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ABSTRACT Learning embeddings representations of users and items lies at the core of modern
recommender systems. Existing methods based on Graph Convolutional Network (GCN) and sequential
recommendation typically obtain a user’s or an item’s embedding by mapping from pre-existing features
into better embeddings for users and items, such as ID and attributes. GCN integrates the user-item
interaction as the bipartite graph structure into the embedding process, which can better represent sparse
data, but cannot capture users’ long-term interests. Sequential recommendation seek to capture the ‘‘context’’
of users’ activities based on their historical actions, but requires dense data to support it. The goal of
our work is to combine the advantages of GCN and sequential recommendation models by proposing a
novel Self-Attention based Sequential recommendation with Graph Convolutional Networks (SASGCN).
It uses multiple lightweight GCN layers to capture high-order connectivity between users and items, and
by introducing ratings as auxiliary information into the user-item interaction matrix, it provides richer
information. By incorporating self-attention basedmethods, the proposedmodel capture long-term semantics
through relatively few actions. Extensive experiments on three benchmark datasets show that our model
outperforms various state-of-the-art models consistently.

INDEX TERMS Sequential recommendation, transform, graph neural network, user ratings, embedding
propagation, collaborative filtering.

I. INTRODUCTION
Recommender system is an important technology for allevi-
ating information overload on the web, and have been widely
deployed in fields such as e-commerce, social networks,
music and movie services.

Collaborative filtering (CF) is a common recommendation
method that identifies users’ interests by analyzing their
historical behavior [1]. To improve the accuracy and effec-
tiveness of CF, recent research has explored the integration of
GCN. NGCF is one such method, which introduces multiple
GCN layers to capture high-order connectivity between users
and items [2]. Another recent method, LightGCN further
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simplifies the model by removing the feature transformation
and nonlinear activation parts inherited from GCN in NGCF,
achieving model lightweight while still maintaining high
accuracy and effectiveness [3].

Sequential recommender systems aim to combine person-
alized recommendations for users based on their historical
activities and the ‘‘context’’ of user behavior, the main
challenge is how to capture the high-order dynamics of user
behavior succinctly. Recurrent Neural Network (RNN) is a
common method for capturing dynamic user information,
but RNN sequence models have not been able to attain
state-of-the-art results in small-data regimes [4]. Recently,
self-attention based Transformer models have achieved state-
of-the-art performance and efficiency for Natural Language
Processing (NLP) tasks [5], the Transformer model has also
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begun to be applied in sequential recommendation [41], [44].
SASRec replaces the RNN component in traditional sequence
recommendation with Transformer, resulting in significantly
improved computational efficiency [6].

Inspired by the success of these models, we seek to
combine self-attention and GCN for sequential recommen-
dation. we propose a novel Self-Attention based Sequential
recommendation with Graph Convolutional Networks, called
SASGCN. SASGCN simultaneously achieves the efficiency
of parallel computation and the high-order connectivity
between users and items. We also noticed that the above
models only consider the existence of user-item interactions
when representing user and item embeddings, which cannot
accurately express the degree of user preference for items.
To improve the accuracy of our model, we introduce ratings
as auxiliary information when constructing the user-item
interaction graph, allowing us to assign weights to different
user-item interactions. Importantly, introducing auxiliary
information when constructing the interaction graph does not
increase model complexity. Specifically, we associate users
with items to generate the user-item interaction graph, and
introduce ratings as auxiliary information to obtain weights
for user-item interactions. We then combine the embeddings
learned at different propagation layers with a weighted sum
to obtain the graph embedding. Meanwhile, the self-attention
part adaptively assigns weights to previous items at each
time step. Finally, we map the obtained weights to the graph
embedding to obtain the final embedding [3], [6].

To summarize, our work makes the following main
contributions:

1) We introduce ratings as auxiliary information into the
user-item interaction graph, allowing us to obtain weight
information for different users on different items.

2) We propose SASGCN, which combines self-attention
and GCN to improve the accuracy and computing efficiency
of the model without increasing its complexity.

3) We conduct extensive experimental studies on three
real-world datasets. The results demonstrate that our model
outperforms other state-of-the-art models in terms of both
accuracy and efficiency.

The contents of this article are as follows. The first section
is introduction, the second section introduces some related
work, the third Section gives the detailed description of
SASGCN model, the fourth section presents experiment
results and analyses on recommender datasets, and the fifth
Section is conclusion and future outlook.

II. RELATED WORK
Several lines of work are closely related to ours.We discussed
the existing work on GCN-based CF methods and sequential
recommendation methods.

CF is a classic recommendation algorithm that predicts
users’ interest in recommended items by analyzing their
historical behavior. It is one of the most common method
in the field of recommendation systems. Matrix factorization
(MF) maps the ID of each user and item to an embedding

vector and predicts their interaction through the inner product
between them [7]. NeuMF predicts user preferences via
Multi-Layer perceptron (MLP) [8].

Despite great success, from CF signals it is difficult to
obtain embeddings that satisfy desired properties due to
being implicitly captured. In recent years, recommendation
algorithms based on graph embeddings have addressed this
issue by constructing user-item interaction graphs to explic-
itly encode CF signals [9], [10]. NGCF is a hybrid model
that combines neural networks and graph embeddings, which
stacks multiple GCN layers to capture high-order connectiv-
ity between user and item nodes, improving recommendation
performance. LightGCN is a lightweight improvement over
NGCF that removes the feature transformation and nonlinear
activation parts inherited from GCN. Since each node in
the user-item interaction graph of NGCF only contains
ID information, the lightweight operation of LightGCN
improves the effectiveness and accuracy of the model [2], [3].

Sequence recommendation refers to predicting the next
item of interest for users based on their historical behavior
sequence, which is an important research direction in
recommendation systems. The main challenge lies in how to
handle the long and short-term interest evolution in the user
behavior sequence and use it to predict their future behavior.
Markov chain (MC) assumes the user’s next action can be
predicted based on their previous actions [11]. Factorizing
Personalized Markov Chain (FPMC) combines MF and
item-item transition to capture long-term preferences and
short-term transitions respectively [12]. High-order MC can
consider the long-term preferences of more users compared
to first-order MC [13], [14]. Caser treats the embedding
matrix of L previous items as an ‘‘image’’ and applies
convolutional operations to extract transitions [15]. Other
than MC-based methods, RNN is also commonly used to
model user sequences. GRU4Rec uses Gated Recurrent
Units (GRU) to model click sequences for session-based
recommendation [4].

Transformer is a purely attention-based sequence-to-
sequence method that has achieved state-of-the-art perfor-
mance and efficiency on machine translation tasks which had
previously been dominated by RNN-based approaches [5],
and is gradually being applied to recommendation sys-
tems [17], [18]. SASRec was the pioneering work adopting
Transformer for sequence recommendation. It employs self-
attention modules to learn the weights of items at different
positions in the sequence [6]. STOSA embeds each item as
a stochastic Gaussian distribution and introduce Wasserstein
distances as self-attention weights to measure the pair-wise
relationships between items in the sequence [16], [19].
BERT4Rec employs the deep bidirectional self-attention
to model user behavior sequences, predicting the random
masked items in the sequence by jointly conditioning on their
left and right context [22].

Inspired by LightGCN and SASRec, we seek to build a
new Self-Attention based Sequential recommendation model
with Graph Convolutional Networks, and introduce ratings as
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auxiliary information to alleviate the problem of insufficient
node information in the user-item interaction graph.

III. METHOD
In this section, we introduce the proposed SASGCN model,
which is illustrated in Figure 1. The SASGCN model
consists of four main components: (1) an embedding layer
that initializes user and item embeddings, (2) multiple
embedding propagation layers that refine the embeddings by
incorporating high-order connectivity relations, (3) a self-
attention layer with position encoding; and (4) a prediction
layer that computes user-item relevance scores.

A. EMBEDDING LAYER
We give the sequence of item IDs interacted by user u,
denoted as Su = (Su1 , S

u
2 , . . . , S

u
|Su|). To capture the temporal

dynamics of user behavior, we consider that recent behaviors
better represent the user’s current preferences, while distant
actions have less impact. Therefore, we define a maximum
length n and transform the sequence (Su1 , S

u
2 , . . . , S

u
|Su|−1) into

a training sequence s = (s1, s2, . . . , sn), where sn consists of
the most recent n actions of the user. If the sequence length
is less than n, we pad the left side of the sequence with zero
vectors until the length is n [6].

We set the user embedding matrix as Eu ∈ RM×d and the
item embedding matrix as Ei ∈ RN×d , that is e(0)u = eu
and e(0)i = ei, where d is the latent dimension, and M
and N denote the number of users and items, respectively.
We generate the user-item interaction matrix R ∈ RM×N

from the user-item interaction graph. By introducing the
rating of users for items, and each entry Rui is rating if u has
interacted with item i otherwise 0.

B. EMBEDDING PROPAGATION LAYER
We construct the relationship between users and items as
a user-item interaction graph, aggregating the features of
neighbors as the new representation of a target node through
the GCN [20]. Considering that nodes only contain ID
and rating information, we aim to minimize unnecessary
computations and model burden by adopting the simple
weighted sum aggregator instead of the nonlinear activa-
tion and feature transformation in traditional GCN. Thus,
we adopt a lightweight graph convolution operation [2], [21],
defined as follows:

e(k+1)
u =

∑
i∈Nu

1
√

|Nu|
√

|Ni|
e(k)i ,

e(k+1)
i =

∑
u∈Ni

1
√

|Ni|
√

|Nu|
e(k)u , (1)

where 1√
|Nu|

√
|Ni|

is the symmetrically normalized term of

the graph adjacency matrix, Nu and Ni denote the first-hop
neighbors of user u and item i [20].
To further enhance the representation capability of our

model, we stack K layers of GCN and perform a weighted

sum operation on the embeddings obtained at each layer. The
weighted sum operation is defined as follows:

eu =

K∑
k=0

αke(k)u ; ei =

K∑
k=0

αke
(k)
i , (2)

where αk ≥ 0 denotes the importance of the k-th layer
embedding. To avoid unnecessary complexity, we set αk
uniformly as 1/(K + 1).

C. SELF-ATTENTION LAYER
The self-attention mechanism has been widely applied in
various machine learning fields since its inception. When
processing sequences, self-attention can better handle fixed-
length inputs than attention mechanisms through position
encoding [5]. Given a maximum length n, we use a position
embedding table P ∈ Rn×d , where element pi denotes the
position embedding for the i-th position in a sequence. The
final input embedding of sequence s is:

Es = [e1 + p1, e2 + p2, . . . , en + pn], (3)

where en is the item embedding ei.
The self-attention layer mainly consists of multi-head

attention, feed-forward network, residual networks and layer
normalization [5].

Multi-head attention splits the input embeddings into h
different embeddings and performs attention calculations on
each of them separately. Themulti-head attention on the input
embeddings is [22]:

H = concat{head1, head2, . . . , headh}W,

(4)

headi = Attention(EsWQ,EsWK,EsWV),
(5)

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (6)

where W,WQ,WK,WV are the weight matrices, Attention
is the scaled dot-product attention, Q represents the queries,
K the keys, V the values, and

√
d is a regularization term

that can prevent gradient vanishing problems and improve
the generalization ability of the model. Multi-head attention
enables the model to pay attention to information in different
subspaces, thus capturing richer feature information.

The feed-forward network consists of two fully connected
layers with a ReLU activation in between. This design choice
enables the model to capture both linear and nonlinear
relationships among items in a sequence. By incorporating
nonlinear activation functions, the feed-forward network can
better model these nonlinear relationships, thereby improving
the model’s expressive power and overall performance. The
feed-forward network is defined as:

Fi = FFN(headi) = ReLU(headiW(1)
+ b(1))W(2)

+ b(2),

(7)
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FIGURE 1. The framework of the proposed SASGCN model. Obtaining item embedding vectors through the
user-item interaction graph with ratings. After multiple layers of GCN propagation and combining with
initial vectors, the representations are passed through a self-attention mechanism to capture contextual
information before making the final prediction.

whereW (1) andW (2) are d × d matrices and b(1) and b(2) are
d-dimensional vectors.

Our model employs residual networks and layer nor-
malization to enable training of deeper models while also
improving stability and convergence. The core concept of
residual networks is to propagate low-layer features to higher
layers using residual connection, which has been shown to
improve training of deeper models [23], [24], [42]. Layer
normalization is used to normalize inputs across features,
which further stabilizes and accelerates neural network
training [25]. Batch normalization is not used because the
mean and variance of a batch of samples may not adequately
represent the mean and variance of the entire population of
samples when the batch size is too small [26]. Specifically,
assuming the input is a vector x containing all features of a
sample, layer normalization is defined as:

LayerNorm(x) = α ⊙
x − µ

√
σ 2 + ϵ

+ β, (8)

where ⊙ is an element-wise product, µ and σ are the mean
and variance of x, α and β are learned scaling factors and bias
terms.

D. PREDICTION LAYER
After obtaining the outputs of the embedding propagation
layer and the self-attention layer, for given the first t items,
we predict the next item based on Ft . To reduce model size
and prevent overfitting, we use a single item embedding ei.
Specifically, we employ an MF layer to predict the relevance
of item i:

ri,t = FteTi , (9)

where ri,t is the relevance of item i being the next item given
the first t items (i.e., s1, s2, . . . , st ). By ranking the relevance

scores ri,t , we can generate top-N recommendations for the
user.

E. MODEL TRAINING
To prevent overfitting during training, we employ dropout
by randomly dropping out sequence messages passing into
the self-attention layer with probability p. Note that dropout
is only used during training and must be disabled during
testing.

Considering that we truncate or pad the user sequence’s
last n elements when constructing a fixed-length sequence
s = (s1, s2, . . . , sn), we define ot as the expected output at
time step t:

ot =


< pad > if st is a padding item
st+1 1 ≤ t < n
Su
|Su| t = n,

(10)

where < pad > indicates a padding item, and we ignore the
terms where ot =< pad > since we use zero for padding.
When the input sequence is s, the corresponding sequence o
serves as the expected output, and we adopt the binary cross
entropy loss:

−

∑
Su∈S

∑
t∈[1,2,...,n]

log(σ (rot ,t )) +

∑
j/∈Su

log(1 − σ (rj,t ))

 .

(11)

We employ the Adam optimizer in a mini-batch manner [27],
which is a variant of Stochastic Gradient Descent (SGD) with
adaptive moment estimation. In each epoch, we randomly
generate one negative item j for each time step in each
sequence [8], [35].
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TABLE 1. Dataset statistics (after preprocessing).

F. COMPLEXITY ANALYSIS
Space Complexity: Our model’s learned parameters come
from the embeddings and parameters in the multi-head
attention, feed-forward network, and layer normalization.
The total number of parameters is given by O(|I + U |d +

nd + d2), where I and U denote the sets of item and user,
respectively.

Time Complexity: The computational complexity of our
model primarily arises from the embedding matrix, multi-
head attention and feed-forward network. The embedding
matrix’s computation complexity is O(nd), while the multi-
head attention and feed-forward network have complexities
of O(n2d) and O(nd2), respectively. Therefore, the time
complexity of our model is O(nd + n2d + nd2).

IV. EXPERIMENTS
We perform experiments on three real-world datasets to
assess the performance of our proposed method. Our aim to
answer the following research questions:

RQ1: Does SASGCN outperform state-of-the-art mod-
els, including sequence recommendation and GCN-based
models?

RQ2: How do different hyper-parameter settings, (e.g.,
dimensions and number of heads) affect SASGCN?

RQ3: What is the impact of various components in the
SASGCN architecture?

A. EXPERIMENTAL SETTINGS
1) DATASETS
To evaluate the effectiveness of SASGCN, we conduct
experiments on three benchmark datasets: Amazon-games,
Book-crossing, and Movielens, which are publicly accessible
and vary in terms of domain, size, and sparsity.

Amazon-games: Amazon-review is a widely used dataset
for product recommendation [29], and we select Amazon-
games from the collection. This dataset has high sparsity
characteristics.

Book-crossing: This dataset was collected from the
Book-Crossing community using a web crawler and con-
tains 278,858 users’ 1,149,780 ratings on about 271,379
books [30].

Movielens: A widely used benchmark dataset for eval-
uating collaborative filtering algorithms. We use the ver-
sion (Movielens-ml-latest-small) that contains approximately
100,836 ratings from 610 users on 9,724 movies [31], [32].

To ensure data quality, we retained users and items with
at least ten interactions [33], [39]. We divided each user’s
historical sequence Su into three parts: (1) the most recent
action Su

|Su| for testing, (2) the second most recent action

Su
|Su|−1 for validation, and (3) the remaining actions for
training. Table 1 shows the data statistics. We see that
Movielens is the densest dataset, while Amazon-games and
Book-crossing are sparse datasets.

2) EVALUATION METRICS
To evaluate the effectiveness of top-N recommendation,
we adopt two widely-used evaluation metrics [8], [34], [43]:
Recall@N and Normalized Discounted Cumulative Gain
(NDCG@N ). Recall@N measures the fraction of relevant
items being retrieved at top-N recommendations out of all
relevant items, while NDCG@N evaluates the top-N ranking
performance. By default, we set N = 10.

3) BASELINES
To demonstrate the effectiveness, we compare our proposed
SASGCN with several state-of-the-art recommendation
methods:

1) NGCF [2]: A recommendation model based on GCN
that learns the embedding vectors of users and items.
By stackingmultiple GCNs to capture the collaborative signal
in high-order connectivities, it finally predict the degree of
interest of users to items.

2) LightGCN [3]: A method that removes the feature
transformation and nonlinear activation functions in NGCF,
reducing unnecessary computations and improving the effi-
ciency and accuracy of recommendation. This also enabling
the model to have better generalization capability.

3) Caser [15]: A CNN-based method that captures higher-
order Markov Chains by applying convolutional operations
on the embedding matrix of the K most recent behavior, and
achieves sequential recommendation performance.

4) SASRec [6]: Amethod that uses self-attention to capture
‘‘context’’ in the sequence instead of traditional sequence
recommendation models that use MC and RNN. Due to the
self-attention block being suitable for parallel acceleration,
SASRec efficiently achieves state-of-the-art recommendation
performance.

5) STOSA [16]: A stochastic self-attention sequential
model for modeling dynamic uncertainty and capturing
collaborative transitivity. By introduce a novel regularization
to BPR loss, guaranteeing a large distance between the
positive item and negative sampled items.

6) BERT4Rec [22]: A method model user behavior
sequences with a bidirectional self-attention network and
introduce the Cloze task which predicts the masked items
using both left and right context.

4) PARAMETER SETTINGS
For fair comparison, we implement all models using Pytorch
with the Adam optimizer [27], the learning rate is set
to 0.001, and the batch size is set to 32. The dropout
rate is set to 0.5. The maximum sequence length n is
set to 200 for the Movielens dataset and 50 for the
other two datasets. We consider latent dimension d from
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TABLE 2. Model performance. The best performing method in each row is boldfaced, and the second best method in each row is underlined.

FIGURE 2. Effect of the latent dimensionality d on ranking performance (NDCG@10).

FIGURE 3. Effect of the head on ranking performance (NDCG@10).

{32, 50, 64, 128} and analyze the performance of the models
under different latent dimensions. All other hyperparameters
and initialization strategies are those suggested by the meth-
ods’ authors. We tune hyper-parameters using the validation
set and terminate training if validation performance does not
improve for 20 epochs.

B. PERFORMANCE COMPARISON (RQ1)
Table 2 presents the performance comparison results (with
d = 50), and we have the following observations:
NGCF and Caser perform relatively poorly across all

datasets, while LightGCN improves recommendation per-
formance by introducing lightweight modifications to GCN.

SASRec, STOSA, and BERT4Rec perform distinctly better
than Caser, suggesting that self-attention mechanism is a
more powerful tool for sequential recommendation. STOSA
employs stochastic self-attention, and BERT4Rec adopts bi-
directional self-attention, both better than SASRec which
utilizes the simple self-attention.

SASGCN not only combines the advantages of LightGCN
and SASRec, introducing lightweight graph neural networks
and self-attention mechanisms into sequential recommenda-
tions but also takes into account user rating information on
items. According to the result, it is obvious that SASGCN
performs best among all methods on three datasets in
the terms of all evaluation metrics. It achieve an average
improvement of 5.1% in Recall@10 and 3.2% in NDCG@10
compared to the strongest baselines. We conduct t-tests and
p-value < 0.02 indicates that the improvements of SASGCN
over the strongest baseline are statistically significant.

While SASGCN demonstrates lower performance on
Games and Books datasets than on Movielens dataset. This
is due to different levels of sparsity across the datasets,
with Books and Games datasets being more sparse, while
the Movielens dataset is denser. These results further
demonstrate that integrating GCN and auxiliary information
into sequence recommendation can effectively mitigate the
issue of data sparsity.

C. PARAMETER IMPACT (RQ2)
In Figure 2, we analyzed the effect of the latent dimension
d , by showing NDCG@10 of SASGCN with d from
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TABLE 3. Ablation analysis on three datasets.

{32, 50, 64, 128}. We see that our model typically benefits
from larger numbers of latent dimensions. For all datasets,
our model achieved satisfactory performance with d = 128.

In Figure 3, we compared the impact of different ‘‘heads’’
on the model performance with d = 128. We see that only
the performance on the Movielens dataset was improved
when using two heads, while the performance on Games
and Books datasets decreased. This might multi-head divides
the embedding in h subspaces (each a d/h-dimensional
space) to capture more diverse information features from
different subspaces. Due to the different sparsity levels of the
datasets, the information richness contained in the embedding
varies. For sparse datasets, only some subspaces contain
effective information, while the rest only contain ineffective
information, at this time, multi-head cannot capture more
diverse feature information but reduces the efficiency and
accuracy of information capture.

D. ABLATION STUDY(RQ3)
To compare the impact of each component in our model on
performance, we conducted an ablation study to analyze each
component separately. Table 3 presents the performance of
our default method and its three variants on all three datasets
(with d = 50). We introduce these variants and analyze their
effects:

(1) SASGCN w/o auxiliary information (ratings): Without
user ratings, only consider user-item interactions, similar to
Caser and LightGCN, the weights for items interactedwith by
users are set to 1 and 0 for the rest. This variant performs the
best among all variants, indicating that auxiliary information
has the smallest impact on the model architecture, but still
performs worse than SASGCN.

(2) SASGCN w/o nonlinear: Replace the ReLU activation
function in the feed-forward network with the linear activa-
tion function Identity. This variant performs worse than (1),
indicating that the non-linear activation function in the feed-
forward network helps themodel better capture the non-linear
relationships within the sequences and improve modeling
accuracy.

(3) SASGCN w/o SA: Removing self-attention has a
significant impact on the dense dataset Movielens. When
dealing with richer information, computing different weights
for each position in the sequence is beneficial for capturing
long-term dependencies in the sequence.

(4) SASGCN w/o GCN: Without GCN, only self-
attention is retained. Without graph embedding propagation,

higher-order collaborative signals cannot be captured. The
results show that GCN can capture richer embedding signals
to achieve better recommendation performance, especially on
sparse datasets.

V. CONCLUSION AND FUTURE WORK
In this work, we proposes a Self-Attention based Sequen-
tial recommendation with Graph Convolutional Networks,
SASGCN. It incorporates ratings as auxiliary information
into the user-item interaction graph, and utilizes high-
order connectivities in multiple layers of GCN to learn
item embeddings. To capture long-term dependencies in the
sequence, we introduce position encoding and self-attention
mechanism. SASGCN supports parallel computing, thus
achieving high efficiency and accuracy. Extensive empirical
results on two sparse datasets and one dense dataset show
that our model outperforms state-of-the-art baselines. In the
future, we plan to introduce richer auxiliary information (e.g.
behavior type, social relationship, and item tags) that does
not conflict to construct the user-item interaction graph or
express the relationship between users and items in the form
of a knowledge graph [36], to learn embeddings with richer
information. Furthermore, we are interested in exploring
the use of bidirection self-attention block for pre-training
data to capture the dynamic changes in user interests more
accurately [28], and even via reversely pre-training generated
data to alleviate data sparsity [37], [38], [40].
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