
Received 6 December 2023, accepted 3 January 2024, date of publication 8 January 2024,
date of current version 12 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3350780

Efficient and Secure Group Key Management
Scheme Based on Factorial Trees for
Dynamic IoT Settings
K. SUDHEERADH, N. NEHA JAHNAVI, PRAMOD N. CHINE,
AND GAURAV S. KASBEKAR , (Member, IEEE)
Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Corresponding author: Gaurav S. Kasbekar (gskasbekar@ee.iitb.ac.in)

The work of Gaurav S. Kasbekar was supported in part by the NSF AI Institute for Future Edge Networks and Distributed
Intelligence (AI-EDGE) Institute.

ABSTRACT The Internet of Things (IoT) extends Internet connectivity to resource-constrained devices such
as sensors and actuators. It is prone to several security threats and attacks, due to which defence mechanisms
such as encryption, message authentication codes, authentication, etc., need to be employed. Several IoT
scenarios require secure communication to and data acquisition from multiple devices, which constitute a
‘‘group’’. Also, in dynamic IoT scenarios, devices join or leave a group from time to time, due to which the
group keys, which are used for multicasting information within the group, need to be efficiently updated.
We propose a novel scheme, based on factorial trees and the Chinese Remainder Theorem, for efficient Group
Key Management. Our proposed scheme prevents malicious users from accessing information from a group
and efficiently updates the group keys when devices join or leave a group, while guaranteeing forward and
backward secrecy. We evaluate the performance of the proposed scheme via extensive mathematical analysis
and numerical computations, and show that it outperforms schemes proposed in prior work in terms of the
communication and computation costs incurred by IoT devices.

INDEX TERMS Authentication, Chinese remainder theorem, factorial tree, group keymanagement, Internet
of Things (IoT), key distribution center.

I. INTRODUCTION
The Internet of Things (IoT) is the extension of Internet
connectivity to resource-constrained devices (e.g., sensors,
actuators) and everyday objects [1]. IoT devices have low
computational and storage power; hence, they cannot run the
protocols traditionally used to achieve secure communica-
tions in the Internet. Therefore, we need to design lightweight
and efficient protocols for the security of IoT devices [2]. In a
network with IoT devices, the devices are often divided into
groups of various sizes based on their use cases, hardware
capabilities, etc. In a group where several users need access
to the same encrypted data, a single shared key, known as
group key, is used to encrypt and decrypt the data. Group
Key Management (GKM) refers to the handling, revocation,
updation and distribution of cryptographic keys to members

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyhab Al-Masri .

of various groups in a communication network [3]. GKM
involves the following actions:
Key generation: A cryptographic key (group key) is

generated for a group, which is used to encrypt and decrypt
the data communicated to and from themembers of the group.
Key distribution: The generated key is securely distributed

to all the members of the group who need access to the
encrypted data, possibly using a Key Distribution Center
(KDC) [2].
Key update: When a new member joins the group or

an existing member leaves the group, the group key must
be updated to prevent unauthorized access to the group
communication.

For secure communication, a GKM system must ensure
the confidentiality and integrity [4] of messages exchanged
among group members. Confidentiality is achieved through
encryption, which ensures that messages are readable only by
the intended recipients [5]. Integrity is ensured through digital

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5659

https://orcid.org/0000-0002-9381-2803
https://orcid.org/0000-0002-5163-6792

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

signatures or message authentication codes (MAC), which
allow recipients to verify the origin of messages [4]. In a
dynamic IoT setting, devices join or leave a group from time
to time, due to which the group keys need to be efficiently
updated whenever a device joins or leaves, while maintaining
forward and backward secrecy [6].

There is an extensive existing research literature on GKM
schemes for traditional devices such as desktops and laptops
as well as IoT devices (see Section II for a review). However,
most of theseGKMschemes perform inefficiently in dynamic
IoT environments. Also, many of these schemes use asym-
metric cryptography, which is computationally expensive and
limits the scalability of the system. Several of the schemes
proposed in prior work also have a high computational
and communication cost, and hence are not suitable for
IoT devices, which are resource-constrained. In contrast,
we present a scheme in this paper, which performs efficiently
in dynamic environments, while guaranteeing backward and
forward secrecy, uses only symmetric key cryptography, and
has much lower computational and communication costs than
schemes proposed in prior work.

In this paper, we propose an efficient and secure GKM
scheme for dynamic IoT settings based on factorial trees
and the Chinese Remainder Theorem (CRT) [7]. Our scheme
authenticates an IoT device before sharing information (keys)
with it. The authentication is done using a cryptographic
hash and nonces [7]. Our proposed scheme efficiently updates
keys using hash updating or by leveraging the CRT when a
device joins or leaves a group, while guaranteeing backward
and forward secrecy. Also, we have implemented a 2-level
authentication system in our protocol, which provides an
additional layer of security against malicious users. This
helps to prevent unauthorized access and ensures that only
legitimate devices are able to access the system. By using
factorial trees, we have reduced the number of keys that need
to be stored and transmitted, which in turn reduces the amount
of computation, storage, and communication required; this
is particularly beneficial in resource-constrained environ-
ments [8], [9]. Our proposed protocol ensures secure group
authentication by implementing checks on both the server
and device side. It is also resistant to Man-in-the-Middle
attacks [7] as information sent to the group is encrypted
with the group key. We evaluate the performance of the
proposed scheme via extensive mathematical analysis and
numerical computations, and show that it outperforms state-
of-the-art schemes proposed in prior work in terms of the
communication as well as computation costs incurred by IoT
devices.

The rest of the paper is organized as follows. We provide
a review of related prior research literature in Section II.
We review some relevant background concepts, viz., the CRT
and factorial trees, in Section III. In Section IV, we present
our system model and problem formulation. We describe
our proposed scheme in Section V. We provide a security
analysis of our proposed scheme in SectionVI and an analysis
of its storage, computation, and communication costs in

Section VII. In Section VIII, we compare the performance
of our proposed scheme with that of schemes proposed in
prior work via numerical computations. Finally, we provide
conclusions and directions for future research in Section IX.

II. RELATED WORK
The development of security measures for the IoT has
attracted a lot of research interest. The survey [4] looks at
potential IoT use cases and reasons why attackers may choose
to target this novel paradigm. It provides a comprehensive list
of edge-side IoT vulnerabilities and countermeasures. The
authors also discuss numerous threats, attacks, and viable
defences. The authors of [10] conducted an analysis of
security and privacy issues in IoT systems and applications.
The work also examined IoT attack classification techniques
and current security mechanisms. Confidentiality, integrity,
availability, authenticity, and privacy are only a few of the
security concerns that the IoT faces, which are presented
in a taxonomy in the study [11]. Subsequently, the authors
review the IoT security protocols and products that are now
available, including for key management, access control,
authentication, and secure communication. In [11], [12],
and [13], surveys of several IoT enabling technologies, such
as RFID, MQTT, and CoAP, are provided. In order to
provide low cost, low power, and low data rate wireless
communication among resource-constrained devices, the
IEEE standard 802.15.4 provides specifications for the
physical and medium access control (PHY and MAC)
layers [14]. In order to facilitate the functioning of the IoT,
the Internet Engineering Task Force (IETF) has additionally
developed protocols for a number of layers [15]. One of
them is IPv6 over Low power Wireless Personal Area
Networks (6LoWPAN) [16]. In order to send IPv6 packets
from the Internet over resource-constrained networks using
802.15.4, the 6LoWPAN adaptation layer performs header
compression as well as fragments packets into sizes that are
compatible with constrained networks and reassembles them
at the receiver [16]. Another IETF standard for routing over
resource-constrained networks is the Routing Protocol for
Low Power and Lossy Networks (RPL) [15]. To increase
the size of the permitted application-layer payload, Datagram
Transport Layer Security (DTLS) header compression and
TLS-DTLS mapping [10] have also been proposed. Recent
research has focused on developing secure protocols for
various IoT standards [11]. The authors of [17] develop a
secure and efficient Elliptic-Curve Qu–Vanstone (ECQV)
implicit certificate issuance protocol specifically designed for
IoT applications, integrate it with the secure join protocol of
IEEE 802.15.4, and highlight the protocol’s security features
and efficiency.

Multifactor authentication for IoT scenarios has been
thoroughly investigated over the past decade. For remote
users to securely connect with a specific sensor node, a novel
two-factor authentication approach is proposed in [18].
Wireless sensor networks (WSNs) constitute an integral
part of the IoT. For WSNs to securely connect to the

5660 VOLUME 12, 2024

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

Internet, the authors of [19] present a 3-factor authentication
and key establishment strategy based on biohashing and
the Rabin Cryptosystem that is effective and lightweight.
In [20] and [21], authentication and key agreement pro-
tocols for WSNs have been designed using elliptic curve
cryptography (ECC). In [22], a discussion on how to use
the master and initial keys that are originally provided to
devices and users at configuration time is provided. A key
derivation function (HKDF) based on the hashed message
authentication code (HMAC) is used to provide the authenti-
cation, key exchange, confidentiality, and message integrity
elements of the protocol. In [23], the authors introduce a
provably secure and lightweight authenticated key agreement
protocol for the modern health industry. The protocol
focuses on establishing secure keys for resource-constrained
healthcare devices. A secure, anonymity-preserving, and
lightweight authentication and key agreement scheme for
home automation IoT networks is proposed in [24].
For group authentication and keymanagement, researchers

have put forth a number of methods, including effective
Group Key Establishment (GKE) and GKM schemes.
Schemes for GKE have been designed for resource-
constrained network architectures by applying ECC
in [25] and [26]. The authors of [8] and [9] discuss several
key graph types that are utilised for the user-device structure
and how they affect communication and processing costs. The
authors of [27] advocate a one-way function as a structure
for GKM rather than Logical Key Hierarchy (LKH) or tree-
based structures since less bits are required. The authors
of [28] investigate the applications and use cases of GKM
in environments with limited resources. They also provide a
comprehensive overview of existing protocols and algorithms
in this context. In [29], a group key agreement protocol based
on Elliptic CurveDiffie-Hellman (ECDH) and short signature
schemes, aiming to establish secure and efficient group keys
for multiple participants, is introduced. In [30], a GKM
scheme is proposed for multicast systems where users join or
depart groups on a dynamic basis. In [31], the authors provide
a GKM technique for secure multicast communication
that significantly reduces computation overhead. In [32],
an efficient mechanism for group association and data sharing
in IoT systems using edge computing is provided.

In [33], the authors proposed a GKM scheme for efficient
urban computing with highly mobile IoT nodes based on
blockchain and Unmanned Aerial Vehicle (UAV) technology.
They have shown a considerable decrease in the number
of rekeying messages using UAVs. In [34], the authors
develop and analyze a secure, lightweight, and efficient
method for establishing group keys in scenarios involving
the Internet of Health Things (IoHT). In [35], a GKM
scheme for smart grids, which leverages the security and
efficiency of blockchain technology, is proposed. In [36],
an innovative group communication framework aimed at
enhancing security in the IoT is provided. It introduces an
architecture that integrates secure communication protocols
and access control mechanisms.

The authors of [37] proposed a flexible and effective
GKM protocol for use in dynamic IoT contexts that
maintains forward and backward secrecy and guards against
collusion attacks. By utilising the LKH approach to reduce
communication overhead caused by node entry and exit, the
authors of [2] designed a two-tier GKM strategy. In both [2]
and [37], the network is divided into User (Subscriber)
Groups andDevice Groups. In eachUser Group (respectively,
Device Group), the users (respectively, devices) are arranged
as in LKH in a binary tree structure. Our proposed scheme
replaces the binary tree in [2] and [37] with a factorial
tree; this leads to lower computational and communication
costs under our proposed scheme than under the schemes
proposed in [2] and [37], as is demonstrated via numerical
computations in Section VIII.

Most of the GKM schemes in the above works perform
inefficiently in dynamic IoT environments. Also, many
of these schemes use asymmetric cryptography, which is
computationally expensive and limits the scalability of the
system. Several of the schemes proposed in the above works
also have a high computational and communication cost, and
hence are not suitable for IoT devices, which are resource-
constrained. In contrast, we present a scheme in this paper,
which performs efficiently in dynamic environments, while
guaranteeing backward and forward secrecy, uses only sym-
metric key cryptography, and has much lower computational
and communication costs than schemes proposed in prior
work.

III. BACKGROUND
This section provides a review of some of the key concepts
used in the proposed GKM scheme: the CRT and factorial
trees.

A. CHINESE REMAINDER THEOREM (CRT)
Let a1, . . . , an be co-prime numbers greater than 1 and
r1, . . . , rn be integers such that 0 ≤ ri < ai, ∀i ∈ {1, . . . , n}.
The CRT [7] states that we can find a number X that satisfies
the following congruencies:

X ≡ r1 (mod a1),

X ≡ r2 (mod a2),
...

X ≡ rn (mod an),

where X ≡ ri (mod ai) means that ri is the remainder when
X is divided by ai. By the CRT, there exists a unique solution

X between 0 and R =

n∏
i=1

ai, and it is given by:

X =

n∑
i=1

riAiA′
i,

where Ai = (
n∏
j=1

aj)/ai and A′
i is the multiplicative inverse of

Ai modulo ai, i.e., AiA′
i ≡ 1 (mod ai).

VOLUME 12, 2024 5661

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

B. FACTORIAL TREE
Nodes are arranged in a factorial tree structure in our
proposed scheme. In the factorial tree used in our proposed
scheme, the IoT devices are at the leaf nodes, while the
internal nodes have some internal keys associated with them.
Each level l of the factorial tree contains l! nodes. Each node
at level l has l+ 1 child nodes. An example of a factorial tree
is shown in Fig. 1, where each level l contains l! nodes and
the leaf nodes in level 4 contain IoT devices.

FIGURE 1. The figure shows a factorial tree.

IV. MODEL AND PROBLEM FORMULATION
We describe the system model and problem formulation in
this section.

A. SYSTEM MODEL
The system model consists of a KDC, which is a centralized
server that manages the keys for the different devices, and
IoT devices, which are divided into groups of various sizes
based on their use cases or hardware capabilities. In the
rest of the paper, we focus on an arbitrarily selected group,
which consists of n IoT devices. Throughout, we refer to
the KDC and the IoT devices in the group as the server and
nodes, respectively. All the nodes in a group are arranged in
a factorial tree, and each group has a different factorial tree.
Each IoT device (node) in the group occupies a leaf node in
the factorial tree. All the nodes of the factorial tree, including
non-leaf internal nodes and leaf nodes containing the IoT
devices, are associated with a large prime number each,
as explained later. These large prime numbers are generated
using an algorithm such as the Sieve of Eratosthenes or
the Sieve of Atkin [38], [39]. In the key renewal process
described in Section V-D, which is used when a node leaves
the group, we use these generated prime numbers of the
internal nodes in the factorial tree to communicate the new
group key to the non-leaving members.

B. PROBLEM FORMULATION
Our objective is to design a GKM scheme that securely
distributes a group key to each node of the group, after
authenticating the node, which can be used to securely
multicast information to the group members. Also, the GKM
scheme must securely distribute other cryptographic keys
to different nodes, as needed, in order to efficiently handle

dynamics in the network. In particular, the GKM scheme
must enable the efficient updation or revocation of the
cryptographic keys assigned to different nodes when changes
take place in the network (a node joins or leaves the group)
such that forward and backward secrecy is maintained at
all times. Recall that by forward (respectively, backward)
secrecy, we mean that a leaving (respectively, joining)
node is prevented from decrypting messages exchanged
after (respectively, before) it leaves (respectively, joins) the
group [37]. Also, we seek to design a GKM scheme that
minimizes the computational, communication, and storage
costs incurred to the nodes in the network when changes take
place in the network. We do this by utilizing a factorial tree
and the CRT.

Similar to most prior works in GKM, we make the
following assumptions. First, all network entities use the
same cipher suite and keys are sufficiently large [37]. Second,
the system is reactive to tampering; therefore, any node
capture or compromise will be detected in practically small
time, resulting in appropriate revocation and updation of
node key material. Different approaches such as mobility
based [40] and control theoretic [41] modelling have been
presented in prior work to detect and revoke compromised
nodes. Finally, we assume that the message integrity of
all communication exchanged during the network operation
is protected using standard mechanisms (e.g., message
authentication codes) [11].

V. PROPOSED SCHEME
In this section, we describe our proposed scheme in detail.

A. INITIALISATION AND AUTHENTICATION
Initially, when the server has been set up, a unique identity
IS is assigned to the server. When IoT devices (referred to as
nodes from here on) are added to a group, the server assigns
each node i an identity Ii, a secret key Ki, and an initial
nonce ñi. This secret key and nonce are known only to the
server and node i. The server identity IS is known only to
the server and the initialized nodes. After the server assigns
the secret key, nonce, and identity to each node, it builds the
factorial tree of GKM and authenticates with all the nodes
as described in Fig. 2. After the successful authentication
of an initialized node i with the server, the server sends to
node i a set of prime numbers Pi, which are associated with
the internal nodes along the path from the root node to the
leaf node corresponding to node i in the factorial tree. These
prime numbers will be utilized later during rekeying, which
is explained in Section V-D, when a node leaves the group.
Once the initialization and authentication phase of a group is
complete, each internal node of the factorial tree of the group
has a prime number associated with it, and each leaf node has
a secret key and a prime number associated with it.

For each node i, the following steps are performed in the
initialization and authentication phase (see Fig. 2).
Step 1: The server first selects a node (say node i) and

calculates the cryptographic hash of the node’s identity Ii
5662 VOLUME 12, 2024

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

FIGURE 2. The figure shows the algorithm used for initialisation and
authentication.

concatenated with the node’s nonce ñi. This hash value is
then encrypted with the corresponding secret key Ki. This
encrypted message is then sent to the desired node (node i).
Step 2:Node i, upon receiving the encrypted message from

the server, decrypts it using the secret key Ki and checks
whether the decrypted message is the same as the computed
cryptographic hash of the node’s identity Ii concatenated with
its nonce ñi. If the check is successful, the algorithmmoves to
the next step. If the check is unsuccessful, the authentication
is considered failed, and it is assumed that a malicious user is
trying to gain access to the node; no further action is required
in this case.
Step 3: After a successful check in step 2, node i computes

the cryptographic hash of the server’s identity IS concatenated
with the node’s nonce ñi, encrypts it with the secret keyKi and
sends it to the server.
Step 4:The server decrypts the encryptedmessage received

from node i using the secret key Ki. It then computes a
cryptographic hash of its identity IS concatenated with the
node’s nonce ñi. Similar to Step 2, the server checks whether
the decrypted message is the same as the computed hash.
If they are the same, the authentication is successful, and the
algorithmmoves to the next step. The decrypted message and
computed cryptographic hash are not the same if a malicious
node tries to communicate with the server. In this case, the
authentication fails, and the server restarts the authentication
process with the current node. If the authentication fails
repeatedly, the server moves on to process the next node, and
manual intervention is required for the current node.
Step 5: Once the authentication is successful, the server

sends to node i a set of prime numbers Pi by encrypting
them with the secret key Ki. This set Pi consists of the prime
numbers associated with the internal nodes in the path from
the root node to the leaf node corresponding to node i in the
factorial tree.
Step 6: Node i, upon receiving the encrypted message,

decrypts it using the secret key Ki. Upon decryption, the
node obtains the set of prime numbers Pi. The node stores
the values in set Pi, which will be utilized in the rekeying

process when a node leaves the group, as will be explained in
Section V-D.
Step 7: Node i then sends back to the server a nonce, Ni,

concatenated with its id, Ii, encrypted with the key Ki. This
nonce Ni is generated by node i and is shared only with the
server.
Step 8: The server decrypts the received encryptedmessage

from node i and stores the nonce Ni corresponding to node i.
The above steps are performed for all the nodes in the

group. Upon successful initialization and authentication, the
nonce generated by the server corresponding to each node i,
ñi, is discarded on both the server side and the node i side
as it is not used in the following steps. After these steps,
each node i contains its identity Ii, server’s identity IS , set of
prime numbersPi and nonce generated by itselfNi. The server
contains all the previouslymentioned values corresponding to
all the nodes. The Ni values received by the server from each
node i are later used in creating the group key, as explained
in Section V-B.

B. GROUP KEY CREATION AND DISTRIBUTION
After the authentication of each node in the group and
initialization of the group, the server creates a unique group
key, Gk , for the group. At this stage, the server contains a
nonce (Ni) and a secret key (Ki) corresponding to each group
node, which will be used to construct the group key (Gk). The
server applies cryptographic hash to this nonce concatenated
with the secret key of each node and XORs the values of all
the hash outputs to generate the group key Gk (see Fig. 3).
In this way, a unique group key Gk is obtained for each
group. An interim group key, G∗

k,i, is sent to each node i
instead of transmitting the actual group key, Gk , as explained
in the following discussion, in order to achieve more secure
communication of the group key.

FIGURE 3. The figure shows the algorithm used for group key creation
and distribution.

The group key is shared with all the nodes by performing
the following steps for each node i (Fig. 3):
Step 1: The server creates a message authentication code

(MACi) by calculating the cryptographic hash of the group
key, Gk , concatenated with the id, Ii, of node i. The server
also calculates an interim group key, G∗

k,i, by XORing the

VOLUME 12, 2024 5663

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

group key Gk with the hash of the nonce concatenated with
the secret key, i.e., G∗

k,i = Gk ⊕ H (Ni||Ki).
Step 2: The server concatenates the interim group key and

the MAC calculated in the previous step and encrypts the
result using the secret key Ki, giving the following output:
EKi [G

∗
k,i||MACi]. This encrypted message is then sent to

node i.
Step 3: Node i, upon receiving the message from the

previous step, decrypts the encrypted message from the
server using the secret key Ki. Upon decrypting the message,
the node obtains the interim group key, G∗

k,i, and message
authentication code, MACi. The node XORs this interim key
with the cryptographic hash of its nonce concatenated with
its secret key, G∗

k,i ⊕ H (Ni||Ki), to obtain the group key, Gk .
Step 4: The node then calculates the cryptographic hash

of the group key concatenated with its id to get H (Gk ||Ii).
It then checks whether this value is the same as MACi.
If they are different, the key distribution is considered failed.
If the key distribution fails, the node requests the server to
retransmit the interim group key G∗

k,i. If the key distribution
repeatedly fails, either the node is not initialized correctly,
or it is malicious. Manual intervention is required in both
cases. The key distribution is successful if the calculated
value, H (Gk ||Ii), is the same as MACi, and the node stores
Gk as its group key.

Note that in the above method, the server does not send
the final group key, Gk , to any of the nodes. Only the interim
group key, G∗

k,i, is sent to each node i, and only a legitimate
node i can generate the group key, Gk , using its nonce, Ni,
secret key, Ki, and id, Ii.

FIGURE 4. The figure shows the algorithm used to add a new node to a
group.

C. NODE ADDED TO GROUP
When a new node is added to a group, the group key, Gk ,
must be updated to maintain backward secrecy, i.e., the new
node being added to the group should not be able to read the
messages sent in the group before its addition to the group.
Since the new node does not have the current group key, Gk ,
the newly updated group key, GkNew , is sent to the existing
group members by a broadcast message encrypted with the
current group key Gk (see Fig. 4). One of the following two
scenarios arises when a new node joins the group:
Scenario 1: There is an empty spot in the leaf node level

of the factorial tree (see Fig. 5).

Scenario 2: The leaf node level of the factorial tree is full
(see Fig. 6).

FIGURE 5. The figure shows the addition of a node to a group in
scenario 1.

FIGURE 6. The figure shows the addition of a node to a group in
scenario 2.

In both scenarios, the server computes the cryptographic
hash of the current group key, Gk , to form the new group key,
Gknew (see Fig. 4). It then broadcasts a message notifying the
current groupmembers to update the existing group keyGk to
the new group keyGknew . This broadcast message is encrypted
with the current group key, Gk . The existing nodes then
update the group key by decrypting the broadcast message
and extracting the new group key Gknew .

In scenario 1 (see Fig. 5), the new node is first initialized
and authenticated as explained in Section V-A, and the new
group key, GkNew , encrypted with the new node’s secret key

5664 VOLUME 12, 2024

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

is sent to the new node by the server. The new node decrypts
this message and obtains the new group key.

In scenario 2, the same steps as in scenario 1 are first
performed. In addition, a new prime number corresponding to
an internal node is to be sent to one of the existing leaf nodes.
This new prime number, p, is sent to the existing leaf node as
shown in Fig. 7. In the example shown in Fig. 6, the new prime
number p10 is present at the internal node previously occupied
by the existing node containing key K6 and the prime number
p8 and is sent to the latter node. The new prime number, p,
is shared with the new node in the node initialization and
authentication step (see Section V-A).

FIGURE 7. The figure shows the additional steps used when the factorial
tree is full (scenario 2).

D. NODE LEAVING GROUP
When a node leaves a group, the leaving node should not
be able to read the group messages sent after it leaves,
to maintain forward secrecy. Hence, the group key should
be updated once a node leaves the group. The new group
key cannot simply be the hash updated version of the current
group key, and it cannot be distributed using the existing
group key, since the leaving node has the existing group key.
Some of the internal keys associated with the leaving node
must also be updated.

The new group key is calculated by applying a crypto-
graphic hash on the current group key concatenated with a
nonce, NS , selected by the server. The nonce NS is efficiently
distributed to all the nodes in the group except the leaving
node with the help of the prime numbers in the internal
and leaf nodes. This renewal of the group key and internal
keys is done with the help of the CRT (see Section III-A),
as explained below.

To compute the new group key, all non-leaving nodes must
receive the nonce, NS , and this nonce NS must satisfy some
conditions described later. The server first computes:

Ni = pi − NS , (1)

where pi (for i = 1, . . . ,m) are a set, say P∗, of prime
numbers such that this set contains exactly one prime number
either in an internal node or the leaf node on the path from the
root to each non-leaving node. Also, P∗ does not contain the
prime number of any of the nodes on the path from the root to
the leaf node corresponding to the leaving node. For example,
in the upper figure in Fig. 9, the leaf node N6 highlighted in
red is the node that is leaving. In this case, P∗ is chosen to be
the set {p1, p6, p7} of prime numbers of the internal node and
leaf nodes highlighted in yellow.

For each Ni obtained using (1) to be a positive integer, the
nonce, NS , selected by the server must satisfy the condition
that NS < min(pi) for all pi ∈ P∗. As mentioned in
Section IV-A, the chosen prime numbers, pi’s, are large;
hence, NS can be chosen from a large range of numbers.
After calculating the valuesNi, i = 1, . . . ,m, using (1), the

server computes the unique solution X to the following set of
equations using the CRT:

X ≡ N1 (mod p1)

X ≡ N2 (mod p2)
...

X ≡ Nm (mod pm)

where p1, . . . , pm ∈ P∗.

The server then broadcasts the unique solution X to all the
group nodes using the current group keyGk (see Fig. 8). Each
non-leaving node then computes Ni = X mod pi using the
prime number pi ∈ P∗ on the path from the root to the non-
leaving node. It then computes the nonce using NS = pi −

Ni (see (1)). Note that the node which is leaving is not able
to compute Ni, and hence NS , since the unique solution X is
constructed using only the pi values from the set P∗, which
does not contain the prime number of any of the nodes on
the path from the root to the leaf node corresponding to the
leaving node. Finally, each non-leaving node computes the
new group key by taking the cryptographic hash of the current
group key concatenated with the nonce: Gknew = H (Gk ||NS).
The above procedure is shown in Fig. 8.

FIGURE 8. The figure shows the rekeying algorithm used when a node
leaves the group.

The leaving node also contains the prime numbers
associated with the internal nodes along the path from the
root node to the leaf node corresponding to the leaving node
(e.g., the prime number p2 in the upper figure in Fig. 9).
These prime numbers must also be updated to prevent the
leaving node from obtaining unauthorized access to the group
communications in the future. The rekeying of the required
prime numbers in the internal nodes is done similar to the
way the unique solution X is communicated with the help of
CRT. The difference is that in this case, instead ofNS , the new
prime number pnew corresponding to each internal node along
the path from the root to the leaf node corresponding to the

VOLUME 12, 2024 5665

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

FIGURE 9. The figure shows an example in which a node leaves a group.

leaving node is shared. An example of such a prime number
pnew is p′

2 in the lower figure in Fig. 9.

VI. SECURITY ANALYSIS
In this section, we explain how our proposed scheme achieves
security using various mechanisms.

1) Our protocol ensures secure group authentication
since in the initialization and authentication stage (see
Section V-A), we use the nonce ñi and the secret key Ki for
authentication purposes. Since only the server and the desired
node (node i) have this nonce and secret key, a malicious node
cannot access the system.

2) We add an additional layer of security during authenti-
cation by implementing checks on both the server side and
node side. These checks are performed in steps 3 and 7 of
Fig. 2; both the server and the node check the hash of identity
concatenated with nonce number, h(Ii||ni) and h(Is||ni),
respectively. If they do not match, then authentication is
considered as failed.

3) The group key is constructed by the server using the
nonce values Ni received from all the nodes and the secret
keys Ki as explained in Section V-B. We ensure easy and
secure sharing of the group key with all the nodes of the
group. In particular, the server sends an interim group key
(G∗

k,i) instead of sending the actual group key. Even if a
malicious node gets access to an interim group keyG∗

k,i, it will
not be able to obtain the actual group key Gk from it since it
does not have the nonce Ni and secret key Ki.

4) Our protocol is resistant to Man-in-the-Middle attacks
since information sent to the group is encrypted with the
group key. Also, all communication is done using symmetric
key encryption, which is less expensive than public key
encryption.

5) The proposed scheme achieves backward secrecy by
hash updating of the group key by the server when a new node
joins the group. The new group key is sent to the new node
using encryption; hence, security is maintained. Also, since
a cryptographic hash function is a one-way function, the new
node cannot obtain the old group key using the new group
key.

6) When a node leaves a group, the proposed scheme
achieves forward secrecy by leveraging the CRT and the
prime numbers from the internal and leaf nodes of the fac-
torial tree to efficiently and securely communicate the nonce
NS , using which the new group key is computed, to the non-
leaving nodes, while keeping it secret from the leaving node
(see Section V-D).

VII. PERFORMANCE ANALYSIS
In this section, we analyze the storage, communication, and
computation costs of our proposed scheme.

TABLE 1. Height of factorial tree for a given number of nodes.

A. STORAGE COST
Table 1 shows the height of the factorial tree as a function
of the number of nodes, n, in the group. For a given number
of nodes, n, in the first column of Table 1, the height of the
corresponding factorial tree, t , is shown in the second column.
The height of the factorial tree is obtained by solving the
following equation:

min
t
t! ≥ n.

1) STORAGE COST OF NODE
Each node in the group stores the prime number values of the
nodes that lie on the path from the root node to itself. If the
height of the factorial tree is t , each node stores t − 1 prime
number values. Apart from these prime numbers, each node
also stores the group key, Gk , nonce, Ni, and its own secret
key, Ki. Therefore, the total number of values stored by the
node is given by t + 2. Hence, the storage complexity for
each node is of the order O(t). Fig. 10 shows the storage
cost of a node versus the total number of nodes in the
group.

5666 VOLUME 12, 2024

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

FIGURE 10. The figure shows the storage cost of a node versus the total
number of nodes in the group.

2) STORAGE COST OF SERVER
The server must store the prime number values from all the
internal nodes as well as the leaf nodes of the group. When
a factorial tree of height t is full, the leaf node level of the
tree contains t! nodes. When the factorial tree is not full, the
number of nodes in the leaf node level, nt , will be less than
t!, i.e., 0 < nt < t!, and the tree will be full up to level t − 1,
i.e., level t − 1 will have (t − 1)! nodes. Therefore, the total
number of prime numbers to be stored by the server is divided
into two parts:
Prime numbers stored in nodes up to level t − 1:
For a factorial tree of height t , there are l! internal nodes in

level l of the tree. Hence, the number of prime numbers stored
up to level t − 1, where t is the height of the tree, is given
by:

(
∑t−1

l=1 l!) − 1

The −1 term exists because of the fact that the root
node does not have any prime number associated with
it.
Prime numbers stored at level t:
Upon inspection of factorial trees containing different

numbers of nodes, it can be deduced that the number of nodes
in level t , nt , is given by:

nt = n− (t − 1)! + ⌈{n− (t − 1)!}/(t − 1)⌉.

The total number of prime numbers to be stored by the server
is the sum of the above two parts, i.e.:

nt + (
∑t−1

l=1 l!) − 1

Apart from these prime values, the server also stores n secret
key values, n nonce values, and a group key. Hence, the total
storage cost of the server is given by:

Storage cost: nt + 2 · n+

t−1∑
l=1

l!.

Fig. 11 shows the storage cost of the server versus the number
of nodes in the group.

FIGURE 11. The figure shows the storage cost of the server versus the
number of nodes in the group.

B. COMMUNICATION AND COMPUTATION COST
In this subsection, considering a group containing n nodes,
we analyze the communication and computation costs for
different stages of the proposed scheme.

1) GROUP AUTHENTICATION AND INITIALIZATION
During this stage, the server computes 2n cryptographic
hashes, 2n encryptions, and 2n decryptions. For each node,
the server sends two messages and hence sends 2n messages
overall. Hence, the communication and computation costs are
both of the order O(n).
Each node computes 2 cryptographic hashes, 2 encryp-

tions, 1 decryption, sends 2 messages to the server, and
receives 2 messages from the server. Hence, the communi-
cation and computation costs for a node are both of the order
O(1)

2) GROUP KEY CREATION AND DISTRIBUTION
The server performs n hash computations and n − 1 XOR
operations in the group key formation stage. It then computes
1 hash function, 1 XOR operation, and 1 encryption per
node to compute the message authentication code, interim
group key, and encrypted message, respectively. Overall, the
server computes 2n hash functions and performs 2n − 1
XOR operations and n encryptions. The server then sends
one message to each node, and hence, n messages overall.
Thus, for this stage of the algorithm, the communication and
computation costs of the server are both of the order O(n).

At this stage, each node performs 1 decryption, 1
XOR operation, 1 cryptographic hash, and does not send
any messages, leading to O(1) computation cost and no
communication cost.

3) NODE ADDED TO GROUP
In this part of the algorithm, the server computes 1 hash
function, performs 1 encryption, and sends 1 broadcast
message to all group members and 1 direct message to the
new node, leading to computation and communication costs
of the order O(1).

VOLUME 12, 2024 5667

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

Each node performs one decryption to obtain the new
group key and does not send any messages.

FIGURE 12. The figure shows the communication cost of the server when
a node leaves the group versus the total number of nodes in the group.

FIGURE 13. The figure shows the computation cost of the server when a
node leaves the group versus the total number of nodes in the group.

4) NODE LEAVING GROUP
The server computes 1 unique solution, X , for sharing the
nonce NS with the non-leaving nodes. This unique solution
X is computed with the help of 1 + 2 + . . . + (t − 1) prime
numbers, where t is the height of the factorial tree. As an
example, in Fig. 9, the height of the tree is 3, and the leaving
node (marked red) leaves from level t = 3. To construct the
unique solution X in this case, we need prime numbers from
the non-leaving part (marked yellow), which make up the set
P∗. The number of such prime numbers (corresponding to
nodesmarked yellow) in this example is 0 from level 1, 1 from
level 2, and 2 from level 3, i.e., 0 + 1 + 2; by extrapolating
this logic, the number of prime numbers required to construct
X for a general case of a factorial tree of height t is given by
1+2+. . .+(t−1). The computation cost required to construct
this unique solution is of the order O(t2).
It then performs 1 encryption and sends 1 broadcast

message. This leads to communication and computation costs
of the orderO(1) andO(t2), respectively. This unique solution

construction and communication is also to be done for t − 2
prime number values, which also need to be rekeyed (see
Section V-D). This leads to the total communication and
computation costs of the order O(t) and O(t3), respectively.
Figs. 12 and 13 show the communication and computation
costs of the server, respectively, versus the total number of
nodes in the group.

In this phase, to receive and process the unique solution,
X , each node performs 1 decryption, 1 modulus operation,
1 subtraction, computes 1 cryptographic hash function, and
does not send any messages as can be seen from Fig. 8.
This process needs to be done once for sharing the value
of NS and t − 2 times for rekeying the internal prime
number values (see Section V-D). Consequently, this results
in a node computation cost of the order O(t) and incurs no
communication cost for any node.

VIII. NUMERICAL RESULTS
In this section, we compare the performance of our proposed
scheme with those proposed in the prior works Groupit [2]
and Kabra et al. [37]. Both these works use the Logical
Key Hierarchy (LKH) model proposed in [8]. In the LKH
model, the nodes/users are arranged in a binary tree structure
for efficient and scalable rekeying. We improve upon this
model by using a factorial tree instead of a binary tree in
the internal structure, which results in better computation and
communication costs.

The study conducted in [42] compared the computational
complexity of the Advanced Encryption Standard (AES)
symmetric key encryption algorithm, the SHA-256 crypto-
graphic hash function, and Elliptical Curve Cryptography
(ECC), which is used in asymmetric encryption. Their results
indicated that ECC requires significantly more computational
resources than AES, while AES is more computationally
demanding than SHA-256.

As stated in [42], we assume that hashing (Hash) through
SHA-256 requires T0 = 460 ns, encryption (Enc) or
decryption (Dec) using AES-256 with a block size of 64 takes
T1 = 800 ns, which is equal to 1.74 × T0, and asymmetric
decryption (AsyDec) using ECC-224 takes T2 = 114000 ns,
which is equal to 247.83 T0.

As mentioned in Section II, Groupit [2] and Kabra et al.
[37] have a two-tier GKM scheme wherein one of the tiers
has the Users/Subscribers (respectively, Devices) of a User
Group (respectively, Device Group) occupy the leaf nodes
of a binary tree structure. This arrangement is shown in
Fig. 14 and corresponds to the inner structure of the two-
tier GKM scheme. In the two-tier GKM scheme, the other
tier, viz., the outer structure, consists of an LKH arrangement
of the previously mentioned User/Subscriber Groups (SGs)
or Device Groups (DGs), i.e., the SGs (respectively, DGs)
themselves occupy the leaf nodes of a binary tree in the outer
tree structure as shown in Fig. 15.

Our proposed scheme replaces the binary tree in Fig. 14
with a factorial tree. The Devices (respectively, Users) in the

5668 VOLUME 12, 2024

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

FIGURE 14. The figure shows the inner structure of the two-tier GKM
scheme proposed in [2] and [37]. Each node other than the root and
leaves is associated with a key called the Key Encryption Key (KEK).

FIGURE 15. The figure shows the outer structure of the two-tier GKM
scheme proposed in [2] and [37]. Each node other than the root and
leaves is associated with a KEK.

DG (respectively, SG) mentioned in [2] and [37] are replaced
by nodes in our scheme.

To compare the performance of our proposed scheme with
those in [2] and [37], we assume that our model has an outer
structure similar to the one in Fig. 15 and an inner structure
as described in the previous sections. We perform numerical
computations on a system with one SG and one DG– similar
results hold in the case where there are multiple SGs and
DGs. In the following discussion, we consider the DG to be
comprised of 50 devices and the SG to be comprised of M
users. To maintain consistency in notation with respect to
previous sections, the users in the SG are referred to as nodes
in subsequent discussions.

For convenience, we introduce the integer-valued inverse
of the factorial function, α(n), which computes the height of
the factorial tree (t) for a given number of nodes (n):

α(n) = x where x is the solution ofmin
x
x! ≥ n.

A. COMMUNICATION COST COMPARISON
We first calculate the number of messages exchanged when
a node leaves. The numbers of messages exchanged under
different algorithms are given by:

Groupit:
1 Broadcast + (⌈log2(M)⌉ + ⌈log2(50)⌉ + 50) multicasts

Kabra et al.:
1 Broadcast + (⌈log2(M)⌉ + 2) multicasts

Our proposed algorithm:
1 Broadcast + (α(n) + 2) multicasts

Both the prior works use binary tree structures and hence
involve the ⌈log2(M)⌉ term in the rekeying steps. In contrast,

FIGURE 16. The figure shows the communication costs under GroupIt,
Kabra et al. and our proposed algorithm versus the number of nodes for
the case when a node leaves.

the rekeying step in our proposed algorithm varies as α(n).
Since α(n) increases slower than ⌈log2(M)⌉, our proposed
algorithm has lower communication costs than those of prior
works, as can be seen from the plot in Fig. 16, which
compares the communication costs of different schemes
when a node leaves.

B. COMPUTATION COST COMPARISON
In this subsection, we compare the computation costs under
different schemes when a node leaves or joins the group for
the system described earlier.

1) USER JOINS
When a node joins a group, for the system described earlier
consisting of M nodes and 50 devices, the computation cost
for the Groupit scheme is almost the same as for the one
in Kabra et al. We compare the computation performance
of those two schemes and that of our proposed algorithm.
When a new node joins, the total computation costs
incurred by all the nodes under different schemes are given
by:

Groupit:
2M Hash + log2(M) Dec H⇒ 2MT0 + log2(M) · 1.74 T0

Kabra et al.:
2M Hash + log2(M) Dec + 1 Dec

H⇒ 2MT0 + (log2(M) + 1) · 1.74 T0
Our proposed algorithm:

M Dec H⇒ M· 1.74 T0

Fig. 17 shows that our proposed algorithm has lower
computation costs than those under the schemes proposed in
prior works. This is due to the absence of the log2(M) term
and also because just one decryption per node is required
in our proposed algorithm compared to 2 hash function
computations per node under the schemes in prior works.
Compared to Fig. 16, the difference between the computation
costs of our proposed scheme and those of prior works is less
prominent because of the linear dependence on M under all
the three schemes.

VOLUME 12, 2024 5669

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

FIGURE 17. The figure shows the total computational cost for all nodes
under GroupIt, Kabra et al. and our proposed algorithm versus the
number of nodes for the case when a new node joins.

2) USER LEAVES
Finally, we compare the total computation costs incurred by
all the nodes when a node leaves the group. The costs are as
follows:

Groupit:
2M Hash + log2(M) Dec H⇒ 2MT0 + log2(M) · 1.74 T0

Kabra et al.:
2M Hash + log2(M) Dec + 1 Dec

H⇒ 2MT0 + (log2(M) + 1) · 1.74 T0
Our proposed algorithm:

M Dec H⇒ M· 1.74 T0

FIGURE 18. The figure shows the total computation cost for all nodes
under Groupit, Kabra et al. and our proposed scheme versus the number
of nodes for the case when a node leaves.

Fig. 18 shows a comparison of the total computation costs
of all the nodes when a node leaves under the three schemes.
Since the schemes in prior work use a binary tree structure
that grows exponentially with the base of 2, the computation
cost is the inverse of the exponential function, which leads to
a logarithmic term in their respective expressions. In contrast,
in our proposed algorithm, we use a factorial tree. Hence, the
computation cost is proportional to the inverse of the factorial
function (denoted earlier byα(n)). Since the factorial function
increases faster than the exponential function, the inverse of
the factorial function (α(n)) increases slowly compared to the

inverse of the exponential function. Due to this reason, our
proposed algorithm has lower computation cost, as can be
seen from Fig. 18.

IX. CONCLUSION AND FUTURE WORK
We proposed a new scheme, based on factorial trees and
the CRT, for GKM in dynamic IoT scenarios. We evaluated
the performance of our proposed scheme via extensive
mathematical analysis and numerical computations. Using
numerical computations, we showed that our proposed
scheme outperforms GKM schemes from prior work in
terms of communication and computation costs. Our protocol
arranges the nodes in each group into a factorial tree structure,
and an interesting direction for future work is to extend the
idea of factorial trees to arrange the groups themselves into
an outer factorial tree structure, i.e., nodes in each group are
arranged into a factorial tree structure, and different groups
are in turn arranged into another factorial tree structure.
This arrangement may lead to further improvement in the
communication and computation costs.

REFERENCES
[1] R. H. Weber, ‘‘Internet of Things—New security and privacy challenges,’’

Comput. Law Secur. Rev., vol. 26, no. 1, pp. 23–30, Jan. 2010.
[2] Y.-H. Kung and H.-C. Hsiao, ‘‘GroupIt: Lightweight group key manage-

ment for dynamic IoT environments,’’ IEEE Internet Things J., vol. 5, no. 6,
pp. 5155–5165, Dec. 2018.

[3] Y. Challal and H. Seba, ‘‘Group key management protocols: A novel
taxonomy,’’ Int. J. Comput. Inf. Eng., vol. 2, no. 10, pp. 3620–3633, 2008.

[4] A. Mosenia and N. K. Jha, ‘‘A comprehensive study of security of
Internet-of-Things,’’ IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4,
pp. 586–602, Oct. 2017.

[5] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, ‘‘A comparative survey
of symmetric and asymmetric key cryptography,’’ in Proc. Int. Conf.
Electron., Commun. Comput. Eng. (ICECCE), Nov. 2014, pp. 83–93.

[6] R. Vaid and V. Katiyar, ‘‘Security issues and remidies in wireless sensor
Networks- a survey,’’ Int. J. Comput. Appl., vol. 79, no. 4, pp. 31–39,
Oct. 2013.

[7] W. Stallings, Cryptography and Network Security: Principles and
Practice, 7th ed. London, U.K.: Pearson, 2017.

[8] C. K. Wong, M. Gouda, and S. S. Lam, ‘‘Secure group communications
using key graphs,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 28,
no. 4, pp. 68–79, 1998.

[9] M. A. Mughal, P. Shi, A. Ullah, K. Mahmood, M. Abid, and X. Luo,
‘‘Logical tree based secure rekeying management for smart devices groups
in IoT enabled WSN,’’ IEEE Access, vol. 7, pp. 76699–76711, 2019.

[10] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, ‘‘A survey on security and
privacy issues in Internet-of-Things,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1250–1258, Oct. 2017.

[11] J. Granjal, E. Monteiro, and J. Sá Silva, ‘‘Security for the Internet of
Things: A survey of existing protocols and open research issues,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 3, pp. 1294–1312, 3rd Quart., 2015.

[12] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A
survey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[13] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, ‘‘Security,
privacy and trust in Internet of Things: The road ahead,’’ Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015.

[14] J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and
B. Heile, ‘‘IEEE 802.15.4: A developing standard for low-power low-cost
wireless personal area networks,’’ IEEE Netw., vol. 15, no. 5, pp. 12–19,
Sep. 2001.

[15] Z. Sheng, S. Yang, Y. Yu, A. V. Vasilakos, J. A. Mccann, and K. K. Leung,
‘‘A survey on the IETF protocol suite for the Internet of Things: Standards,
challenges, and opportunities,’’ IEEE Wireless Commun., vol. 20, no. 6,
pp. 91–98, Dec. 2013.

5670 VOLUME 12, 2024

K. Sudheeradh et al.: Efficient and Secure Group Key Management Scheme Based on Factorial Trees

[16] L. F. Schrickte, C. Montez, R. d. Oliveira, and A. R. Pinto, ‘‘Integration
of wireless sensor networks to the Internet of Things using a 6LoWPAN
gateway,’’ in Proc. 3rd Brazilian Symp. Comput. Syst. Eng., Dec. 2013,
pp. 119–124.

[17] C.-S. Park, ‘‘A secure and efficient ECQV implicit certificate issuance
protocol for the Internet of Things applications,’’ IEEE Sensors J., vol. 17,
no. 7, pp. 2215–2223, Apr. 2017.

[18] M. Turkanović, B. Brumen, andM.Hölbl, ‘‘A novel user authentication and
key agreement scheme for heterogeneous ad hoc wireless sensor networks,
based on the Internet of Things notion,’’AdHoc Netw., vol. 20, pp. 96–112,
Sep. 2014.

[19] Q. Jiang, S. Zeadally, J. Ma, and D. He, ‘‘Lightweight three-factor
authentication and key agreement protocol for Internet-integrated wireless
sensor networks,’’ IEEE Access, vol. 5, pp. 3376–3392, 2017.

[20] C.-C. Chang and H.-D. Le, ‘‘A provably secure, efficient, and flexible
authentication scheme for ad hoc wireless sensor networks,’’ IEEE Trans.
Wireless Commun., vol. 15, no. 1, pp. 357–366, Jan. 2016.

[21] A. K. Das, S. Kumari, V. Odelu, X. Li, F. Wu, and X. Huang, ‘‘Provably
secure user authentication and key agreement scheme for wireless
sensor networks,’’ Secur. Commun. Netw., vol. 9, no. 16, pp. 3670–3687,
Nov. 2016.

[22] A. Bin-Rabiah, K. K. Ramakrishnan, E. Liri, and K. Kar, ‘‘A lightweight
authentication and key exchange protocol for IoT,’’ in Proc. Workshop
Decentralized IoT Secur. Standards, 2018, pp. 1–6.

[23] M. Abdussami, R. Amin, and S. Vollala, ‘‘Provably secured lightweight
authenticated key agreement protocol for modern health industry,’’ Ad Hoc
Netw., vol. 141, Mar. 2023, Art. no. 103094.

[24] A. Gupta and G. S. Kasbekar, ‘‘Secure, anonymity-preserving and
lightweight mutual authentication and key agreement protocol for home
automation IoT networks,’’ in Proc. 14th Int. Conf. Commun. Syst. Netw.
(COMSNETS), Jan. 2022, pp. 375–383.

[25] P. Porambage, A. Braeken, C. Schmitt, A. Gurtov, M. Ylianttila, and
B. Stiller, ‘‘Group key establishment for secure multicasting in IoT-
enabled wireless sensor networks,’’ in Proc. IEEE 40th Conf. Local
Comput. Netw. (LCN), Oct. 2015, pp. 482–485.

[26] N. Ferrari, T. Gebremichael, U. Jennehag, and M. Gidlund, ‘‘Lightweight
group-key establishment protocol for IoT devices: Implementation and
performance analyses,’’ in Proc. 5th Int. Conf. Internet Things, Syst.,
Manage. Secur., Oct. 2018, pp. 31–37.

[27] D. Balenson, D. McGrew, and A. Sherman, ‘‘Key management for large
dynamic groups: One-way function trees and amortized initialization,’’
Internet-Draft, Los Angeles, CA, USA, Tech. Rep. draft-balenson-
groupkeymgmt-oft-00, 1999.

[28] F. Samiullah, S. Akeylek, M. Lee Gan, and Y. Aun, ‘‘Group key
management in resource constraint environment: Applications and use
cases,’’ Int. J. Adv. Natural Sci. Eng. Researches, vol. 7, pp. 269–278,
Apr. 2023.

[29] Z. Yang, Z.Wang, F. Qiu, and F. Li, ‘‘A group key agreement protocol based
on ECDH and short signature,’’ J. Inf. Secur. Appl., vol. 72, Feb. 2023,
Art. no. 103388.

[30] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, ‘‘A novel batch-based
group key management protocol applied to the Internet of Things,’’ Ad
Hoc Netw., vol. 11, no. 8, pp. 2724–2737, Nov. 2013.

[31] P. Vijayakumar, S. Bose, and A. Kannan, ‘‘Chinese remainder theorem
based centralised group key management for secure multicast communi-
cation,’’ IET Inf. Secur., vol. 8, no. 3, pp. 179–187, May 2014.

[32] H. Tan, ‘‘An efficient IoT group association and data sharing mechanism
in edge computing paradigm,’’ Cyber Secur. Appl., vol. 1, Dec. 2023,
Art. no. 100003.

[33] G. Heo, K. Chae, and I. Doh, ‘‘Hierarchical blockchain-based group and
group key management scheme exploiting unmanned aerial vehicles for
urban computing,’’ IEEE Access, vol. 10, pp. 27990–28003, 2022.

[34] C. Trivedi and U. P. Rao, ‘‘Secrecy aware key management scheme
for Internet of Healthcare Things,’’ J. Supercomput., vol. 79, no. 11,
pp. 12492–12522, Jul. 2023.

[35] Z. Wang, R. Huo, and S. Wang, ‘‘A lightweight certificateless group key
agreement method without pairing based on blockchain for smart grid,’’
Future Internet, vol. 14, no. 4, p. 119, Apr. 2022.

[36] R. Prabha, M. Razmah, S. Senthilpandi, S. Suganthi, and S. Sridevi,
‘‘Design of a novel group communication framework to improve security
in Internet of Things,’’ in Proc. 8th Int. Conf. Adv. Comput. Commun. Syst.
(ICACCS), vol. 1, Mar. 2022, pp. 967–970.

[37] A. Kabra, S. Kumar, andG. Kasbekar, ‘‘Efficient, flexible and secure group
key management protocol for dynamic IoT settings,’’ EAI Endorsed Trans.
Internet Things, vol. 7, no. 25, Apr. 2021, Art. no. 168862.

[38] M. E. O’neill, ‘‘The genuine sieve of eratosthenes,’’ J. Funct. Program.,
vol. 19, no. 1, pp. 95–106, Jan. 2009.

[39] N. Khairina, ‘‘The comparison of methods for generating prime numbers
between the sieve of Eratosthenes, Atkins, and Sundaram,’’ SinkrOn, vol. 3,
no. 2, p. 293, Apr. 2019.

[40] M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei, ‘‘Emergent properties:
Detection of the node-capture attack in mobile wireless sensor networks,’’
in Proc. 1st ACM Conf. Wireless Netw. Secur., Mar. 2008, pp. 214–219.

[41] T. Bonaci, L. Bushnell, and R. Poovendran, ‘‘Node capture attacks in
wireless sensor networks: A system theoretic approach,’’ in Proc. 49th
IEEE Conf. Decis. Control (CDC), Dec. 2010, pp. 6765–6772.

[42] A. de la Piedra, A. Braeken, and A. Touhafi, ‘‘A performance comparison
study of ECC and AES in commercial and research sensor nodes,’’ in Proc.
Eurocon, Jul. 2013, pp. 347–354.

K. SUDHEERADH received the B.Tech. and
M.Tech. degrees in electrical engineering from
the Department of Electrical Engineering, IIT
Bombay, in 2023. His research interests include
network security and the Internet of Things.

N. NEHA JAHNAVI received the B.Tech. and
M.Tech. degrees in electrical engineering from
the Department of Electrical Engineering, IIT
Bombay, in 2023. Her research interests include
network security and the Internet of Things.

PRAMOD N. CHINE received theM.Tech. degree
in electrical engineering from the Department
of Electrical Engineering, IIT Bombay, in 2004,
where he is currently pursuing the Ph.D. degree.
His research interests include game theory and
network security.

GAURAV S. KASBEKAR (Member, IEEE)
received the B.Tech. degree in electrical engineer-
ing from the Indian Institute of Technology (IIT),
Bombay, Mumbai, India, in 2004, the M.Tech.
degree in electronics design and technology
(EDT) from the Indian Institute of Science (IISc),
Bengaluru, India, in 2006, and the Ph.D. degree
in electrical engineering from the University of
Pennsylvania, Philadelphia, PA, USA, in 2011.
He is currently an Associate Professor with the

Department of Electrical Engineering, IIT Bombay. His research interests
include modeling, design, and analysis of wireless networks. He was a
recipient of the CEDT Design Medal for being adjudged the best master’s
student in EDT with IISc.

VOLUME 12, 2024 5671

