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ABSTRACT Few-shot segmentation (FSS) is a challenging task because the same class of targets in
the support and query images may have different scales, textures and background information. Prototype
learning (PL) is a current mainstream FSSmethod, which characterizes the interaction between the prototype
vector and query feature. However, the prototype vector commonly based on global average pooling only
contains first-order feature information, which is vulnerable to varying appearance of similar target and the
diversity of background. Moreover, the auxiliary information of the query image is not fully explored in
previous prototype learning methods. In this paper, we propose a dual prototype learning (DPL) based on a
second-order prototype (SOP) and self-support first-order prototype with a constraint mechanism (SSFPC)
to improve the FSS performance. The SOP can capture higher-order statistical information by averaging the
covariance matrix of the feature map. The similarity between the first-order support prototype and the first-
order self-support query prototype is introduced to boost the adaptability of the first-order prototype to the
query image. The remarkable performance gains on the benchmarks (PASCAL-5i and COCO-20i) manifest
the effectiveness of our method. Our source code will be available at https://github.com/13ww/DPL.git.

INDEX TERMS Few-shot learning, semantic segmentation, first-order prototype, second-order prototype.

I. INTRODUCTION
semantic segmentation is a fundamental problem in computer
vision. Although many studies have been conducted to
address this problem, it has not yet been completely solved.
Benefiting from deep neural networks (DNN) (e.g. Convo-
lutional Neural Network [1], Transformer [2], etc.), which
can automatically extract features, great progress has been
made recently in semantic segmentation [3], [4], [5], [6], [7].
However, these segmentation models can generally achieve
good performance only by training and optimization using
image labels with a large number of dense annotations, which
is obviously time-consuming and labor-intensive. In addition,
it is difficult for DNN based methods to effectively segment
the target that is not observed during the training process.
Thus, Few-shot Semantic Segmentation (FSS) [8], [9], which
is a novel semantic segmentation paradigm, was proposed.
The FSS model is expected to segment unseen object classes
in a query image, with the help of few annotated examples
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named support images which contain the same target class.
FSS can overcome the disadvantages of requiring a large
number of densely labeled samples and poor generalization
ability. Unfortunately, the same target information may
appear on different scales and forms in the support and query
images, which becomes the main challenge of FSS task.

How to efficiently exploit the correlation of similar
targets between the support and query image is key to
FSS task. Existing FSS methods can be roughly categorized
into two classes: prototype-based methods [10], [11], [12],
[13], [14], [15] and pixel-wise methods [16], [17], [18],
[19]. The pixel-wise method predicts a query mask by
calculating pixel-wise correlations between the paired query
and support features. The correlation can be computed via
a hyper-correlation matrix [17] or the attention mechanism
of Transformer [19]. While in prototype-based method, the
class-related information is compressed into prototypes via
masked average pooling, and the query mask is obtained
by computing the similarity between the query feature and
the prototype extracted from the support feature. Although
simulation experiments verified the effectiveness of these
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two methods, they still have some inherent flaws. For the
pixel-wise method, the computational overload is a well-
known issue, which may be much higher than that of the
prototype-based method. Thus, the prototype-based method
becomes the current mainstream for FFS task. However, the
prototype vector of the conventional prototype-based method
only contains the first-order statistics information of feature
map, so it fails to carry structural information about the object
in the image, leading to its inability to reflect the intra-class
variation of objects in the same class.

So, further research on simple and effective FSS model
has received the attention of many researcher. Recently, moti-
vated by human cognitive knowledge that pixels belonging
to the same object are more similar than those belonging
to different objects of the same class, the Self-Support
FSS model [20] was proposed. It utilized the idea of
self-support to cleverly fuse the support prototype with
the query image information. This method achieves an
encouraging improvement in segmentation accuracy at an
almost negligible computational cost and inspired us to
design a novel FSS model. The original Self-support FSS
model has two disadvantages. On the one hand, it only fuses
the support prototype with information about regions in the
query image, where the target may be present with high
confidence. The judgment of the existence of the target region
is still based on the similarity between the pixel point feature
and the support prototype; however, the good or bad quality of
the original support prototype is an uncertainty factor in this
method. If the prototype obtained from the support feature is
not an appropriate representative, it will be difficult to achieve
a satisfactory performance on the query image. On the other
hand, the prototype vector is generally extracted from the
feature map by masked average pooling, which contains only
the first-order statistics of the feature map. However, the
high-level statistical information of deep feature has been
recently proven in fine image classification problems [21],
[22] to obtain good robustness and judgment ability.
To address the problem mentioned above, we propose

a dual prototype learning based on first-order and second-
order prototypes and apply it to FSS in this paper. The main
framework of the proposed is illustrated in Figure 1. In order
to obtain a higher quality first-order prototype, we introduce
a constraint mechanism instead of simple fusion mechanism
in the prototype generation process. To make the prototype
vectors more robust and discriminative, we consider the
higher order information of the feature map into account
in the process of segmenting the image. In summary, our
contributions are as follows:

(1)We propose dual prototype learning for few shot seman-
tic segmentation, terms as DPL. The DPL simultaneously
utilizes the first- and second-order prototypes of images.

(2) The Euclidean distance between the support prototype
and query prototype vectors for the same class of goals is
introduced in the first-order prototype generation process
based on the self-support mechanism. To enhance the
robustness and discrimination of the prototype, the innovative

second-order prototype based on covariance matrix of feature
map is developed.

(3) The proposed DPL model is a lightweight architecture,
whose learnable parameters are only 0.5M. However, the
experimental results are also satisfactory and comparable to
the state-of-the-art.

II. RELATED WORKS
A. SEMANTIC SEGMENTATION
Semantic Segmentation, a fundamental task in computer
vision, aims to assign each pixel in a test image to a
predefined set of semantics. Recently, the performance of
semantic segmentation methods has significantly improved
since the pioneering work on Fully Convolutional Network
[4] (FCN). Subsequently, based on the framework of FCN,
many effective segmentation models have been proposed
to further optimize performance. In order to accurately
segment objects at multiple scales, some novel modules
or architectures have been designed, such as the dilated
convolution module for DeepLab [3], spatial or feature
pyramid module for PSPNet [23], context aggregation
module for DANet [24] or CCNet [25], and encoder-decoder
architecture for UNet [5]. Another aspect, with the successful
application of transform-based feature extraction networks
(such as ViT [2], Swin-Transform [26]) in image classifi-
cation task, image segmentation models (such as Segmenter
[27] and SegFormer [7]) based on transformer backbones
have been proposed. Although these segmentation methods
have achieved impressive performance, there are still several
inherent shortcomings in this segmentation paradigm that
hinder their practical application. Specifically, the traditional
segmentation paradigm requires a sufficiently large number
of annotated samples for training, which is expensive in
terms of both labor and material resources. Even for well-
trained models, it is difficult to generalize unseen categories
without fine-tuning. In this paper, we will discuss semantic
segmentation in few shot scenarios.

B. FEW-SHOT SEMANTIC SEGMENTATION
FSS is an applied branch of Few-shot learning (FSL)
[28], [29]. Supported by several annotated examples, the
task of FSS is to generalize the segmentation ability to
unseen categories. FSS method generally follows the metric
learning framework, which is a classic FSL paradigm.
In order to efficiently pass the annotation information of
unknown targets and interact among the extracted features,
the typical method usually adopts a two-branch structure,
i.e., support branch and query branch. Specifically, the
basic steps of this method include: Step 1, each class is
represented by a prototype vector in support branch; Step 2,
the similarity between the pixel of the query feature and the
prototype is utilized to guide the query image segmentation.
Starting from the seminal work of OSLSM [8], quite a
few optimized or improved versions of prototype-based
method have been proposed. For example, CANet [14]
pointed out that more relevant information conducive to
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network generalization can be captured if the prototype vector
is computed using intermediate-level semantic information
from pre-trained convolutional blocks instead of high-level
semantic information. In order to cover as much as possible
the difference in appearance between support sample and
query sample, PMMs [13] generated multiple prototypes for
the same class. PFENet [11] firstly utilized general high-level
semantic feature to generate priori information for the model,
and then adaptively interacted the priori information with
cross-scale information to enrich the query feature. BAM [30]
applied an additional branch (base learner) to the traditional
FSS model (meta-learner) to explicitly identify base class
targets (i.e. regions that do not need to be segmented). The
output of these two learners in parallel were then adaptively
integrated to produce accurate segmentation prediction. In the
opposite direction, NTRENet [31] proposed an untargeted
region (background and distracting object region) elimination
network to address the FSS task. Similar to the attention
mechanism in the transformer network [32], ProtoFormer
[33] considered the target prototype as a query, and the query
feature as a key and value, to compute the similarity between
the query feature and the target prototype.

Instead of the support prototype, the support pixel feature
is used to determine whether the image block corresponding
to the support feature belongs to the target region or not. And
under the guidance of this idea, some FSS algorithms based
on pixel-wise information have been proposed. For example,
in DAN [18] and PGNet [34], the graph attention network
was utilized to establish the relationship between all support
pixel features and query features. In HSNet [17], Hyper-
correlation between features at different levels in the support
image and the query image was modeled, processed, and
interpreted through a center-pivot 4D convolutionmatrix. The
pixel-wise method is superior to the prototype-based method
in performance, but the computational effort of the former
is huge. Therefore, some compromise methods that utilize
the interaction between the query and support branches have
recently attracted much attention. For example, through the
mechanism that the query prototype guides the support image
segmentation, PANet [10] guaranteed prototype alignment
between the support and query image. CRNet [35] designed
a cross-reference network that measured the relationship
between the query image and the support image; the model
can better find the object that appears in both images at
the same time. SSP [20] proposed a self-support matching
strategy to address the intra-class discrepancy problem in
the support-query matching. In SRPNet [36], considering
the dissimilarity of the target in the support and query
images, fidelity or uncertainty was considered in the process
of generating query image segmentation masks using the
support prototype.

III. METHOD
A. PROBLEM DEFINITION
Given a few amount of labeled data, the goal of FSS is to
segment the objects of one class using the model generalized

from the other classes. Specifically, given two datasets Dtrain
and Dtest , they are disjoint in terms of the object category.
The model trained on Dtrain is expected to generalize on
Dtest . The meta-learning paradigm is used to train FSS
model and the approach is generally known as episodic
training. Specifically, both sets (Dtrain,Dtest ) are composed of
numerous randomly sampled episodes. Each episode consists
of a support set S =

{(
I is,M

i
s
)}k
i=1 and a query set Q ={(

Iq,Mq
)}

with the same categoryC , where I i andM i denote
the original image and its corresponding binary mask for
the category C . Under the supervision of the ground truth
binary maskMq, the model is trained by predicting the binary
mask of Iq with the support set S and the query image Iq.
After training on the Dtrain, we can evaluate the FSS model
performance on Dtest by traversing all test episodes.

B. METHOD OVERVIEW
We propose a dual prototype learning that fuses the first-order
and second-order statistical information of feature map. The
framework of our method, termed as DPL, is shown in
Figure 1. The DPL comprises two modules: a second-order
prototype (SOP) and a self-support first-order prototype with
a constraint mechanism (SSFPC). The support image Si and
query image Qi are fed into the shared backbone to obtain
their mid-level features (Sf and Qf ) respectively. On one
hand, Sf and Qf are input into the double-feature (DF)
module to acquire Sdf and Qdf , and there are covariance
tensors (second-order statistical information) of Sf and Qf .
Subsequently, Sdf is abstracted into Sdp via a masked average
pooling operation (MAP) associated with the support mask.
On the other hand, Sf can be abstracted into a first-order
prototype Sp via MAP also. The target mask of the query
image M̃askq is obtained by matching Sp and Qf , and
then the foreground feature prototype Qfp is obtained by
multiplying M̃askq and Qf . The first-order support prototype
Sp is further constrained and optimized by measuring the
similarity between Sp and Qfp. Finally, Sp and Sdp are applied
to segment the query image separately, the segmentation
result is obtained by fusing the segmentation information
from the two sources.

C. SECOND-ORDER PROTOTYPE
The second-order prototype is obtained by compressing the
covariance matrix information of the depth features. When
an image passes through the CNN, we can assume that the
size of the feature map is (C,H ,W ). C is the number of
channels,H andW denote the height and width of the feature
map, respectively. The support feature Sf is multiplied with
foreground mask Masks to obtain the support foreground
feature Sff , which can be described by,

Sff = Sf ⊙Masks (1)

where ⊙ represents Hadamard product.
By taking the outer product of the transposed matrix and

the original matrix, the second-order statistical information
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FIGURE 1. Overview architecture of the DPL, which is composed of three components: a shared backbone, second-order prototype module
and self-support first-order prototype with constraint mechanism. SOP is obtained by compressing the covariance of feature map obtained by
DF module, SSFPC is obtained by adding a constraint mechanism to between the support prototype Sp and the query foreground prototype
Qfp. Finally, we use the DPL to perform matching with query features.

FIGURE 2. DF module process.

of the matrix can be obtained [37]. Based on this result, the
double-feature (DF) module for calculating the covariance of
the feature map was designed, as shown in Figure 2. In order
to conveniently calculate the covariance of the feature map,
such as Sff , we convert the dimension of Sff from (C,H ,W )
to (C,H ×W ) in our DF module firstly. Then, if Sffi denotes
the feature vector of one channel after dimension conversion,
the covariance Sdfi can be calculated as the following Eq (2).

Sdfi = STffi ⊗ I ⊗ Sffi (2)

where STffi represents the transposed matrix of Sffi, i is from 1
to C , ⊗ means matrix multiplication, I is unit matrix.
Further, the second-order prototype value Sdpi on one

channel is obtained by averaging all the variance values of

Sdfi, which is formulated as,

Sdpi =
1

MN ×MN

MN×MN∑
j=1

Sdfij (3)

where Sdpi forms a C-dimensional second-order prototype
vector Sdf , i ranging from 1 to C .
The covariance vector Qdfi of the query foreground feature

Qffi can be calculated similarly to Eq (2), and is expressed as
Eq (4).

Qdfi = QTffi ⊗ I ⊗ Qffi (4)

where Qdfi forms the covariance tensor Qdf of the query
feature and QTffi represents the transposed matrix of Qffi.
Now, we assist in segmenting the query image by

measuring the distance between Sdp and each of the
C-dimensional covariance vectors in Qdf .

D. SELF-SUPPORT FIRST-ORDER PROTOTYPE WITH
CONSTRAINT MECHANISM
Generally, pixels of the same object are more similar
to each other than those belonging to different objects
of the same category. Based on this common sense, the
self-support FSS method [20] was proposed. The method
firstly utilized the support prototype to segment the query
image into foreground and background. Then, the foreground
and background features of the query image were abstracted
into the prototype. Finally, they were fused together with
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the support prototype to obtain the self-support first-order
prototype. Although this method effectively improves the
segmentation accuracy, it has two shortcomings. Firstly,
the background information of the image is complex and
variable, and the stability of the corresponding background
feature information is also poor. Therefore, it is not suitable to
incorporate the background feature information of the query
image into the process of optimizing the support prototype.
Secondly, the support prototype based on the simple fusion
mechanism is weakly adaptive to the query image, so some
types of constraint mechanism can be introduced to control
the difference between prototype information in the support
feature domain and the query feature domain. Based on
the previous analysis, we designed a self-support first-
order prototype with a constraint mechanism. The realization
process is briefly described as follows.

Firstly, the product of the support feature Sf and foreground
mask Masks is abstracted into the support prototype Sp by
MAP. It can be described as Eq (5),

Sp = MAP(Sf ⊙Masks) (5)

Then, Sp is used to estimate the query mask Maskq by
comparing the cosine similarity with query feature Qf . It can
be expressed as Eq (6),

Maskq = softmax(cos(Sp,Qf )) (6)

And then, to obtain the high-confidence query prediction
mask M̃askq, a threshold operation is performed onMaskq as
shown in Eq (7) and Eq (8).

M̃askq = T (Maskq) (7)

T (x) =

{
1 x ≥ τfg x ∈ foreground
1 x ≥ τbg x ∈ background

(8)

where τfg is set to 0.7, and τbg is set to 0.6. The analyses and
values of τfg and τbg are presented later.
Subsequently, we obtain query foreground prototype Qfp

from M̃askq and Qf like Eq (5). Finally, we use cos (Sp,Qfp)
to further constrain the similarity between Sp and Qfp, which
makes Sp more suitable for query images.

E. TRAINING LOSS
Our training loss originates from three types of supervised
information. Firstly, we applied the training supervision to the
prediction mask based on the optimized first-order prototype
Sp. It can be described as,

Lm = BCE(cos(Sp,Qf ),GQT ) (9)

where GQT is the ground-truth mask of the query image and
BCE is the binary cross entropy loss.

Secondly, we applied the training supervision on the pre-
diction mask based on the optimized second-order prototype
Sdp. It can be expressed as,

Ldf = BCE(cos(Sdp,Qdf ),GQT ) (10)

Thirdly, to constrain the similarity of Sp and Qfp, we add
the supervisory loss part as shown in Eq (11).

Lsp = 1 −
∥∥softmax(cos(Sp,Qfp))∥∥ (11)

where the more similar Sp and Qfp are, the smaller the Lsp
value is.

Finally, we trained our model in an end-to-end manner by
jointly optimizing all the aforementioned losses as shown in
Eq (12).

L = λ1Lm + λ2Ldf + λ3Lsp (12)

where λ1 = 0.8, λ2 = 0.1, λ3 = 0.1 are the loss weights.

IV. EXPERIMENTS
A. DATASETS AND METRICS
We conducted some experiments on two standard benchmark
datasets: PASCAL-5i [8] and COCO-20i [38]. PASCAL-5i is
constructed based on PASCAL VOC 2012 [39] and equipped
with SDS [40] annotation; PASCAL-5i contains 20 object
classes. COCO-20i is constructed based on MSCOCO [41]
and contains 80 object classes. Following the convention,
the object classes of these two datasets are evenly divided
into four groups for training and testing in a cross-validation
manner; i.e., any three groups are selected as the training set,
and the remaining group is used as the test set. During the
testing phase, we randomly selected 1000 of these support
and query image pairs to evaluate our method DPL.We adopt
the mean intersection over union (mIoU) as metric to evaluate
our model. mIoU is the average value of IoU for all the target
categories of the current fold.

B. IMPLEMENTATION DETAILS
In our implementation, ResNet-50/101 [1] backbone net-
work, pre-trained by ImageNet, was used. The parameters
of the backbone were frozen and the parameters of the other
layers were initialized according to the Pytorch setting. SGD
was used to optimize our model with 0.9 momentum and
1e-3 initial learning rate, which decays by 10 times every
2000 iterations. Each training batch contained four support-
query pairs. The model was trained on both PASCAL-5i

and COCO-20i for 20 epochs. During the training phase,
all images and masks were directly resized or cropped into
(473, 473), and data augmentation strategies were used for
training. During the test phase, we resized the predicted
mask to the original image size to facilitate the assessment.
Our model was implemented in PyTorch framework and
conducted on 3090 GPUs.

C. COMPARISON WITH STATE-OF-THE-ARTS
To verify the feasibility and validity of our method, we con-
ducted extensive experiments under different backbones
(ResNet-50 and ResNet-101), different few-shot settings (1)-
shot and 5-shot) and different datasets (PASCAL-5i and
COCO-20i). We compared our DPL model with some SOTA
methods. Detailed quantitative assessment data as mIoU is
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TABLE 1. Performance comparison with other state-of-the-art methods on PASCAL-5i in mIoU. The best and second best results are indicated with bold
and underline respectively.

TABLE 2. Performance comparison with other state-of-the-art methods on COCO-20i in mIoU. The best and second best results are indicated with bold
and underline respectively.

shown in Tables 1 and 2, and the results of the other methods
were obtained from the relevant original papers. Although
our method did not achieve new state-of-the-art performance
on these two datasets, it was still highly competitive in some
specific scenarios.

1) PASCAL-5I

As shown in Table 1, under the ResNet50 backbone, our
DPL method was inferior to MLC [42] and IMPT [43] in
1-shot setting. However, it outperformed MLC and IMPT
by 3.3% and 1.2% of the mean mIoU in 5-shot setting
respectively. Under the ResNet101 backbone, our model
did not perform as well as VAT [44] in the 1-shot setting.

However, it outperformed VAT by 1.1% of the mean mIoU
in 5-shot setting. It can be observed that the performance of
our model improved significantly as the number of reference
sample increases. Replacing ResNet50 with ResNet101
substantially improved the performance of DPL, which was
consistent with the results of other methods. It was worth
noting that our DPL achieved very competitive performance
with relatively few learnable parameters.

2) COCO-20I

This benchmark contains multiple objects in a query image,
and similar objects are more different in size, shape, and
viewpoint, which greatly challenge the generalization ability
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TABLE 3. Ablation study on the effect of DPL for 1-shot and 5-shot segmentation on PASCAL-5i and COCO-20i using the mIoU. The better performance is
indicated with bold.

TABLE 4. Ablation study on the effect of SOP and SSFPC for 1-shot and 5-shot segmentation on PASCAL-5i and COCO-20i using the mIoU.

FIGURE 3. Qualitative results of DPL and the baseline for 5-shot
segmentation on PASCAL-5i .

of FSS. As shown in Table 2, whether equipped with ResNet-
50 or stronger ResNet-101, our approach could obtain
comparable or competitive results. Although our model was
slightly inferior to HSNet in terms of mIoU, the number
of parameter in our model was approximately half that of
the HSNet model. Moreover, under the ResNet50 backbone,
our DPL significantly outperformedHSNet by approximately
12.6% of mIoU on fold0. Under the ResNet101 backbone,
we also found similar conclusions.

D. ABLATION STUDY
We designed a baseline model that constructs a self-support
first order prototype based only on object foreground
information in the query image, the baseline was different
from SSP [20]. To verify the effects of SSFPC and SOP,

FIGURE 4. Qualitative results of DPL and the baseline for 5-shot
segmentation on COCO-20i .

we compared our DPL with the baseline model from two
perspectives. Firstly, when using ResNet50 as backbone, the
quantitative comparison results for 1-shot and 5-shot segmen-
tation on PASCAL-5i and COCO-20i are given in Table 3.
It can be observed that our DPL boosts the baseline 0.7% and
0.6% of the mean mIoU for 1-shot and 5-shot segmentation
on COCO-20i respectively. Similar improvement result on
PASCAL-5i validates the effectiveness of our two proposed
modules. Our cost is an increase of approximately 0.5M
learnable parameters. Secondly, the backbone network still
uses ResNet50, the qualitative comparison results for 5-shot
segmentation on PASCAL-5i and COCO-20i can be seen in
Figure 3 and Figure 4. As shown in Figure 3, the baseline
method sometimes only predicts part information of the target
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FIGURE 5. The influence of τfg and τbg values on experimental results.

TABLE 5. As for the value experiment of λ1, λ2, λ3, the experimental
backbone network is ResNet50, and the data set is PASCAL-5i .

object, and sometimes incorrectly predicts some non-target
region as the target object; we are pleased to find that our
DPL can alleviate such problems in the baseline model to
some extent. The same conclusions can also be drawn from
the analysis of Figure 4.

SSFPC and SOP are two key modules in our proposed
architecture. They were designed to enrich feature infor-
mation carried by the prototype and enhance prototype
adaptation. In order to assess the contribution of each
module, we selectively removed the individual module and
conducted experiments on tailored models. The results of
the ablation experiments are shown in Table 4. Under the
ResNet50 backbone, the SOP module improves the mIoU
metrics by approximately 0.6% and 0.2% in 1-shot and
5-shot respectively, and the SSFPC module improves by
approximately 0.5% and 0.3%. The method that incorporates
two modules (DPL) has a greater improvement in mIoU
metrics than the method that incorporates a single module.

E. HYPER-PARAMETER EXPERIMENTS AND ANALYSIS
In this section, we discuss the setting of the relevant hyper-
parameters. First, we explain the formula (8).Maskq has two
channels, respectively foreground and background channel.
Each element x in the foreground channel represents the
similarity of the corresponding position between the query
set and the foreground prototype. The value of x ranges
from 0 to 1, and the larger the value, the more similar it is
(the same applies to the background). In our method, we used
the foreground threshold τfg and background threshold τbg
respectively. In the foreground channel, if the element x is
greater than τfg, it is regarded as the foreground pixel (x = 1);
in the background channel, if the element x is greater than τbg,

it is considered as the background pixel (x = 1). To explore
the impact of threshold values on our model, we design
experiments with reference to SPP [20], and the experimental
results are shown in Figure 5. We can know that the result is
better when τfg in {0.7, 0.8}, τbg in {0.6, 0.7}. Because we
require foreground features with high confidence, so τfg is
relatively high. While the background is mixed, so τbg is low.
And in this paper, we set τfg to 0.7, τbg to 0.6 respectively.
Next, we discuss the three hyper-parameters in for-

mula (12). We design experiments to determine the values of
λ1, λ2, λ3. As shown in Table 5, the experimental result is the
best when {λ1, λ2, λ3} are set to {0.8, 0.1, 0.1} respectively.

V. CONCLUSION
In this paper, we propose a novel dual prototype learning
incorporating first-order and second-order prototypes. The
dual prototype carries more information than the first-
order prototype, which can effectively alleviate the incorrect
segmentation of similar targets with varying appearances and
background. The robustness of the first-order information
in our method is also enhanced by introducing a constraint
mechanism between the support and query prototype. The
experimental results substantiate the effectiveness of the
proposed DPL, and the in-depth analysis further illustrates its
advantages. Possible future work includes analyzing working
mechanism of DF module and extending DPL to few-shot
multi-class segmentation.
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