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ABSTRACT Recently, there has been an increased interest in additive manufacturing (AM) for its potential
to reduce costs and lighten the weight of manufactured parts. However, materials produced through AM
are prone to defects that can significantly impact their fatigue resistance. Identifying fatigue failure sources
is crucial for the characterization of critical manufacturing defects, especially for the future use of AM in
main load-bearing structural parts. This requires conducting fatigue tests and manually inspecting fracture
surfaces. In this research, we introduce an innovativemachine-learningmodel designed to detect the initiation
defects causing fatigue cracks in Titanium Ti-6Al-4V samples manufactured by selective laser melting
(SLM). The model also measures the distance between the detected fatigue failure source and the surface
of the material. Our approach involves initially segmenting out areas without initiation points, and then
identifying these points in the remaining areas. We then use established computer vision techniques to
calculate their distance from the surface. The results of our study highlight the significant potential of using
machine learning and computer vision to automate fractographic analysis. This advancement could greatly
improve the speed and efficiency of this process, marking a new phase of productivity in the field. This
research not only furthers artificial intelligence by introducing an innovative method but also may possess
important applications in engineering.

INDEX TERMS Additive manufacturing, computer vision, fatigue failure, fractography, deep learning.

I. INTRODUCTION
Fractographic analyses are conducted subsequent to material
failure to identify the primary causes of failure and extract
insights for informing future structural integrity designs. This
process is time-intensive and necessitates the expertise of
professionals for precise measurements and comprehension.
By delineating the underlying reasons for failure, it becomes
plausible to anticipate failure through non-destructive meth-
ods. To achieve this objective, access to fractographic data is
imperative, and the analysis procedure must be streamlined
and automated.

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidonia Lefkovits .

In this study, we introduce an algorithm designed to
facilitate detection and preliminary geometrical characteri-
zation. This algorithm represents the initial stride towards
autonomous fractography defect characterization.

Section I-A furnishes an introduction to the examined
material and underscores the significance of the analysis.
Subsequently, Section I-B outlines the contributions of the
proposed algorithm. Lastly, in Section I-C, the structure of
the paper is delineated.

A. BACKGROUND, RESEARCH GAP, AND SCOPE
Additive Manufacturing (AM), also known as 3D-printing,
is a manufacturing technique where parts are fabricated
layer by layer as opposed to traditional manufacturing
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methods [1], [2]. In traditional methods, subtractive manu-
facturing (SM) is used [3], [4]. In SM, excess material is
removed from a larger block until the desired dimensions
are reached. The potential to fabricate customized parts with
complex geometries and low buy-to-fly ratios is enabled
with AM for all manner of industries, in general, and
for the aerospace industry, in particular. In recent years,
these techniques have been implemented to produce various
parts for aircrafts. However, AM has not been used to
manufacture load-bearing elements due to the lack of
knowledge regarding the fatigue behavior of these materials.
Furthermore, previous studies [5], [6], [7], [8], [9] have
shown that AM materials have a high defect concentration
which negatively affects their fatigue performances compared
to materials produced by traditional methods [10]. Currently,
there are no regulatory guidelines for disqualifying faulty AM
parts during manufacturing.

Selective laser melting (SLM) is an AM method in which
metallic powder is deposited in thin layers onto a work
surface and then selectively melted using a laser [11].
This process is repeated until the fabrication of the part is
complete. However, the uneven melting, rapid heating and
cooling, and other processes involved in AM can result in
high concentrations of defects, including porosity, lack of
fusion (LOF), and inclusions [12], [13]. These defects can
be present on both the surface and interior of AM parts,
and they can act as stress concentration sites, which may
lead to fatigue crack formation and premature failure of
the part. Additionally, microstructural features such as grain
boundaries [14] may also act as stress concentration sites,
resulting in seemingly random initiation sites for fatigue
cracking.

Quality control during manufacturing and monitoring
throughout the lifespan of AM parts primarily relies on
Non-Destructive Testing (NDT) such as Acoustic emission,
ultrasonic, Computer Tomography (CT) etc. [15]. To enhance
the understanding of NDT results, Destructive Testing (DT)
including fatigue tests followed by fractographic analysis
[16] is deemed essential and mandatory. In order to perform
fractographic analyses, the fracture surfaces of the tested
specimens are scanned with a scanning electron microscope
(SEM) [17]. Note that in order to capture SEM images,
a microscope operator must manually focus on regions of
interest (ROI) on the fractured surface. Moreover, capturing
a SEM image is time-consuming. Subsequently, experts in
the field of failure of materials are required to examine
and measure visual data from the scanned surface of the
specimen. Among the measured data are the location and size
of the fracture initiation site, as well as the various stages of
failure.

The aim of this research is to perform an automated
analysis of fatigue DT results for AM specimens. The
acquired defects characterization will be utilized for the
independent identification of critical defects through NDT.
This study comprises multiple phases. The initial phase,
elaborated upon in this paper, focuses on extracting essential

insights from SEM images of the fractured surface. These
insights encompass defect identification, precise geometric
analysis, and determination of defect type and its specific
location within the specimen. Subsequent phases will incor-
porate machine learning techniques to establish a more
profound comprehension of the interconnection between
characteristics derived from SEM images, Micro-CT scans
[18], and manufacturing parameters concerning the fatigue
lifespan of the specimen.

In this paper, a computer vision model [19] is proposed
which may significantly reduce the time required for
scanning and analyzing fractographic data. The model was
trained for fatigue failure of SLM Ti-6Al-4V specimens.
This titanium alloy, known as α − β titanium [20],
possesses exceptional properties such as high specific
strength and remarkable resistance to corrosion. It stands
as one of the most widely employed titanium alloys for
AM, finding application in numerous fields where low
density and outstanding resistance to corrosion are essen-
tial requirements. With the proposed model, autonomous
detection of the ROI in each specimen will be enabled and
used to perform additional SEM scans with a decreased
Field of View (FV) for the same fracture surface only.
The detection of the ROI will be followed by automatic
measuring of attributes in the fractured surface so that
only supervision of the process and measurements is
required.

The model proposed in this study includes a two-step
approach for detecting the fatigue crack initiation site in
SEM images. In the first step, ResNet152 [21] architecture
was used as a binary classifier to filter out image sections
that do not contain the initiation site. In the second step,
a YOLOv5s [22] model was trained on the remaining image
sections to detect the initiation site and identify the cause of
failure. Finally, the distance between the initiation site and
the surface of the specimen was computed using standard
computer vision techniques.

B. CONTRIBUTION
This paper offers a computer vision approach for performing
fractographic analyses of AM materials, namely, detecting,
classifying, and measuring the initial cause of failure. The
contributions of this paper can be summarized as follows:

• Increasing amount of conducted studies. The quicker
and more cost-effective analysis would facilitate addi-
tional studies and failure analyses of the fatigue behavior
of AM materials. This, in turn, would enhance our
understanding of the fatigue performance of these
materials, enabling the development of a data control
system capable of distinguishing between critical and
non-critical defects. Such characterization could be
utilized for part disqualification using NDT and promote
their increased integration into the design process.
Moreover, the reduction in expert man-hours required
for the fractographic analysis significantly lowers the
economic cost associated with the process.
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• Efficient time exploitation. Performing complete
fractographic analyses is a time-consuming process.
Capturing SEM images of the fractured surface and
measuring relevant attributes is a particularly laborious
task. Implementation of an autonomous detection model
can effectively reduce the time required for the capture
of SEM images. Furthermore, such a model would
enable near-instantaneous measurement of attributes,
streamlining the analysis process considerably.

• Reduction of usage in content-experts. To perform
fractographic analyses experts are required. First, a SEM
operator with knowledge of the regions of interest in the
fractured surface is essential. Additionally, a materials
failure expert is needed to classify the image and
determine which measurements are necessary. With
the implementation of an autonomous model, the need
for the involvement of experts in the SEM scanning
procedure and in the analysis process will be signifi-
cantly reduced. The role of the SEM operator would
be limited to placing and removing the specimens from
the microscope, while the materials failure expert would
only need to validate the identification, classification,
and measurements of the ROIs as obtained from the
model.

• Enabling repeatable analyses. One of the significant
drawbacks of manually measuring attributes in images
is the potential for human bias to influence the mea-
surements. If measurements are conducted by different
individuals or even by the same person at different
times, variations in the measured values are likely
to occur. In contrast, a deep learning model would
consistently retrieve the same measurements, enabling
easier comparisons between different specimens and
experiments. This can help reduce the influence of
human bias on the analysis process.

C. PAPER STRUCTURE
The remainder of this paper is structured as follows: In
Section II, related work regarding both fatigue failure of
AM materials and applications of Deep Learning based
computer vision are presented. The datasets and approach
employed in order to detect initiation sites and measure their
distance from the outer specimen perimeter are described
in Section III. The results from each step of the detection
process are presented in Section IV. Finally, in Section V,
a fundamental discussion, concludes, and summarizes the
proposed approach.

For ease of reading, a list of abbreviations is provided in
Table 1.

II. RELATED WORK
Additive manufacturing (AM) techniques, which have a
history dating back to the 1980s, have experienced a
surge in popularity in recent times, primarily attributed to
advancements in powder bed technologies [23]. Presently,
AM is widely employed across various industries, such as

the medical field [23], [24], automotive sector [25], [26], and
aerospace domain [27], [28].

Similar to any novel material, comprehending the mechan-
ical properties of AM materials is crucial for their successful
integration into the design process, particularly when com-
pared to materials fabricated using conventional techniques.
Consequently, numerous studies have been conducted with
the aim of gaining a deeper understanding of these materials.

TABLE 1. List of abbreviations.

Edwards and Ramulu [5] found that the tensile properties
of as-built AM materials can be comparable to those of
as-cast materials. However, the same study found that AM
materials exhibit significantly lower fatigue performance.
This decrease in fatigue performancewas attributed to various
factors, including poor surface finish, internal porosity, and
residual stresses [29], [30]. Nevertheless, post-manufacturing
heat treatments such as Hot Isostatic Pressing (HIP) [31]
have been demonstrated by [9] and [32] to mitigate residual
stresses and reduce porosity in these materials thereby
improving there mechanical properties.

Fatigue performance of materials is typically evaluated
through two approaches: fatigue crack propagation [33] and
fatigue life assessment [34]. Leuders et al. [6], [8] conducted
studies on heat-treated SLM Ti-6Al-4V and observed that
its crack propagation performance was comparable to that of
wrought materials. However, they found that the fatigue life
of SLM Ti-6Al-4V was lower and exhibited higher variance
due to the presence of internal pores. Additionally, they
established a correlation between the size of defects and their
distance from the surfacewith the fatigue life of the specimen.

The primary approach to better define the variance in
fatigue life of AM materials involves examining the defects
in materials and establishing criteria for their measurement.
This approach, demonstrated by [35] and extensively dis-
cussed by [36], plays a significant role in understanding the
fatigue behavior. This method proposes an effective area of
defect which better characterises its effect on the mechanical
properties of the material. However, a notable challenge
associated with this approach is the requirement for manual
measurement of characteristics, such as area of the defects
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and their distance to the surface, as shown in Fig. 1. Manual
measurement of these characteristics can be time-consuming.
On the other hand, a secondary approach, as demonstrated
by [37], focuses on exploring the anisotropic nature of
‘‘defect-free’’ materials. In their probabilistic model, fatigue
cracks initiate in ‘‘weak’’ grain boundaries. While valuable,
this approach is not as prominently utilized for assessing the
fatigue life of AM materials as they contain a significantly
higher occurrence of defects relative to SM materials.

The correlation between geometrical features of critical
defects and fatigue performance has the potential to establish
an algorithmic foundation for the nondestructive fatigue
evaluation of additive manufacturing products. In a previous
study [38], an integrated data-driven analytical framework
was proposed for defect criticality in laser beam powder bed
fusion (L-PBF) based on SEM scans of fatigue fractured
surfaces. The results demonstrated strong relationships
between defect features and fatigue life, achieving a lowmean
absolute percentage error of 0.101 using kernel support vector
regression (SVR). While this framework shows promise in
enhancing our understanding of defect-fatigue relationships,
it still relies on manual detection and measurements of
initiation sites and geometrical features. This study intro-
duces tools that aim to address the measurement challenges
associated with the primary approach, offering potential
solutions to streamline the analysis of fatigue life in these
materials.

Using computer vision models for fractographic analysis
is a fairly new field previously employed in [39] and
[40] for examining quasi-static fracture. In [39], a VGG16
model in a U-net architecture [40], [41] was used in order
to segment intergranular and transgranular fractures in a
ceramic material. They were able to achieve a total mean
Intersection over Union (IoU) that was > 91% for two
different materials. In [42], unsupervised learning [43] was
employed on a clustering algorithm in order to classify SEM
images based on tungsten composition achieving accuracy
that was greater than 90%.

ResNet152 [21] and YOLOv5 [22] are two models that
have previously been shown as effective tools for image
prediction and object detection [44], [45], [46]. In [44],
ResNet152 was used as part of an algorithm that predicts the
surface morphology of SEM images. In [45], a ResNet-based
RetinaNet model was employed to detect defects in SEM
images of semiconductors and concluded with promising
results. TheYOLOv5model was used in [46] to detect defects
in steel surfaces, as a base for a real-time detector, achieving
a mean average precision (mAP) of 0.752.

In this study, a two-step approach is proposed for detecting
the fatigue crack initiation site in SEM images. In the initial
step, a binary classifier based on the ResNet152 architecture
is employed to filter out image sections that do not contain
the initiation site. Subsequently, the remaining image sections
are used to train a YOLOv5s model, which accurately detects
the initiation site and identifies the cause of failure. Finally,
standard computer vision techniques are applied to calculate

the distance between the initiation site and the specimen’s
surface.

III. FRAMEWORK
In this section, the dataset and framework of the algorithms
used in this study are presented. An illustration of the full
framework is shown in Fig. 2. The figure consists of four
stages. In the first stage, SEM images of the fractured
specimens are divided into an 8 by 8 grid. Subsequently,
a binary classification is performed to detect anomalies in
the sub-images. In the third stage, YOLOv5 is employed for
the detection and classification of each type of ROI using the
previously detected images. Finally, the identified anomalies
are incorporated into the whole image, and the distance from
the center and outer surface of the specimen is calculated.

Between each step in Fig. 2, the data used is prescribed.
In Section III-A, an explanation of the pre-processing
procedure to obtain the data used, as well as the dataset
employed in each step of the analysis, are presented. Then,
in Section III-B, the architecture of ResNet152 is discussed.
The methods for training of ResNet152 and YOLOv5 models
are described, respectively, in Sections III-C, and III-D.
Finally, the algorithm used to compute the distance from the
initiation site to the outer surface of the specimen is presented
in Section III-E.

A. DATASETS
This study utilized SEM images of the entire fractured sur-
faces of Ti-6Al-4V SLM fatigue specimens. The specimens
were manufactured and tested in high cycle fatigue (HCF)
in [8], following the ASTM E466-15 standard [47]. Such
tests determine S-N curves by measuring fatigue life related
to various maximum stresses and stress amplitudes. The
specimens tested in [8], were manufactured with varying
properties and subjected to a maximum cyclic fatigue stress
of 634 MPa at a cyclic stress amplitude of 0.1. The maximum
stress applied in the tests was chosen in the expected HCF
region of Ti-6Al-4V. The fatigue life measured for each
specimen, as well as additional mechanical properties and
data regarding the manufacturing process, may be found
in [8]. Note that in the case of AM parts, variability in
the fatigue life among different specimens is expected,
as observed from the results in [8]. To investigate the reasons
behind this variability, fractographic analyses are required to
identify and characterize the sources of failure in each tested
specimen.

It is important to note that to conduct accurate fracto-
graphic analyses and pinpoint the failure source, specialized
experience and skills are essential. The saturation lines
within the model point toward the location of the failure
source. Just as an expert would identify the source based on
the fractographic surface and differentiate between material
inherent defects, which may not be the primary cause of
failure, and those that are, the model proposed here enables
the detection of defects that were the cause and source of
failure.
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FIGURE 1. Method for measuring defect effective area as proposed by [35].

FIGURE 2. Visualization of the entire framework used in this study. The first step (top left) involves splitting each SEM image into 64 images using an 8 by
8 grid. Next (bottom left), ResNet152 is trained as a binary classifier to detect images containing the fatigue crack initiation site. In the third stage
(bottom right), YOLOv5 is trained to detect defects in the images predicted by ResNet152 to contain the initiation site. Finally (top right), the distance
from the center of the ROI detected by YOLOv5 to the outer rim of the specimen is computed.

A total of 36 specimens were examined with 65 images of
the fractured surfaces used. Three specimens were excluded
from the training dataset because their entire fractured
surfaces exhibited defects resulting from intentionally poor
printing parameters used for these specific specimens.

Additionally, another image was not utilized due to damage
inflicted upon the fractured surface after the fatigue test. The
images used had a resolution of 4096 × 4096 pixels and
a view field of 5.5 mm. With an approximate pixel size of
1.34 µm. An example of one SEM image is presented in
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Fig. 3a. Additional examples of images of the entire fractured
surface are shown in V. The full datasets used in this study
will be provided on demand.

To identify the fatigue failure source a comprehensive
approach was used including training of ResNet152 and
YOLOv5 models using SEM images of fractured SLM
Ti-6Al-4V fatigue specimens. The images used for training
were classified into distinct categories based on their
characteristics. For the ResNet152 model, the classification
was between images containing the fatigue crack initiation
site and those without. This initial step was crucial in filtering
out areas irrelevant to fatigue crack initiation. The subsequent
training of the YOLOv5 model further refined this process.
Here, images predicted by ResNet152 to contain the initiation
site were annotated with four specific labels: ‘‘no initiation’’,
‘‘LOF’’, ‘‘random’’, and ‘‘surface defect’’. This labeling
system was key to distinguishing between different types of
defects and damage.

(1). ‘‘No initiation’’ labeled images helped in identifying
regions without any fatigue initiation. (2). ‘‘LOF’’ (Lack of
Fusion) defects were specifically marked to identify a com-
mon defect in SLM-manufactured specimens. This category
may include pores as well. (3). The ‘‘random’’ category
encompassed initiation sites that were not identifiable as
specific defects at the given resolution, likely indicating
weaker grain boundaries rather than explicit defects. (4).
‘‘Surface defect’’ was a crucial label for identifying defects
on the specimen’s surface, including LOF defects and other
surface damages.

Through this detailed classification and training process,
the models were equipped to discern the fatigue crack
initiation sites from other types of defects and damages,
including corrosion and impact damage. The combination of
high-resolution SEM imaging, precise labeling, and advanced
machine learning models enabled accurate identification and
differentiation of these various aspects in the specimens.
This methodology ensures that the analysis is focused
on fatigue crack initiation, providing valuable insights
into the fatigue properties of SLM Ti-6Al-4V specimens
while effectively accounting for other types of material
anomalies.

TABLE 2. ResNet152 dataset composed of 4160 images (8 by 8 grid of the
65 examined specimen interfaces) split into anomaly and no anomaly
sets. The number of tagged images used for model training was
approximately 81.5% and for testing 18.5%.

To train the ResNet152 model, after histogram equaliza-
tion, the images were split into a training set of 53 images
and a test set of 12. Each image was further split into
64 smaller images, each of size 512 × 512 pixels which is
depicted in Fig. 3b. In Fig. 3c, an example of one of the split

images is presented. The images were then classified into
two categories: those containing the fatigue crack initiation
site and those without. The training and test datasets are
summarized in Table 2. For training, 69 images with the
initiation site and 3,323 images without the initiation site
were used, while the test dataset comprised 15 images with
the initiation site and 753 images without.

For training the YOLOv5 model, 236 images that were
predicted by ResNet152 to contain the initiation site were
used. These images were obtained from both the training
and testing datasets using the best weights obtained by
ResNet152. The images were annotated using label-Img soft-
ware, employing four distinct labels: ‘‘no initiation’’, ‘‘LOF’’,
‘‘random’’, and ‘‘surface defect’’. The ‘‘no initiation’’ class
refers to images that do not exhibit any initiation sites.
An example of this class is presented in Fig. 4a. Class ‘‘LOF’’
corresponds to Lack of Fusion defects, as demonstrated
in Fig. 4b. The ‘‘random’’ class, demonstrated in Fig. 4c,
represents initiation sites where the cause of initiation
could not be discerned from the available image resolution.
These sites are likely initiations resulting from ‘‘weak’’
grain boundaries rather than being classified as defects. The
‘‘surface defect’’ label, shown in Fig. 4d, is assigned to
defects located at the surface of the specimen, which can also
include LOF defects. Table 3 displays the categorization of
252 anomalies from the 236 images predicted by ResNet,
which forms the composition of the dataset utilized for the
YOLO5v5 model. Out of the entire dataset, 165 images had
no initiation site, 47 images contained a random initiation
site and 22 images contained LOF defects, of which two
images had two LOF defects each, concluding in 24 LOF
defects. Furthermore, among the 24 LOF defects, 14 were
also identified as surface defects. Additionally, two images
in the dataset contained solely surface defects. Adding up
to a total of 16 surface defects. The images were randomly
divided into a training set and a test set with an 80-20 split,
respectively. The average size of each type of anomaly is
shown in table 4.
When examining the composition of the dataset, two

primary issues are evident. Firstly, the small dimensions
of the initiation sites in relation to the overall fractured
surface image. As shown in Table 2, approximately 2% of
the smaller images, obtained by dividing each original image
into 64 smaller images, contained part of the initiation site.
This issue is further highlighted in Table 4, which indicates
that, on average, the bounding boxes of random initiation
sites span only about 11% of the cropped images, while
LOF and Surface defects bounding boxes span less than 1%
of the image. Another challenge in analyzing the images
is the scarcity of defects in the dataset. As presented in
Table 3, the dataset includes only 87 examples of initiation
sites (including random, LOF, and surface defects) in total.

Utilizing the datasets outlined in Table 2, and employing
a binary classification approach, irrelevant areas were
initially removed to refine the dataset. The architecture of
the ResNet152 algorithm employed is elucidated in the
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FIGURE 3. (a) SEM scan of the entire fractured surface of a Ti-6Al-4V fatigue specimen (resolution: 4096 × 4096 pixels, view field: 5.5 mm,
and pixel size: 1.34 µm) and (b) The 8 × 8 cropping grid of the image where the green cell is (c) a cell from a 8 × 8 grid of the entire SEM
specimen containing part of the initiation site (resolution: 512 × 512 pixels).

TABLE 3. YOLOv5 dataset composed of 236 images detected by ResNet152, with 252 anomalies split into four defect types, namely, no initiation, LOF,
Random, and Surface Defect. The number of tagged images used for model training was 80% and for testing 20% for each defect type catagory.

TABLE 4. Average initiation site bounding box size in YOLOv5 Dataset. Examples for these bounding boxes can be seen in Fig. 4.

subsequent section. Then, the training procedures employed
for the ResNet152 and the Yolov5 are described.

B. RESNET152 ARCHITECTURE
A binary classification approach was employed using
ResNet152 [21] to eliminate irrelevant areas in the images of
the entire fractured surface of the specimen. This was crucial
to improve the training quality of the object detection model.
Since the crack initiation site occupies only a small portion of
the entire image, as highlighted in Section III-A, there exists
a significant imbalance between the sections containing the
initiation site and those that do not.

The ResNet152 model, proposed by [21], was designed to
classify images in the ImageNet dataset across 1000 classes,
with inputs of 224 × 224×3 dimensions. For the binary
classification task examined here, the final fully connected
layer of the model was replaced with a three-layer sequential
model of fully connected layers, with output sizes of 1000,
250, and 2, respectively. The first two layers utilize a ReLU
activation function [48] while the final layer uses a Softmax
activation function [49]. A visualization of this modified
model is shown in Fig. 5. It should be noted that the
weights in the convolution block are pre-trained weights from
ResNet152, while the weights in the Sequential model are
randomly initialized.

Prior to adopting this architecture, a validation process
was conducted to compare various configurations of the

model. The training set comprised 40 images of the entire
fractured surface, while the validation set contained 6 images.
The validation process involved experimenting with image
splitting using both an 8 by 8 grid and a 16 by 16 grid,
as well as training with and without histogram equalization
of the images. Furthermore, the convergence of the model
was assessed during 150 epochs of training. After conducting
this validation process, the training described in Section III-C
was employed. The training phase utilized the optimal
configuration determined from the validation process and
proceeded with the entire dataset.

C. RESNET152 TRAINING
The dataset used for training the model in Section III-A
provides a description of the composition of the datasets that
were employed for both the training and testing of the model.
To meet the input requirements, each image was transformed
from its original size of 512 × 512×1 to a tensor of size
224× 224×3. Following this, the datasets were shuffled and
divided into batches each containing 32 images.

After completing the pre-processing stage, transfer learn-
ing was applied to the model by exclusively training the
sequential model added to ResNet152. The training process
was carried out utilizing the cross-entropy loss function [50]
with mean reduction, as illustrated in Equations 1 and 2.
As outlined in Section III-A, imbalances within the datasets
were addressed by computing and implementing class
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weights, which were determined based on Equation 3.

l(x, y) =

N∑
n=1

ln∑N
n=1 wyn

(1)

ln = −wyn · log

(
exp(xn,yn)∑C
c=1 exp(xn,c)

)
(2)

wyn =
D

C · dyn
(3)

In Equation 1, l(x, y) is the total loss of the batch, x and y are
the input and target respectively ln, calculated in Equation 2,
is the loss of each item in the batch, andwyn is the class weight
of the class of the target. In Equation 2, xn,c is the logit value
for class ‘c’ in item ‘n’ of the batch, xn,yn is the logit value of
the same class of the target. The parameter C is the number
of classes (in our case 2), N the batch size (in our case 32).
In Equation 3, D is the number of images in the dataset, and
dyn is the number of images in the class of the target. For
optimization, the model utilized an Adam optimizer [51] with
a leaning rate of 10−3.

FIGURE 4. Example of annotation of YOLOv5 dataset. (a) an image that
does not contain the initiation site (red), (b) an image containing a LOF
defect (purple), (c) an image containing a random initiation site (orange)
and (d) an image containing a LOF defect which is also a surface defect
(green).

D. YOLOV5 TRAINING
In the second stage of the image processing the object
detection framework YOLOv5 was utilized to detect the
fatigue crack initiation site in images that were identified
by the ResNet152 model to contain the initiation site. This
framework was obtained from Yolo V5 Github Repository.
The dataset utilized for training and validation of the model
was split 80-20 respectively, and its composition is detailed
in Section III-A. During training, the model analyzed images
of 512 × 512×3 dimensions, with a batch size of 16, and

initialized with pre-trained YOLOv5 weights. The training
was conducted for 300 epochs and evaluated both with and
without class weights to determine their necessity.

Upon completion of model training, bounding box coor-
dinates were transformed into coordinates relative to the
original image of the entire fractured surface. The bounding
boxes that were saved corresponded to the highest probability
detection of each small image, as well as any other detection
with a probability greater than 0.3. In cases where the
initiation site was split between two images and detected
separately in each image, the bounding boxes were merged
in accordance with Equations 4-7.

X = min(x1, x2) (4)

Y = min(y1, y2) (5)

W = max(x1 + w1, x2 + w2) − X (6)

H = max(y1 + h1, y2 + h2) − Y (7)

where, xi and yi are the coordinates of the top left corner
of each of the bounding boxes, wi, and hi are the width and
height of each bounding box respectively. The parameters X
and Y are the coordinates of the top left corner of the merged
bounding box, and W and H are the width and height of the
merged bounding box, respectively.

E. DISTANCE MEASUREMENT
The final stage of image processing involved measuring
the distance between the detected defect and the outer
surface of the specimen. This distance is known as one of
the most fundamental characteristics of the fatigue crack
initiation site. One of the main objectives of this study
is to compute this distance using YOLOv5 and leveraging
conventional computer vision techniques. The computation
process involved three steps and is visually illustrated in
Fig. 6.
Firstly, the center of the specimen was detected. This

was performed by initially equalizing the histogram of the
image followed by a 3 × 3 Gaussian blur [52] which was
applied to the image to reduce noise and smoothen the
edges. Subsequently, the image was converted into an edge
representation using the Canny edge detection algorithm [53].
The resulting image is presented in Fig. 6b. To locate the
yellow bounding rectangle that encapsulates the specimen,
the algorithm identified the outermost tenth white pixel
(of the row/column) from each of the four directions (top,
bottom, left, and right). These outermost pixels formed the
edges of the bounding rectangle shown in Fig. 6c. The center
of the specimen was then defined as the center point of this
bounding rectangle also shown as a red dot at the specimen
center in Fig. 6c.

Secondly, the intersection point was determined by finding
the point where a line passing through the center of the
specimen and the detected anomaly (whether it is classified as
a random anomaly, lack of fusion, or surface defect) intersects
with the outer rim of the specimen as shown in Fig. 6e.
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FIGURE 5. Visualization of ResNet152 model used. The input for the model is a
224 × 224 × 3 image which is propagated through the convolution layers of ResNet152. The
classification is performed by an added three-layer fully connected sequential model. This
model is used for binary classification between images containing the fatigue crack
initiation site and images that do not contain it.

To define the outer rim, a multi-step contour detection
process was employed. This process aimed to generate a
binary masked image of the fractured surface, in which the
outer rim of the fractured surface is present. An example of
an obtained mask is demonstrated in Fig. 6d. The intersection
point was defined as the final black pixel on the line passing
through the center of the specimen and the detected anomaly.
It is worth noting that this process was not utilized to detect
the center of the specimen due to its poor performance
in detecting the outer rim located further away from the
initiation site in many images. Finally, the Euclidean distance
was calculated between the intersection point and the center
of the anomaly. This value was then compared to the manual
measurement performed.

IV. EXPERIMENTAL EVALUATION AND RESULTS
Following the creation of the dataset and framework as
depicted in Section III, the means of evaluation of each Deep
Learning model and the results of each phase of this study
are presented in this section. In Section IV-A, evaluation
methods are discussed and the results obtained are presented
in Section IV-B.

A. EVALUATION OF THE DEVELOPED PREDICTIVE MODEL
The means of evaluation of each Deep Learning model are
described in this section. In Section IV-A1, the evaluation

method for ResNet152 is presented. The evaluation method
for YOLOv5 is discussed in Section IV-A2.

1) RESNET152 EVALUATION
A common metric for evaluating a classification model
performance is examining the accuracy in predicting the test
set outcomes, as depicted in Equation 8. However, when
dealingwith imbalanced datasets, it becomes essential to con-
sider alternative metrics that provide a more comprehensive
understanding of the model behavior. Precision, Recall, and
F1-score serve as important evaluation measures [54], [55],
computed by Equations 9-11, respectively. These metrics
offer insights into the predictive abilities of the model by
considering factors such as true positives, false positives, and
false negatives.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(8)

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ TN
(10)

F1 − Score = 2 ·
Precision · Recall
Precision+ Recall

(11)

In Equations 8 through 10, TP and FP are both instances
where the model predicted a ‘positive’ class with the former
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FIGURE 6. Visual illustration of the measuring process (a) starting image where the arrow points to the initiation site, (b) The image after Blur and Canny
algorithms, (c) The bounding box and center of the specimen detected, (d) A binary masked image of the fractured surface and (e) The computed
intersection with the outer rim is indicated, with the three marked dots representing, from right to left, the center of the specimen, the center of the
detected anomaly, and the computed intersection point.

being a true prediction, and the latter a false one. The
parameters TN and FN stand for instances where the
model predicted a ‘negative’ class correctly and incorrectly,
respectively. For this study, the ‘positive’ class is defined as
images not containing the initiation site, while the ‘negative’
class comprises images containing the initiation site.

The primary objective of the model in this study is to
accurately identify and filter out sections of the images
that do not contain the initiation site. Hence, minimizing
the false positive (FP) value, which represents images
containing the initiation site being misclassified by the
model, is of utmost importance. Additionally, reducing
the false negative (FN ) value, which corresponds to
images not containing the initiation site being misclas-
sified, is of secondary importance. By reducing the FN
value, the YOLOv5 model can be trained to focus on
images that actually contain the initiation site. This empha-
sis on minimizing false negatives enables the model to
learn more effectively and accurately to detect initiation
sites.

To achieve these objectives, the confusion matrix of the
test set evaluation was assessed after each epoch of training.
By analyzing the confusion matrix, the performance of
the model in terms of correctly classifying true positives,
true negatives, false positives, and false negatives is eval-
uated. This iterative evaluation allowed for monitoring and

adjusting the model performance, with a focus on minimizing
misclassifications and optimizing the filtering of images
based on the presence or absence of the initiation site.

In order to gain a deeper understanding of the model
classification behavior, visualizing the classification out-
comes is crucial. By displaying the assigned classification
for each section on the large images in the test set, a more
comprehensive assessment of the model performance can be
obtained. Visualizing the classifications provides valuable
insights into the severity of mistakes made by the model,
allowing for a better understanding of its strengths and
weaknesses. This visual assessment enhances the inter-
pretability of the model predictions. Also, it facilitates further
analysis while improving the classification capabilities of the
model.

2) YOLOV5 EVALUATION
The main focus of this study was to detect the anomaly
responsible for initiating fatigue failure, rather than classi-
fying the specific type of anomaly (such as random, lack of
fusion, or surface defect). For each image in the test set, the
bounding box with the highest probability prediction, as well
as any other bounding boxes with a probability greater than
0.3, were visually drawn on the image.

Subsequently, a binary confusion matrix was manually
created. The first class in the confusion matrix represented
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FIGURE 7. ResNet152 evaluation metrics for 20 epoch of training. (a) Average training Loss, (b) Test Accuracy, (c) Precision, (d) Recall and
(e) F1-Score. Epoch 5 was selected as the best epoch due to a Precision of 1.0 and higher Accuracy and F1-Score than epoch 4.

FIGURE 8. Confusion matrix depicting the evaluation results for the test
set on epoch 5 of ResNet152 training. It is shown that the model correctly
classified all images containing the initiation site while successfully
filtering out 735 images that do not contain it, corresponding to an
accuracy of 97.6% on the non-initiation site images.

the anomalies, while the second class represented images
containing no anomalies. By visually inspecting the drawn
bounding boxes and examining the binary confusion matrix,
the accuracy, and effectiveness of the model were assessed.

B. RESULTS
In this section, the results of each phase of this study
are presented. In Section IV-B1 the results for ResNet152
are described. Results for YOLOv5 are presented in
Section IV-B2. Lastly, in Section IV-B3, the results of the
distance measuring algorithm are discussed.

1) RESNET152 RESULTS
The findings reported in this study pertain to the training
of ResNet152 over a period of 20 epochs. Given its role as

FIGURE 9. Visualization of ResNet152 classification where (a) and (b) are
images of the entire fractured surface from the test set (the blue arrows
point to the initiation site). (c) and (d) are the respective detection by
ResNet152 were the green sections are those predicted to contain the
initiation site and the red sections predicted not to contain it.

a filter, the primary focus lies on achieving high precision,
which entails filtering out only those images that do not
contain the initiation site. Secondary metrics such as test
accuracy and F1-score provide a general indication of
the overall performance of the model. In Fig.7a and 7b,
the average training loss and Accuracy for each epoch
of training are presented respectively. The values of the
Precision, Recall and F1-Score throughout the training
process are depicted for each epoch in Figs.7c through 7e,
respectively.

It may be observed that for both epoch 4 and epoch 5 a
precision score of 1.0 was achieved meaning, no images
containing the initiation site in the test set were predicted
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FIGURE 10. Confusion matrices of the best weights obtained with YOLOv5 for (a) Training using class weights and (b) Training without.
Training with class weights was deemed the superior option due to higher defect detection rates relative to training without class
weights.

FIGURE 11. Detections made by YOLOv5 best weights trained with class weights. (a) The labels of four images in the test set, and (b) the
respective model predictions. In the top-left image, two LOF defects are present. The model successfully detected the main defect with a
score of 0.75 where the fatigue crack initiated; however, it did not identify the additional defect where the crack propagated through.
In the bottom-left image, the model made a false detection of a random initiation site with a low probability of 0.04. Nevertheless, in both
the top-right and bottom-right images, the model made correct detections of the random initiation site with a score of 0.78 and no
initiation with a score of 0.27 in the images respectively.

to not contain the initiation site. However, epoch 5 exhibited
superior accuracy, and F1-score compared to epoch 4. Thus,
rendering it to be the optimalmodel among the two. It is worth
noting that during the fifth epoch of training, two images
containing the initiation site were falsely predicted not to
contain it, which subsequently led to them being filtered out
from the dataset. However, it is important to mention that
these two images were visually distinct from the rest of the
dataset. One of these images displayed a faint random initia-
tion site, while the other exhibited a significant LOF defect.
It is noteworthy that this type of LOF defect was exclusively
observed in specimens manufactured using poor printing
parameters.

To gain deeper insights into the significance of these
metrics, a confusion matrix was constructed for epoch 5,
as depicted in Fig. 8. It may be observed from this figure
that during epoch 5, 735 of the images that do not contain
the initiation site were effectively filtered out of the dataset,
corresponding to 97.6% of the images that actually do not
contain the initiation site. Consequently, the proportion of
images containing the initiation site increased from 1.95%
prior to filtering to 45.45% post-filtering.

In Fig.9, a visualization of the model predictions for two
full images from the test set are shown. In Fig.9a, and Fig.9b,
the two original images with arrows pointing at the
initiation site are presented. In Fig.9c, and Fig.9d, the
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FIGURE 12. Combined results of both models, namely, ResNet152 and
YOLOv5. (a) and (b) are images of the entire fractured surface where the
red tinted sections were filtered out by ResNet152 and the bounding
boxes are YOLOv5 predictions. (c) and (d) are the respective close-up
views of the 4 sections surrounding the initiation site.

respective predictions of the models are visualized. Green
rectangles represent the sections that were predicted by
the model to contain the initiation site, and the red area
represents sections that were predicted not to contain
initiation. Note that in both images the model detected
the initiation site. However, in Fig.9c, no additional sec-
tions were falsely predicted, whereas in Fig.9d, there
are five falsely identified sections. Hence, further refine-
ment by YOLOv5 to eliminate such false predictions is
necessary.

2) YOLOV5 RESULTS
In accordance with the discussion in Section IV-A, the
training of YOLOv5 was conducted both with and without
the utilization of class weights, and the evaluation was
performed in a binary manner. In Fig. 10a and in Fig. 10b
the confusion matrix for the best weights obtained dur-
ing model training with class weights and without class
weights, respectively, is shown. Utilizing class weights
during training led to higher defect detection rates along
with an increased incidence of false positives, where some
background was incorrectly identified as defects. Never-
theless, considering the prioritization of avoiding missed
anomalies over false detections, it is evident that training
with class weights emerges as the superior option, since
only 5 missed anomalies occurred whereas without class
weights, 8 anomalies were missed. It is noteworthy to
emphasize that within the confusion matrix of the training

with class weights shown in Fig. 10a, two missed anomalies
were secondary defects that the fatigue crack propagated
through and were not the actual locations of fatigue crack
initiation.

In Fig. 11a and Fig.11b, the annotations and corresponding
predictions of four images from the test set are presented,
respectively. In the upper left image two LOF defects are
marked, whereas only the main LOF defect was identified
by the model with a probability of 0.75. A random defect
was marked in the upper right example and identified by
the model with a probability of 0.78. In the lower right
image the image was correctly identified as not containing
the initiation site with a probability of 0.27 and In the lower
left image a ‘‘Random’’ initiation site was falsely detected
with a probability value of 0.04. These false detections
made by the model primarily involved the identification
of ‘‘Random’’ initiation sites and were marked with a low
probability.

To gain a better understanding of the combined behav-
ior of the models, images depicting the entire fractured
surface showcasing the sections filtered out by ResNet152
and the predictions made by YOLOv5 were generated.
Examples of such images are presented in Fig. 12 and
in V. In Fig. 12a and Fig. 12b the combined results of
two full images from the dataset are shown. The red
sections were predicted by ResNet152 not to contain
the initiation site, and the bounding boxes are YOLOv5
predictions. Fig. 12c and Fig. 12d are enhanced views
of the four sections surrounding the initiation site of
the images in Fig. 12a and Fig. 12b, respectively. The
effectiveness of both models becomes evident in Fig. 12,
where their contributions are observable for different types of
initiation.

In Fig. 12a and 12b, it is evident that ResNet152
successfully filters out a significant portion of sections
that do not contain the initiation site, while YOLOv5
eliminates the remaining sections. In Fig. 12c, the ability of
YOLOv5 to detect both halves of a LOF defect from two
distinct images is demonstrated. This highlights the ability
of the model to overcome the inherent constraint imposed
by blindly cropping the images of the entire fractured
surface.

3) DISTANCE MEASUREMENT RESULTS
In accordance with the discussion in section III-E, the
distance of the initiation site was performed by a two-step
process of computing the center of the specimen and
computing the intersection with the outer rim. This
process was performed on 61 images where YOLOv5
detected anomalies. It is noteworthy that among the
four excluded images, one was due to the initiation site
being missed by ResNet152, while the remaining three
were a result of YOLOv5 failing to detect the initiation
site.

To verify the computedmeasurements, first the accuracy of
the computed center location of each specimen was evaluated
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FIGURE 13. Difference in pixels between the manual and autonomous measurements of the distance between the
anomalies and the outer rim of the specimen. 63 anomalies were detected in 61 out of 65 original images of the entire
fractured surface. Excluding the 3 errors that exceeded 90 pixels the average measurement error of the remaining
60 anomalies was 25.1 pixels with a standard deviation of 24.2 pixels. This corresponds to an average error of 33.7µm.
The average relative error obtained for these measurements was 19.2% with a standard deviation of 21.4%.

FIGURE 14. Examples of the detected center of the specimen and the intersection with the outer rim. (a) an example image of visually satisfying
detection of the specimen center and the outer rim intersection for both the initiation site and false detection by YOLOv5. and (b) An example
image of visually inaccurate detection of the intersection point of the outer rim.

with respect to the manually measured value. The average
Euclidean distance between the two values was found to be
14.2 pixels with a standard deviation of 12 pixels. Note that
among the 61 images examined, there were 7 instances where

this distance exceeded 30 pixels. Recall that the full images
are of size 4096 × 4096 pixels where the size of each pixel is
approximately 1.34 µm. Thus, the discrepancy of 14.2 pixels
corresponds to 19 µm.
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FIGURE 15. Six additional images of the entire fractured surface of the specimens. In the
left column is the original SEM image, In the middle column is the resulting detection after
cropping the image and using both the ResNet and the YOLO models. In the right column is
the corresponding distance measurements between the defect and the outer rim of the
specimen.
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In Fig. 13, a comparison between manual and autonomous
measurements of the distance to the surface is depicted,
illustrating the absolute measurement error. It may be
observed from the plot that for 24 anomalies the difference
between the autonomous and manual measurement was less
than 10 pixels, corresponding to less than 13.5µm. In the
plot, 3 out of 63 measurements were excluded since the
error for these three specimens exceeded 90 pixels. For
the remaining anomalies, the average absolute error of the
measurements was 25.1 pixels, with a standard deviation of
24.2 pixels. This translates to an average error of 33.7µmwith
a standard deviation of 32.5µm. The relative error obtained
for these measurements was 19.2% with a standard deviation
of 21.4%.

In Fig. 14, an instance of accurately detected intersection
points is presented. Notably, this image demonstrates visually
satisfactory points identified for both the LOF initiation site
and the falsely detected random initiation site. Conversely,
Fig.14b provides an example of an inaccurate intersection
point detection.

Importantly, it should be emphasized that beyond errors
in the detection of the center of the specimen, another
key factor contributing to the disparity between manual
and autonomous measurements was the variance between
the center of the anomaly detected by YOLOv5 and the
center manually identified. As a consequence, it is crucial
to individually analyze each image to validate the findings
of the model. However, it is important to note that this
validation process is purely visual and does not entail the
need for manual measurements. Hence, the implementation
of the proposed model alongside manual validation is notably
more time-efficient than performing all measurements
manually.

V. CONCLUSION AND FUTURE WORK
This study employed ResNet152 and YOLOv5 models to
detect fatigue crack initiation sites in SEM images of
fractured surfaces of SLM Ti-6Al-4V specimens. Addi-
tionally, standard computer vision techniques were utilized
to compute the distance between the initiation site and
the specimen surface. Following a thorough analysis of
the obtained results, the following conclusions may be
drawn:

• ResNet152 was able to filter out approximately 97.6%
of the sections from the test set that did not contain
the initiation site, effectively isolating and retaining
the relevant portions of the images related to the
initiation site. This outcome highlights the capability of
ResNet152 in efficiently distinguishing and eliminating
non-relevant areas, contributing to the accuracy and
efficacy of the analysis.

• Even with the utilization of a relatively small dataset for
training YOLOv5, as shown in Table 3, the model dis-
played great potential and delivered promising results.
It achieved a detection rate of 82.3% for identifying ini-
tiation sites in the test set. This outcome underscores the

effectiveness and promising performance of YOLOv5,
despite the limitations imposed by the dataset size.

• The hybrid model employed in this study, combining
ResNet152 and YOLOv5, demonstrated successful
detection of the initiation site in a majority of the
images within the dataset. Specifically, out of the
65 images examined, the model successfully detected
the initiation site in 60 images resulting in a success rate
of 92.3%. Note that in three images the initiation site
was missed by YOLOv5. In two images the initiation
site was missed by ResNet, however, in one of these
images a related nearby anomaly was detected by
YOLOv5.

• A distance measurement algorithm, designed to deter-
mine the distance between the initiation site and the
outer surface of the specimen, was proposed. This
computation was executed on 61 out of 65 images
encompassing the complete fractured surface, where a
total of 63 accurate ROI were identified. Among them,
for three ROI, the discrepancy between manual and
autonomous measurements exceeded 90 pixels, render-
ing the algorithm ineffective for these cases. Conse-
quently, for the remaining 95.4% of measurements, the
average difference betweenmanually and autonomously
measured distances was 25.1 pixels, with a standard
deviation of 24.2 pixels. This equates to an average
absolute error of 33.7µm and a standard deviation of
32.5µm. Additionally, the mean relative error for these
measurements stood at 19.2% with a standard deviation
of 21.4%.

One may claim that the determination of fatigue crack
initiation points is only part of the study of fatigue
strength; Material damage tolerance, which encompasses
the material’s ability to resist growth and propagation of
existing cracks under cyclic loading, is indeed an essential
aspect of fatigue analysis. This includes understanding
how the material behaves once a crack has been initiated
and how it tolerates further damage without catastrophic
failure.

While this study doesn’t directly delve into damage
tolerance, the developed methodologies and tools could be
adapted for future research in this area. Expanding the
dataset, employing image augmentation techniques, and
creating models to measure defect characteristics lay the
groundwork for obtaining data to establish criteria for critical
defects. This could be pivotal in predicting fatigue life
based on defect geometrical features and location, with
potential application in damage tolerance analysis. High-
resolution images and detailed defect analysis offer insights
into defects that may develop into cracks and their potential
threat to structural integrity. Future research may use
information from tests and automated fractographic analyses
to characterize the threat level of each defect detected
through non-destructive testing before the part enters service.
This could lead to a more comprehensive understanding
of the fatigue behavior of AM materials and potentially
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contribute to the development of more robust and reliable AM
products.

In order to enhance the findings of this study, there
are potential avenues for improvement. One approach is
to expand the dataset by including images of additional
specimens with different pixel sizes. Another approach is
utilizing image augmentation techniques. Augmentation can
be employed to further diversify the dataset and improve the
robustness of the model. This may also assist in optimizing
the distance-measuring algorithm. Moreover, it may be
beneficial to develop additional models specifically tailored
to measure different characteristics of defects, such as
area and circumference, using higher-resolution images of
the initiation site. These models could contribute to a
more comprehensive analysis and potentially yield detailed
results, thus achieving a detailed autonomous fractographic
analysis.

Subsequently, this autonomous tool can be utilized to
create a comprehensive dataset for machine learning-based
fatigue performance assessment, with a specific focus
on critical defect features. Such a tool may provide
the ability to predict the fatigue life of AM materials
under high-cycle fatigue (HCF) loading using mapped
microstructural defect data. In the future, the various
facets of critical defects may contribute to establish-
ing the algorithmic foundation for nondestructive testing
(NDT) and fatigue life evaluation of additive manufacturing
products.

This research proposes the creation of an autonomous
tool for detecting fatigue failure sources and determining
their location through fractographic analysis. By correlating
the failure source’s location with additional geometrical
characterization and the fatigue life measured during testing,
a dataset could be generated in the future to predict
fatigue life based on critical defect characterization. The
robustness of such machine-learning models, enhanced
by a diverse dataset, allows for precise identification
and measurement of critical defect location, providing
crucial information regarding fatigue life under HCF
conditions.

HCF is characterized by a large number of cycles
(typically in the range between 104 to 107 cycles or
more) at lower stress levels, where the material experiences
elastic deformation. In contrast, low-cycle fatigue (LCF)
involves fewer cycles at higher stress levels, leading to
plastic deformation. The distinct nature of HCF and LCF is
rooted in their different deformation mechanisms and stress
levels.

The characterization of HCF life using the tools proposed
in this study specifically targets the influence of microstruc-
tural defects, commonly found in AM materials, on the
initiation and propagation of fatigue cracks under high-cycle,
low-stress conditions. Additionally, it’s worth noting that
ongoing development is underway for an additional tool
designed to ascertain the size, location, morphology, and
type of critical defect sources identified by the automated

tool proposed in this study. This information plays a crucial
role in the classification of critical defects for HCF failure.
While the current focus is on HCF, the methodology can be
extended or modified for very high cycle fatigue (VHCF)
analysis.

APPENDIX
ADDITIONAL IMAGES AND DETECTIONS
This appendix presents six additional images depicting
the complete fractured surface of the specimen and cor-
responding detections. In Fig. 15a, a specimen featur-
ing a random initiation site is displayed. Although the
ROI and intersection points were successfully detected,
the measurement of the specimen’s center is imprecise.
Moving to Fig. 15b, a specimen with a LOF defect
is showcased. The ROI detection and accurate measure-
ment of the distance to the surface were accomplished.
However, an additional low-probability false detection
occurred.

Fig. 15c illustrates a specimen with another LOF defect.
Despite the LOF section being missed by ResNet, YOLOv5
managed to detect a portion of the ROI. In Fig. 15d,
a specimen with a random initiation site is presented.
Although the ROI was split during the cropping process,
it was identified separately in each section.

Lastly, Fig. 15e and Fig. 15f showcase two additional spec-
imens containing random initiation sites. In both scenarios,
the ROI was effectively detected, and the distance to the
surface was accurately measured.
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