tool to perform extensive set of simulations by considering
realtime workflows. They compared Multi Objective Hybrid
BAT algorithm (MOHBA) with BAT, HEFT algorithms for
evaluating efficacy and it proved that MOHBA outperformed
state of art approaches for minimization of energy con-
sumption while utilizing virtual resources efficiently. In [35],
authors used a reinforcement learning approach where it
targets to minimize cost, makespan. This scheduling process
works in three levels. In first level, a dynamic adaptive coef-
ficient balance based scheduling used with usage of DDQN.
In second level, tasks are distributed based on knowledge
gained by RL and fed to scheduler. In third level, selected
tasks are scheduled while meeting deadlines as well as mini-
mizing makespan, cost. In [42], authors proposed a workflow
scheduling model which addresses makespan, speedup of
tasks. Authors used list based heuristic approach, branch and
bound based heuristic to generate schedules for workflows.
Random generated workflows are used as input trace in this
approach and simulated on customized simulation environ-
ment and it evaluated over baseline approaches to check their
efficacy of their approach and results revealed that Global
Highest degree Task First (GHTF), Critical Path Earliest
Finish Time(CP/ETF) shows significant improvement over
baseline algorithms for above specified parameters. In [43],
authors proposed a workflow scheduling mechanism which
maximizes parallelism by combiningwith earliest finish time.
In this approach, to maximize parallelism in workflows a
heaviest task is to be executed with more number of suc-
cessors taken as priority to maximize length of ready queue
in workflow. For evaluating efficiency and robustness of
Maximizing Parallelism and minimizing Earliest Finish time
deadline (MPEFT) approach, they used scientific workflows
as input to their algorithm. Finally, when it is evaluated
over existing heuristic approaches it minimizes makespan,
increased speed up of tasks. In [44], to schedule workflows
in high performance computing environments, authors used
branch and bound technique to schedule workflows opti-
mally. For evaluation of the efficacy of proposed approach,
with input trace as different applicationworkflows i.e. Fourier
transformations, molecular dynamics code, Gaussian elim-
ination. It evaluated over existing mechanisms and results
shown that BnB outperforms existing approaches by mini-
mizing makespan.

From above table 1, we can clearly observe that many
authors proposed workflow scheduling techniques using dif-
ferent nature inspired algorithms, ML techniques hybridized
with metaheuristic approaches. The addressed parameters by

TABLE 1. Existing task and workflow scheduling algorithms proposed by
various authors.

existing authors are makespan, cost, resource consumption,
energy consumption etc. but still as scheduling in cloud
computing is a NP-hard problem but still we can strive to
achieve near optimal solutions. Therefore, in this research
we induced priorities for both tasks, VMs and as well as
consideration of number of task dependencies. Based on the
above mentioned criteria of priorities our scheduler which is
integrated with a Deep Reinforcement learning model works
withDeepQ networkworks based on reward basedmodelling
and for every iteration it gets a reward either it is positive
or negative. If it is a positive reward it will identify whether
parameters are improved or not if so it will update it in the
Q-table every time. If a negative reward encounters, it will
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learn that for the next time it should not generate those type
of schedules by adapting to the dynamic workflows arised
from heterogeneous resources and precisely generates sched-
ules for workflows by choosing suitable virtual machines.
Energy consumption, makespan are considered as parame-
ters in our research as minimizing energy consumption in
cloud computing is necessary from facet of cloud provider
to reduce monetary costs. Minimizing makespan is also a
primary concern in cloud computing as if makespan increases
and it indirectly effects QS of cloud provider and leads to high
consumption of energy.

III. PROBLEM FORMULATION & SYSTEM ARCHITECTURE
This section discusses about problem formulation mathe-
matically and system architecture explained in a detailed
manner. For workflow scheduling, initially we assumed
a DAG with workflows which consists of different tasks
with interdependencies in which each task depends on
execution of other tasks. Workflow DAG to be rep-
resented as G = (T,E) where T indicates tasks
TK
= {T1,T2,T3. . . ..,TK

}, E indicates edges between dif-
ferent tasks. In Workflow scheduling assumed TK tasks
are to be deployed on to Vn virtual machines and these
are indicated as Vn

= {V1,V2,V3, . . . .,Vn
}. Here in this

research, all TK tasks are dependent on each other. All Vn

Virtual machines to be run on physical hosts and they are
indicated as HI

= {H1,H2,H3, . . . .,HI
}. After this we

assumed all TK tasks to be run on Vn virtual machines
which are sitting on HI physical hosts and these are running
in DJ

= {D1,D2,D3, . . . .,DJ
} datacenters by considering

task, VM priorities to carefully schedule workflows on vir-
tual resources by using deep reinforcement learning model
to minimize makespan, energy consumption. The below
Fig.1.indicates sample workflow used in our research where
TK indicates tasks in workflow which are depends on each
other and dmn indicates connection between different nodes
in workflow i.e. tasks.

The above Fig. 2 indicates proposed system architecture
for MOPWSDRL. Initially in this architecture all hetero-
geneous cloud users submits various requests/ workflows
onto cloud application console through their devices. After
submitting workflows on cloud console broker in the cor-
responding cloud provider captures dependencies in each
workflow and then give the count of dependencies and
workflows to task manager. In the next level, task manager
identifies priorities of interdependent tasks based on their
length to processing capacity of a VM. After calculation of
task priorities task manager calculates VM priorities based
on unit electricity cost at respective datacenters as electric-
ity unit cost varies from place to place around the world.
Therefore, we carefully captured priorities of both tasks,
VMs. In the next level all these priorities including number
of dependencies of workflows are fed to scheduler. Sched-
uler is integrated with a deep reinforcement learning model
which takes decisions based on knowledge it gathered from
respective constraints posed in scheduler. For every incoming

workflow, scheduler keeps track of all dependencies count
of each workflow, priorities of tasks, VMs and then based
on a workflow with highest count of dependencies, highest
priority of tasks to be scheduled onto a VMwith low unit cost
electricity at a respective datacenter to minimize makespan,
energy consumption while generating schedules for all
workflows.

A. MATHEMATICAL MODELLING
This subsection represents mathematical modeling of pro-
posed MOPWSDRL. As discussed earlier in this section
initially all workflows with different dependencies are sub-
mitted to cloud application console. After identifying depen-
dencies of a workflow by broker i.e. say dependency of a
workflow is indicated as de. After identifying dependencies,
task priorities and VM priorities to be calculated and fed to
scheduler. To calculate priorities mathematically, initially we
identified present running workflows on VMs. It is calculated
using eqn.1.

WLVn=
∑

WLn (1)

where WLVn indicates workload on n VMs. From problem
formulation, all considered VMs are placed in physical hosts
which are assumed as HI hosts in our work. Therefore,
to calculate all Physical hosts workload is indicated using
eqn.2.

WLHI =
WLVn
HI (2)

From eqn.2. where,WLHI workload on assumed I physical
hosts. After calculation of workload on VMs, Physical hosts
task priorities need to be calculated but to evaluate task
priority we need to identify factors which effects priorities
of tasks. They are length of tasks, processing capacity of a
single virtual resource is indicated using eqn.3.

PROV
n = PROno ∗PR OMIPS (3)

Total processing capacities of all VMs are evaluated using
eqn.4.

TotalPROVn =

∑
PROV

n (4)

From eqns.3, 4 we calculated processing capacity of VM
which is a factor for priority of a task. Another factor for
calculating priority of tasks are length of tasks. Task length
for all assumed tasks are calculated using eqn.5.

Tk
LEN=T

k
MIPS ∗ T

k
PRO (5)

From eqn.5 length of task is calculated and task priority is
calculated as ratio of eqn.5. to eqn.3. It is indicated in eqn.6.

TK
PRIO=

Tk
LEN

PROV
n

(6)

After calculation of task priorities from eqn.6. VM priorities
are calculated based on electricity unit cost. It is defined as
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FIGURE 2. Workflow used in simulation of proposed MOPWSDRL.

ratio of highest electricity cost of a VM lies in a datacenter to
the electricity cost at respective datacenter.

Vn
PRIO=

HighelecostDJ
elecostDJ

(7)

After calculation of priorities from eqns.6,7, both the priori-
ties, dependency count is fed to scheduler and integrated into
scheduler to generate schedules using reinforcement learning
while incoming interdependent tasks with high priorities are
to be mapped to VMs with high priority i.e. with low unit
electricity cost at respective datacenter. After identification of
task, VM priorities and number of dependencies of tasks in
workflows we formulated the parameters makespan, energy
consumption respectively. Generally, makespan depends on
execution time, finish time, deadline of tasks. Therefore,
calculation of execution time, finish time are shown below.

exeT
K
=

exeT

PROV
n

(8)

Every incoming interdependent task will be assigned to a VM
immediately based on availability or these tasks have to wait
until a task need to finish its execution. Finish time of a task
is calculated using below eqn.9.

FIN time
TK =

∑
Vn
+ exeT

K
(9)

In this research, we assumed that each of task is assigned to
VM after finishing of its execution of task and finish time
of tasks should be less than or equal to the deadline of tasks
considered in research. It is represented as DLT

K
.

FIN time
T ≤ D LT

K
(10)

Makespan is chosen as a primary parameter to address in
this research and it effects the performance of the scheduler
if makespan increases while scheduling interdependent tasks

to VMs. Therefore, it is important to minimize makespan in
scheduling process. It is calculated using below eqn.11.

MSPK = min(FIN time
TKV

n) (11)

minFIN time
TKVn=

∑K,n

i=1,j=1
ηi,j(FIN time

TKV
n) (12)

From eqn.12. when a task TK is assigned to a virtual machine
Vn, assignment of a task is done and value of ηi,j is set to be
1 and if a task is not assigned to VM then it is set to be 0.
Energy consumption is an important parameter from facet
of cloud provider as it depends on consumption of virtual
resources which are in idle and active modes. Scheduler
which cannot assign interdependent tasks or workflows to
virtual resources in a precise manner without considering
their dependencies, priorities of both tasks and VMs leads
to more energy consumption. Therefore, cloud provider need
to increase resource costs in cloud paradigm which is also
a burden to cloud users. Therefore, addressing energy con-
sumption in cloud computing paradigm is a key factor.

Therefore, it is calculated using below eqns. 13, 14, 15
and 16 respectively.

Vn
=

{
Active state χn

idle state ωn (13)

Energy consumption of assumed Vn number of VMs are
calculated as below.

EneconVn = FIN time
n ∗ χn

+

(
MSPK −FI N time

n

)
∗ ωn (14)

Eneconact = (ENmax −E Nmin) ∗R EUtil + ENmin (15)

Total consumption of Energy calculated using below
eqn.16.

EneconTotal=
∑

EneconVn + Eneconact (16)
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IV. METHODOLOGY USED IN MOPWSDRL
This section presents the methodology used in this schedul-
ing approach. Deep reinforcement learning induced with
Deep Q-Network model to be used as methodology in this
research. This model works with the help of reinforcement
agents which learns and takes their decisions on their own.
We induced Deep Q-network model [36] which generates
schedules randomly in the initial state and thereafter it will
identify the output of initial state is in the expected man-
ner and in line with the metrics we are trying to address
in research. Initially, in the scheduling process workflows/
interdependent tasks by considering their number of depen-
dencies, priorities of tasks, VMs will be fed to scheduler
integrated with the DQN model. It works based on reinforce-
ment learning. Initially by considering above said priorities,
dependencies scheduler will generate schedules by checking
availability of VMs and also considering deadline constraint
of tasks. Initially, schedule of tasks generated based on initial
input of tasks randomly. The outcome of initial generation
of schedules will be identified by agent and gives outcome
as positive or negative reward. If the generated schedules
improved the parameters considered in scheduling process
then it is to be considered as positive reward and these values
to be added into Q-table. If the generated schedules haven’t
improved the parameters considered in scheduling process
then it is to be considered as negative reward and therefore
scheduler will learn about these rewards and state of the agent
will be updated in Q-table. From the next state, agents will
learn from the previous entries in Q-table by taking consid-
eration of input and check the previous entries and decision
will be taken accordingly to generate schedules. Generally, In
Q-learning tables, there are two fields i.e. state, action spaces.
A Q-learning function consists of two fields state, action to
be denoted asQ(ste, at). It will be updated for every iteration
and it calculates next state by using below eqn.17.

Q
(
steT , atT

)
← Q

(
steT , atT

)
+ ∂ ∗ [RFTK + ∂ ∗max

c
Q

(
steTC1, at

)
− Q(steT , atT ) (17)

where from eqn. 17. ∂ is to be indicated as learning rate of
agent, RFTK is reward function for T disbursed tasks and this
function range always in between 0, 1.

A. ACTION SPACE
Action space is one of the state in Q-learning function.
Initially we assumed K Tasks and they are indicated as
TK
= {T1,T2, . . . .TK

}, n virtual machines and they are
indicated as Vn

= {V1,V2,V3, . . . .Vn
}. Initially K consid-

ered tasks are submitted to cloud platform. After submission
of tasks to cloud platform as all these are interdependent we
need to identify the number of dependencies of those tasks,
priorities of tasks and VMs. After calculation of all these
priorities, this prioritized input sequence will be fed to sched-
uler which is integrated with the DQN model. Scheduler will

take decisions to disburse these tasks virtual resources while
minimizing makespan, energy consumption. The execution
of these tasks are to be acted on Virtual machines calculated
using below eqn.18.

atT= [V1,V2,V3. . . .Vn] (18)

B. STATE SPACE
This subsection represents states of both tasks, VMs. Initially
a task T comes at a time ti is indicated as tiT . It is indicated
by using below eqn.19. as below.

stetiT = steTti
K ⋃

steT
K

tinV
(19)

where, from above eqn.19. steti indicates state of a task TK

at time ti and steT
K

tinV
indicates state of a task T at time ti on a

VM assumed here as Vn.

stetiT= [TK
PRIO,Vn

PRIO,MSPK ,EneconTotal ] (20)

From above equations 18, 19, 20 we calculated action, state
spaces required for Q-learning function and then correspond-
ing reward function is to be calculated using below eqn.21.

RFTK= min(MSPK ,EneconTotal) (21)

C. AGENT TRAINING FOR DQN MODEL
In this research, when tasks are arrives at MOPWSDRL,
dependencies of all interdependent tasks are to be identi-
fied, then priorities of tasks, VMs are calculated. Then, all
these priorities, dependencies are to be fed to MOPWSDRL.
This scheduler will generate schedules while minimizing
makespan, energy consumption. For this to happen, we iter-
ated our algorithm for 100 iterations. For every iteration in
the schedule tasks comes at cloud console have to gener-
ate schedules by mapping tasks to VMs with a probability
of γ . It is reduced to zero over a period of time when tasks
are getting completed in the simulation. For every iteration,
scheduler will check for Q-table for the reward i.e. either
positive or negative but in the initial iteration, scheduler gen-
erates schedules randomly. After the first iteration, it looks
for Q-table and checks existing values in Q-table for the
best values. All these state values stored as replay memory
i.e. indicated as σ . For every iteration, σ fields are stored
as (atT , steT ,RFTK , steT+1). Capacity of Replay memory is
represented as mσ . Iteration batch is indicated as bσ . Time
pertaining for generation of schedule is set as 20 ms, learning
time for agent is indicated as µ. Rate of learning frequency is
set as 1.

D. PROPOSED MULTI OBJECTIVE PRIORTIZED
WORKFLOW SCHEDULING USING DEEP
REINFORCEMENT LEARNING
The below Figure 4 indicates flow of proposed workflow
scheduling algorithm using deep reinforcement learning
mechanism by integrating DQN model into scheduler. In the
initial stage probability of choosing a VM, replay memory,
batch memory, learning rate of agent are initialized. In the
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FIGURE 3. Proposed system architecture for MOPWSDRL.

FIGURE 4. Working of deep reinforcement approach for MOPWSDRL.

next step Q-function which consists of both state, action
spaces are initialized and set to 0. Workflows consists of
different dependencies. In those workflows, count the number
of dependencies, calculate task, VM priorities using eqns.
6,7. In the next step, fed all priorities, dependencies to MOP-
WSDRL to generate schedules based on all posed constraints
based on report of resource manager for resource availability.
If the resources are not available wait for the resource until
it is available otherwise generate schedules. Now check the
state and action spaces and evaluate reward function using
eqn.21. and if the parameters are optimized and reward is
positive update these parameters as best and fed these values

into Q-table and update next state using eqn.17. This process
need to be repeated until all iterations completed.

Input: Number of considered tasks
TK
= {T1,T2,T3. . . ..,TK

}, Number of considered Vir-
tual Machines Vn

= {V1,V2,V3, . . . .,Vn
}, Number of

considered Hosts HI
= {H1,H2,H3, . . . .,HI

}, Number of
considered Datacenters DJ

= {D1,D2,D3, . . . .,DJ
}

Output: Mapping of TK tasks to Vn VMs for generating
schedules while minimizing makespan, energy consumption

Start
Initialization of parameters γ,mσ , bσ , µ
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Assign Q
(
steT , atT

)
← 0.

for every bσ do
identify steT

count the dependencies in workflows.
evaluation of TK

PRIO using eqn.6.
evaluation of Vn

PRIO using eqn.7.
for every bσ do
Identify TK

PRIO,Vn
PRIO, number of dependencies in work-

flow and check availability of virtual resources based on
status given by resource manager.

Identify atT and select a VM with a probability γ or chose
argmax Q(stetiT , at

T).
Evaluate RFTK reward function using eqn.21.
Identify the reward whether it is positive or negative(for the

parametersMSPK , EneconTotal)
If the parameters are optimized
Identify these are the best values and update values in

Q-table.
Update state of tasks, VMs using eqn.17.
Update steT to steT+1.
else

repeat this process until all iteration
End if

End for
End for

V. SIMULATION AND RESULTS
This section discusses about simulation and generated results
of proposed MOPWSDRL(Multi objective proposed Work-
flow Scheduling using Deep Reinforcement Learning). Ini-
tially subsection A discusses about required configuration
settings for simulation, realtime workflows used in simula-
tion subsection B discusses about evaluation of makespan
using montage workflow, subsection C discusses about eval-
uation of makespan using cybershake workflow, subsection
D discusses about evaluation of makespan using Epige-
nomics workflow, Subsection E discusses about evaluation
of makespan using LIGO workflow, subsection F discusses
about evaluation of Energy consumption using montage
workflow, subsection G discusses about evaluation of Energy
consumption using cybershake workflow, subsection I dis-
cusses about evaluation of Energy consumption using Epige-
nomics workflow, subsection J discusses about evaluation of
Energy consumption using LIGO workflow. We have chosen
the simulation environment in to implement our approach.
The main challenges involved in implementing the proposed
MOPWSDRL in real time environment is delay or latency of
running the algorithm, Hardware synchronization are major
challenges in cloud environment. Therefore, Extensive sim-
ulations are conducted using Workflowsim [41] simulator
used. It ran on MAC operating system with 32 GB RAM,
2TB storage space with M1 chip as processor in the host. For
this simulation, we have taken 5 Physical hosts as host nodes
in simulator, on 5 Physical hosts we have furnished 50 VMs
with which we ran our workflows in simulation. To increase
the robustness of our approach we have given the input as

scientificworkflows i.e.Montage, Cybershake, Epigenomics,
LIGO and detailed explanation about those workflows fur-
nished in the next subsection. Our proposed MOPWSDRL
compared with existing HEFT, CSO, ACO approaches and
the reason to choose these approaches for comparison as
these are metaheuristic approaches which tackles dynamic
workflow scheduling in a better manner with respect to dead-
line constraints, number of dependencies in workflow, task
speedup ratio, makespan, energy consumption

A. SCIENTIFIC WORKFLOWS AND CONFIGURATION
SETTINGS USED IN SIMULATION
This subsection discusses precisely about configuration set-
tings used in our research and workflows which we have
given as input to our algorithm. There are four real time
workflows used as input to our approach to check the efficacy
of our algorithm. They are 1. Montage 2. Cybershake 3.
Epigenomics and 4. LIGO workflows. They are mentioned
in below figures.

The above Fig.6. indicates montage workflow used to con-
struct astronomy pictures to develop custom patterns by using
above intensive workflows depends on size of input images in
workflow [37].The below Fig.7. indicates cybershake work-
flow application used to detect earthquakes in California
earthquake center which consists of data intensive workflows
and it consists of large amount of parallel jobs [38].

The above Fig. 8 indicates Epigenomics workflow which
is a large pipelined applications consist of large data chunks
to be processed in parallel. The main use of this workflow is
used for automation of genome sequence processing [39].

The above figure 9 indicates LIGO workflow which is
used to identify gravitational waves i.e. cosmic gravitational
waves used by Pegasus. It is a highly complex workflow
and it consists of more sub workflows i.e. dependencies
in this LIGO workflow [40]. After identifying the realtime
scientific workflows which are fed as input to our pro-
posed scheduler, configuration settings used in simulation
are mentioned in the below table 3. The code for simula-
tions done and tested made available in below github link
https://github.com/sudheersvecw/MOPWSDRL.

After identifying configuration settings for simulation,
workflowsim [41] is considered as a simulation platform for
our extensive simulations. We have considered 100, 500 and
1000 tasks to run our simulation and initially we used dif-
ferent realtime scientific workflows to generate our results in
simulation.

B. EVALUATION OF MAKESPAN USING
MONTAGE WORKFLOW
This subsection presents evaluation of makespan by giv-
ing montage scientific workflows as it is one of the input
to our proposed approach i.e. MOPWSDRL. Initially we
evaluated makespan as it is a primary objective of any
workflow scheduling algorithm and quality of any schedul-
ing approach depends on makespan because in workflow
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FIGURE 5. Working flow of proposed MOPWSDRL.

scheduling process all the workflows consists of different
deadline constraints. Makespan minimization will be a key
factor in ensuring to meet deadlines and improves user sat-
isfaction while ensuring SLA to be fulfilled. Minimization
of makespan also improves cost efficiency as every service
in cloud paradigm runs with different costs. It impacts scal-
ability in cloud paradigm to ensure and handle more number
of workloads by minimizing makespan. Therefore, to pre-
serveQoS, SLA,meeting deadline constraints, cost efficiency
makespan to be needed. If all these are to be preserved an
effective scheduling approach is needed. This is the reason
we evaluated makespan as a primary metric by using Pro-
posed MOPWSDRL. It is compared with existing state of
art algorithms i.e. HEFT, CSO, ACO. We ran simulation for
100 iterations. Generated makespan for 100, 500, 1000 tasks
for HEFT algorithm are 724.3, 812.62, 824.57 respectively.

Generated makespan for 100, 500, 1000 tasks for CSO
algorithm are 783.18, 828.18, 875.12 respectively. Generated
makespan for 100, 500, 1000 tasks for ACO algorithm are
624.88, 758.42, 912.77 respectively. Generated makespan
for 100, 500, 1000 tasks for MOPWSDRL algorithm are
579.18, 612.77, 709.26 respectively. The below Table 4
and Figure 10 shows that makespan generated by proposed
approach clearly outperforms other state of art approaches for
montage workflow.

C. EVALUATION OF MAKESPAN USING
CYBERSHAKE WORKFLOW
This subsection presents evaluation of makespan by giving
cybershake scientific workflows as it is one of the input to
our proposed approach i.e. MOPWSDRL. Proposed MOP-
WSDRL is compared with existing state of art algorithms
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FIGURE 6. Montage workflow.

FIGURE 7. Cybershake workflow.

i.e. HEFT, CSO, ACO. We ran simulation for 100 iterations.
Generated makespan for 100, 500, 1000 tasks for HEFT
algorithm are 758.7, 834.73, 898.29 respectively. Generated
makespan for 100, 500, 1000 tasks for CSO algorithm are
809.17, 856.19, 907.16 respectively. Generated makespan
for 100, 500, 1000 tasks for ACO algorithm are 712.43,
757.36, 846.08 respectively. Generated makespan for 100,
500, 1000 tasks for MOPWSDRL algorithm are 587.32,
602.32, 686.75 respectively. The below Table 5 and Figure 11
shows that makespan generated by proposed approach clearly
outperforms other state of art approaches for Cybershake
workflow.

FIGURE 8. Epigenomics workflow.

FIGURE 9. LIGO workflow.

FIGURE 10. Evaluation of makespan using montage workflow.

D. EVALUATION OF MAKESPAN USING
EPIGENOMICS WORKFLOW
This subsection presents evaluation of makespan by giv-
ing Epigenomics scientific workflows as it is one of the
input to our proposed approach i.e. MOPWSDRL. Proposed
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TABLE 2. Mathematical notations used in proposed system architecture.

FIGURE 11. Evaluation of makespan using montage workflow.

MOPWSDRL is compared with existing state of art algo-
rithms i.e. HEFT, CSO, ACO. We ran simulation for
100 iterations. Generated makespan for 100, 500, 1000 tasks
for HEFT algorithm are 792.3, 826.12, 853.18 respectively.

TABLE 3. Configuration settings for simulation.

TABLE 4. Evaluation of makespan using montage workflow.

TABLE 5. Evaluation of makespan using cybershake workflow.

TABLE 6. Evaluation of makespan using epigenomics workflow.

Generated makespan for 100, 500, 1000 tasks for CSO
algorithm are 810.64, 848.99, 912.02 respectively. Generated
makespan for 100, 500, 1000 tasks for ACO algorithm are
758.17, 831.26, 927.43 respectively. Generated makespan for
100, 500, 1000 tasks for MOPWSDRL algorithm are 602.18,
745.22, 783.88 respectively. The below Table 6 and Figure 12
shows that makespan generated by proposed approach clearly
outperforms other state of art approaches for Epigenomics
workflow.
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FIGURE 12. Evaluation of makespan using epigenomics workflow.

TABLE 7. Evaluation of makespan using LIGO workflow.

E. EVALUATION OF MAKESPAN USING LIGO WORKFLOW
This subsection presents evaluation of makespan by giving
LIGO scientific workflows as it is one of the input to our
proposed approach i.e. MOPWSDRL. Proposed MOPWS-
DRL is compared with existing state of art algorithms i.e.
HEFT, CSO, ACO. We ran simulation for 100 iterations.
Generated makespan for 100, 500, 1000 tasks for HEFT
algorithm are 798.76, 845.28, 902.46 respectively. Generated
makespan for 100, 500, 1000 tasks for CSO algorithm are
815.37, 878.37, 934.36 respectively. Generated makespan
for 100, 500, 1000 tasks for ACO algorithm are 798.13,
867.32, 956.17 respectively. Generated makespan for 100,
500, 1000 tasks for MOPWSDRL algorithm are 588.82,
789.16, 832.32 respectively. The below Table 7 and Figure 13
shows that makespan generated by proposed approach clearly
outperforms other state of art approaches for LIGOworkflow.

F. EVALUATION OF ENERGY CONSUMPTION USING
MONTAGE WORKFLOW
This subsection presents evaluation of energy consumption
by giving montage scientific workflows as input to our
proposed approach i.e. MOPWSDRL. We evaluated energy
consumption as it is an important aspect for cloud provider
and if energy consumption increased in scheduling process
resource cost increases which can also be a burden for cloud
consumer. It also helps in the process of improvement in
utilization of resources by switching off unnecessary servers
to minimize power cost which helps for both cloud providers

FIGURE 13. Evaluation of makespan using LIGO workflow.

TABLE 8. Evaluation of energy consumption using montage workflow.

and reduces the burden of extra billing on users perspective.
Minimization of energy consumption helps to handle varying
number of dynamic workloads by scaling up or down the
virtual resources based on demand of users. Any service in
cloud paradigm needs redundancy as all the data, tasks of
users will compute remotely. Therefore, to ensure reliability
around the clock virtual resources should be highly available.
For this to happen optimized redundancy should be preserved
only by activating the on demand resources in cloud paradigm
which leads to minimization of energy consumption which is
an advantage for cloud provider and as well as to user. There-
fore, to ensure cost optimization, utilization of resources,
improvement of reliability, scalability energy consumption in
cloud computing paradigm should be minimized. Therefore,
we have chosen energy consumption as another parame-
ter to evaluate our proposed MOPWSDRL. It is compared
with existing state of art algorithms i.e. HEFT, CSO, ACO.
We ran simulation for 100 iterations. Generated energy con-
sumption for 100, 500, 1000 tasks for HEFT algorithm are
78.94, 84.47, 93.58 respectively. Generated energy consump-
tion for 100, 500, 1000 tasks for CSO algorithm are 83.22,
87.84, 95.12 respectively. Generated energy consumption for
100, 500, 1000 tasks for ACO algorithm are 78.48, 81.46,
92.45 respectively. Generated energy consumption for 100,
500, 1000 tasks forMOPWSDRL algorithm are 52.17, 61.36,
72.11 respectively. The below Table 8 and Figure 14 shows
that energy consumption generated by proposed approach
clearly outperforms other state of art approaches for montage
workflow.
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FIGURE 14. Evaluation of energy consumption using montage workflow.

TABLE 9. Evaluation of energy consumption using cybershake workflow.

G. EVALUATION OF ENERGY CONSUMPTION USING
CYBERSHAKE WORKFLOW
This subsection presents evaluation of energy consumption
by giving cybershake scientific workflows as input to our
proposed approach i.e. MOPWSDRL. We evaluated energy
consumption as it is an important aspect for cloud provider
and if energy consumption increased in scheduling process
resource cost increases which can also be a burden for cloud
consumer. Therefore, Proposed MOPWSDRL is compared
with existing state of art algorithms i.e. HEFT, CSO, ACO.
We ran simulation for 100 iterations. Generated energy con-
sumption for 100, 500, 1000 tasks for HEFT algorithm are
68.92, 71.39, 78.36 respectively. Generated energy consump-
tion for 100, 500, 1000 tasks for CSO algorithm are 71.05,
78.63, 81.18 respectively. Generated energy consumption for
100, 500, 1000 tasks for ACO algorithm are 68.57, 71.82,
82.59 respectively. Generated energy consumption for 100,
500, 1000 tasks forMOPWSDRL algorithm are 52.08, 60.19,
64.36 respectively. The below Table 9 and Figure 15 shows
that energy consumption generated by proposed approach
clearly outperforms other state of art approaches for cyber-
shake workflow.

H. EVALUATION OF ENERGY CONSUMPTION USING
EPIGENOMICS WORKFLOW
This subsection presents evaluation of energy consumption
by giving Epigenomics scientific workflows as input to our
proposed approach i.e. MOPWSDRL. We evaluated energy
consumption as it is an important aspect for cloud provider

FIGURE 15. Evaluation of energy consumption using cybershake
workflow.

TABLE 10. Evaluation of energy consumption using epigenomics
workflow.

and if energy consumption increased in scheduling process
resource cost increases which can also be a burden for cloud
consumer. Therefore, Proposed MOPWSDRL is compared
with existing state of art algorithms i.e. HEFT, CSO, ACO.
We ran simulation for 100 iterations. Generated energy con-
sumption for 100, 500, 1000 tasks for HEFT algorithm are
72.1, 83.09, 76.18 respectively. Generated energy consump-
tion for 100, 500, 1000 tasks for CSO algorithm are 81.67,
79.67, 84.19 respectively. Generated energy consumption for
100, 500, 1000 tasks for ACO algorithm are 70.37, 75.17,
80.44 respectively. Generated energy consumption for 100,
500, 1000 tasks forMOPWSDRL algorithm are 57.03, 62.16,
69.37 respectively. The below Table 10 and Figure 16 shows
that energy consumption generated by proposed approach
clearly outperforms other state of art approaches for epige-
nomics workflow.

I. EVALUATION OF ENERGY CONSUMPTION USING
LIGO WORKFLOW
This subsection presents evaluation of energy consumption
by giving LIGO scientific workflows as input to our pro-
posed approach i.e. MOPWSDRL. We evaluated energy
consumption as it is an important aspect for cloud provider
and if energy consumption increased in scheduling process
resource cost increases which can also be a burden for cloud
consumer. Therefore, Proposed MOPWSDRL is compared
with existing state of art algorithms i.e. HEFT, CSO, ACO.
We ran simulation for 100 iterations. Generated energy con-
sumption for 100, 500, 1000 tasks for HEFT algorithm are
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FIGURE 16. Evaluation of energy consumption using epigenomics
workflow.

FIGURE 17. Evaluation of energy consumption using LIGO workflow.

79.15, 81.24, 74.58 respectively. Generated energy consump-
tion for 100, 500, 1000 tasks for CSO algorithm are 74.83,
80.78, 86.17 respectively. Generated energy consumption for
100, 500, 1000 tasks for ACO algorithm are 75.33, 85.33,
77.18 respectively. Generated energy consumption for 100,
500, 1000 tasks forMOPWSDRL algorithm are 59.17, 67.53,
70.15 respectively. The below Table 9 and Figure 17 shows
that energy consumption generated by proposed approach
clearly outperforms other state of art approaches for epige-
nomics workflow.

J. RESULTS DISCUSSION & ANALYSIS
This subsection presents discussion of simulated results men-
tioned in various subsections from Ato I.Proposed approach
i.e. MOPWSDRL is extensively evaluated over realtime
workflows i.e. montage, cybershake, epigenomics, LIGO.
This simulation ran for 100 iterations and we evaluated
makespan, energy consumption parameters to check efficacy

TABLE 11. Evaluation of energy consumption using LIGO workflow.

TABLE 12. Improvement of makespan for MOPWSDRL over existing
mechanisms.

of our approach with the input of the above mentioned real-
time scientific workflows. MOPWSDRL evaluated against
existing HEFT, CSO, ACO algorithms and in all the cases
while simulating MOPWSDRL it is clearly evident that
makespan, energy consumption is greatly minimized. The
below tables 12 represents improvement of makespan for
MOPWSDRL over HEFT, CSO, ACO algorithms for differ-
ent scientific workflows. It is clearly evident that proposed
MOPWSDRL greatly minimizes makespan for above men-
tioned algorithms. The below tables 13 represents improve-
ment of energy consumption for MOPWSDRL over HEFT,
CSO, ACO algorithms for different scientific workflows. It is
clearly evident that proposed MOPWSDRL greatly mini-
mizes energy consumption for above mentioned algorithms.
MOPWSDRL generated better schedules than HEFT, ACO,
CSO approaches as our proposed approach considers depen-
dencies, priorities of both tasks, VMs and all these are fed to a
reinforcement learning model which works on reward based
modelling and for every iteration it gets a reward either it is
positive or negative. If it is a positive reward it will identify
whether parameters are improved or not if so it will update
it in the Q-table every time. If a negative reward encounters,
it will learn that for the next time it should not generate those
type of schedules. Now coming to HEFT, ACO, CSO all these
approaches are metaheuristic approaches. When we look at
HEFT if more workload was coming onto cloud application
console it inverts priorities of tasks i.e. that means it is giving
priority to low prioritized tasks so that it is blocking high
prioritized tasks which should not happen in this type of
paradigm. Another algorithm i.e. ACO if we consider that
main disadvantage with ACO is with the increase of tasks
it cannot explore search space in a rigorous manner and
cannot adopt to increase of workload and thereby it fails to
converge properly. Another algorithm i.e. CSO(Cat Swarm
Optimization) also suffers with dynamic nature of workload
i.e. increase or decrease in number of tasks which cannot
explore search space which cannot converge towards the
optimized parameters.
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TABLE 13. Improvement of energy consumption for MOPWSDRL over
existing mechanisms.

Among all the workflows considered we observed that
there is a clear improvement in makespan for Cybershake
workflow among all the other workflows. It is a compli-
cated workflow in terms of depth of nodes and dependencies
compared to all the other workflows used in our research.
It clearly shows that proposedMOPWSDRL can handle com-
plex dynamic workflows because the reinforcement leaning
technique we integrated in our scheduler and fed the priorities
of both tasks and VMs, dependencies. Our scheduler based
on reinforcement learning adapts to the workflow scenario
dynamically based on reward generated for every iteration
in algorithm. On the other side, Energy consumption is
improved in Montage workflow and relatively less when it
is compared with montage workflow as it is having more
number of dependencies. Therefore, computational cost will
also be increases when resource utilization is more and that
is the reason energy consumption is slightly less when it
is compared with other workflows in Cybershake workflow.
From the above analysis we can observe that for both Mon-
tage, Cybershakeworkflows for proposed approach improved
makespan, energy consumption greatly over the other algo-
rithms rather than Epigenomics, LIGO workflows.

VI. CONCLUSION AND FUTURE WORKS
Scheduling is a crucial challenge in cloud computing as
more number of heterogeneous tasks with interdependencies
or workflows comes to cloud application console and it is
difficult to schedule these dynamic workflows to appropriate
virtual resources in cloud computing. Ineffective scheduling
of workflows lead to the increase of makespan, other opera-
tional costs which is a burden to cloud provider and as well
as QOS of cloud provider will be effected. Many authors
formulated various workflow scheduling algorithms in cloud
computing using nature inspired, metaheuristic approaches
but all those algorithms tackled various parameters but still
it poses challenges to cloud provider as it is a NP Hard
problem. To tackle this situation, in this paper, we have
modeled a workflow scheduling algorithm which captures
number of dependencies of workflows, priorities of both
tasks, VMs and these are fed to scheduler which is mod-
eled with a deep reinforcement leaning technique i.e. DQN.
This scheduler need to generate decisions based on cap-
tured priorities, dependencies while minimizing parameters
i.e. makespan, energy consumption. Our proposed MOPWS-
DRL is simulated on workflowsim. Extensive simulations
are conducted by giving input as different realtime scientific
workflows and evaluated over existing algorithms i.e. HEFT,

CSO, ACO. From results, it is evident that MOPWSDRL
outperforms existing algorithms by minimizing makespan,
energy consumption. The main limitation we have observed
in this workflow scheduler is that still for epigenomics, LIGO
workflows makespan and energy consumption still need to
be improved for MOPWSDRL. In future, specific features to
be extracted to optimize parameters to make scheduler more
robust and efficient for different workflows. In addition to that
a trust based scheduling mechanism need to be developed
in multi cloud environment with the help of reinforcement
learning techniques.
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