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ABSTRACT Cardiovascular diseases (CVDs) continue to be a prominent cause of global mortality, necessi-
tating the development of effective risk prediction models to combat the rise in heart disease (HD) mortality
rates. This work presents a novel dual-stage stacked machine learning (ML) based computational risk
prediction model for cardiac disorders. Leveraging a dataset that includes eleven significant characteristics
from 1190 patients from five distinct sources, five ML classifiers are utilized to create the initial prediction
model. To ensure robustness and generalizability, the classifiers are cross-validated ten times. The model
performance is optimized by employing two hyperparameter tuning approaches: RandomizedSearchCV and
GridSearchCV. These methods aim to find the optimal estimator values. The highest-performing models,
specifically Random Forest, Extreme Gradient Boost, and Decision Tree undergo additional refinement using
a stacking ensemble technique. The stacking model, which leverages the capabilities of the three models,
attains a remarkable accuracy rate of 96%, a recall value of 0.98, and a ROC-AUC score of 0.96. Notably, the
rate of false-negative results is below 1%, demonstrating a high level of accuracy and a non-overfitted model.
To evaluate the model’s stability and repeatability, a comparable dataset consisting of 1000 occurrences is
employed. The model consistently achieves an accuracy of 96.88% under identical experimental settings.
This highlights the strength and dependability of the suggested computer model for predicting the risk of
cardiac illnesses. The outcomes indicate that employing this two-step stacking ML method shows potential
for prompt and precise diagnosis, hence aiding the worldwide endeavor to decrease fatalities caused by heart
disease.

INDEX TERMS Cardiovascular disease (CVD), extreme gradient boost (XGB), hyper-parameter tuning,
heart disease, random forest classifier, stacking ensemble technique.

I. INTRODUCTION

The major essential organ — the heart, whose main function
is to move the blood throughout our body, but having a
threat to it is a matter of concern that causes several health
issues. Heart disease (HD) is contributing the leading cause
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of death due to sudden strokes and heart attacks in today’s
world. Every year, 17.9 million people die from some causes
related to CVD, and a total of 32% of all deaths are estimated
globally [1]. The most common type of HD that contributes
to major deaths worldwide is coronary heart disease (CHD).
There are various forms of heart disease, namely prob-
lems related to heart rhythms, valves, heart muscles, heart
infection, blood vessel disease, and congenital heart defects.
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Because of these different forms, several symptoms can be
observed: dizziness, fainting, slow heartbeat, racing heart-
beat, shortness of breath, etc. While heart disease can be
deadly, it can also be prevented by adopting a healthy lifestyle
like regular meditation, regular exercise, a nutritious diet, etc.

In identifying modern healthcare-related diseases, machine
learning (ML) and deep learning (DL) play an important
role, including properly detecting and classifying these kinds
of ailments. The cost of curing heart disease is very high
worldwide and may exceed $1 trillion by 2035 [2]. In the
United States, about $229 billion was spent annually between
2017 and 2018 [3]. Hence, the minimization of the treat-
ment cost for HD has become extremely important. For
this purpose, many researchers have applied classical ML
approaches [4], [5], and [6] based on characteristic fea-
tures to determine if a patient can suffer from HD. The
dataset [7] used in this research study contains 11 impor-
tant features, one target outcome indicates whether patients
had a risk of HD or not, and 1190 instances with which
we trained five well-known classical ML models, namely
Logistic Regression (LR), Support Vector Machine (SVM),
Random Forest (RF), Decision Tree (DT), and Extreme Gra-
dient Boost (XGB), along with an ensemble-based stacking
technique to gain higher results in performance metrics.

The conventional ML model is considered for detecting
HD and provides a prediction model that is more stable and
accurate. We used k-fold cross-validation (CV) to properly
split the acquired dataset into training, testing, and validation.
Next, we trained the above-mentioned standalone models
with and without hyper-parameter tuning by the Random-
izedSearchCV (RS-CV) and GridSearchCV (GS-CV) and
selected the best three models, namely DT, RF, and XGB,
corresponding to their RS-CV technique predicted accu-
racy, and performed the ensemble stacking operation with
the hold-out testing set, and achieved an accuracy (Acc),
Precision (Pr), Recall (Re), Fl1-score (Fs), ROC-AUC (Ra)
score, and Cohen-cappa score (Cs) of 96%, 0.96, 0.98, 0.96,
0.96 and 0.92 respectively. To validate the HD risk prediction
model, a similar dataset was collected from the Mendeley
data portal with 1000 instances and 12 features replicated the
above procedure on it, and was used to check the stability
and robustness of the deployed model with the accuracy of
96.88% and a lower standard deviation.

The latter sections of this study give a detailed descrip-
tion of all the ML algorithms mentioned earlier, along with
their descriptive result analyses. Then, the related study is
summarized in Section II, the preliminary study is discussed
in Section III, and Section IV illustrates the details of the
proposed methodology. Finally, the experimental results and
comparison discussion are provided in Section V, and the
research study is concluded in Section VI.

Il. RELATED STUDY

The related kinds of literature are discussed in this section,
considering ML-based prediction or detection models of
HD. The entire literature is subdivided into a few sections
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related to the approaches, like ensemble-based ML predic-
tion models, standalone different ML models, and reduced
feature-based HD prediction and classification models.

This section mainly focuses on ensemble-based appro-
aches like the one proposed by the authors in [8] to predict the
risk of HD on the Cleveland dataset (CD). A few base models
were used for initial prediction, like Naive Bayes (NB), RF,
Bayes Net (BN), C4.5, Multi-Layer Perception (MLP), and
PART (Projective Adaptive Resonance Theory). Four ensem-
ble approaches were used for the final prediction, including
bagging, boosting, and stacking, and results were claimed by
the BN, RF, NB, and MLP based on voting. Features were
considered in the selected way for each model evaluation.
The claimed results were 85.48%, with increased accuracy
on chosen features. In [9], the authors deployed the HD pre-
diction model on the famous CD using an Al approach based
on the digital history of patients’ records. The algorithms
used were DT, Artificial Neural Network (ANN), Rough
Set (RS), SVM, and NB. The ten-fold CV was considered
to calculate the mean accuracy with the RS, which gave an
accuracy of 88.1%. The authors then proposed an ensemble
method wherein they combined the top 3 performing algo-
rithms, namely RS, NN, and NB, to improve the performance
to 89%, outperforming all other classifiers. The authors
in [10] chose the CD for the HD prediction model, which
contained 76 attributes that were reduced to 13 significant
features and one target attribute. Four different algorithms
were applied: Stochastic Gradient Descent (SGD), K-Nearest
Neighbor (KNN), LR, and RF. Finally, an ensemble method
was proposed by combining all four models using hard vot-
ing. Amongst the four algorithms, SGD gave the highest
accuracy of 88% after hyperparameter tuning, and the model
concludes with the best accuracy of 90%.

Also, in [11], the authors presented the classical Al
approach to predict heart disease early using three ML algo-
rithms: RF, DT, and a proposed hybrid model. The CD was
used to deploy the model, with 70% of the dataset taken for
training and the rest, 30% for testing. The proposed hybrid
model combined with RF and DT gave an Acc of 88%.
In [12], they explored the use of ML and DL classifiers to
provide an early detection system for HD. The CD was taken,
and LR, SVM, KNN, NB, ANN, DT, the Back Propaga-
tion Neural Network (BPNN), and ensemble-based stacking,
boosting, and bagging were applied to increase the mod-
els’ Acc. SVM gave an accuracy of 86% using all features
and an accuracy of 88% using selected features. The pro-
posed ensemble algorithm reaches an Acc of 92.30% and
a BPNN of 93%. They considered in [13] the various ML
techniques for large-scale heart disease prediction based on
big data analysis. The widely used Cleveland dataset was
used to split in a 0.90:0.10 ratio. Different algorithms were
applied: DT, RF, LR KNN, SVM, AdaBoost (AB), Gradient
Boost (GB), DT, HRFLM, and HGBDTLR. The proposed
ensemble algorithm HGBDTLR gave the best accuracy of
91.8%. In [14], the authors proposed an ensemble technique
based on the Classification and Regression Tree (CART) for
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HD risk prediction. Two datasets were taken and split into
random numbers based on mean values. The different CART
models faded into a homogenous ensemble classifier, and
accuracy was weighted. Their experimental results showed an
accuracy of 93% on the CD. They compared their results with
the performances of the SVM, RF, LR, Linear Discriminant
Analysis (LDA), GB, and KNN models.

Moreover, the article [15] used the CD to predict heart
diseases using various ML algorithms, namely KNN, RF, NB,
SVM, XGB, and LR, which were applied, and an observatory
analysis was drawn. Several evaluation metrics were taken for
the performance acumen evaluation of every model. Among
these, a proposed ensemble method based on voting and
combining three algorithms, namely KNN, XGB, and LR,
gave the best accuracy of 92%. In [4], the author uses three
datasets to train a custom-based ensemble classifier con-
sisting of NB, RF, SVM, and XGB with parameter tuning.
The data has been trained on a 0.60:0.40 ratio of training to
testing, and underfitting is also taken care of by using such
a division. The prediction made by the classifier is put to the
test on one of the datasets provided with the help of a voting
classifier. The highest accuracy achieved by the model is
96.75% with the Mendeley dataset using the proposed model,
while the other two datasets also give results of 88.24% and
93.39%, respectively. In [5], the authors extracted features
from recording the magnetocardiography (MCG) signal, used
164 features categorized into three subgroups, and developed
a fast model to detect ischemic heart disease. The four ML
models were used to compare the results, like KNN, DT,
SVM, and XGB; after that, finally, the ensemble method was
applied, combining two SVM and XGB models to get the best
results with 94.03% accuracy and an AUC value of 0.98.

The subsection below considered different ML models
for HD prediction compared their observable experimental
outcomes and concluded their research with a particular ML
model. Like in [16], the authors used an open-source dataset
for predicting heart diseases. They incorporated five different
ML algorithms for training the dataset: KNN, DT, RF, NB,
and SVM. Metrics like Acc, specificity, and Re were used
to conclude the performance acumen of the model. Amongst
these, KNN had the best accuracy, at 85%. The authors in [17]
deployed five ML algorithms to classify CVD: SVM, NB,
KNN, DT, and LR. An open-source dataset with 77,000
instances was used to make the prediction models. Perfor-
mance metrics like Re, Pr, Acc, and Fs were measured to
analyze the models. LR and SVM observed efficient algo-
rithms for diagnosing CVD anomalies with accuracies of
72.66% and 72.36%, respectively. The article [18] explored
using ML models to predict CVD early at low and affordable
costs. Various algorithms like NB, DT, RF, KNN, SVM, and
LR were incorporated to predict the CVD. The CD was taken
for model prediction, concluded with measuring parameters
to acumen, and the RF had the highest Acc of 83.52%.
In [19], authors had laid down an approach to predict heart
diseases with the greatest accuracy and consuming less time

VOLUME 12, 2024

for computation so that diagnosis of the disease is at the
earliest. The popular CD was used to train and test models
like LR, KNN, DT, and RF. Amongst these, RF gave the
best accuracy of 88.16%, followed by LR with an accuracy
of 84.21%. The authors in the article [20] considered a heart
disease dataset to predict and deploy six ML models: LR, AB,
KNN, CART, XGB, and RF. After data processing, ten-fold
cross-validation was applied with hyperparameter tuning of
the above model’s parameters. Their claimed results were
accurate, and the ROC-AUC values are 84.8% and 0.917 for
the RF model. In [21], the authors used different supervised
ML models to predict heart diseases. The dataset used in
their study contains 14 attributes and 303 instances in total.
Algorithms like LR, KNN, and SVM were incorporated, and
these models’ efficacies were judged on metrics like Re, Pr,
specificity, Fs, and Ra. Overall, LR performed well, with an
accuracy of 86%, a precision of 0.83, and an AUC score
of 0.87. The authors in [22] presented an approach for the
future possibility of HD using ML models like RF, NB, SVM,
Hoeffding DT, and Logistic Model Tree (LMT). The CD was
incorporated for training the models. RF and Gaussian-NB
performed considerably well, with accuracies of 95.08% and
93.44%, respectively. In [6], the CART algorithm predicts
the HD and extracts the decision rule to find the relationship
between the target class and the inputs. It provides an influ-
encing feature-based ML model with an accuracy of 8§7.25%
over the dataset of 1190 instances and 11 features.

Some related works have been observed on the feature
selection-based approaches; the authors in [23] presented the
KNN model as the base method for predicting cardiovascular
diseases. The famous CD dataset was incorporated for this
work. However, KNN alone could not achieve significant
results, so the authors utilized techniques like standardiza-
tion, feature selection, and cross-validation to increase the
method’s accuracy. Fourteen important features out of 75 total
attributes were used in the process. The ten-fold CV was
used to measure the mean Acc, 89.23%. In [24], the two
ML models, LR and ANN, were considered for predict-
ing HD using the CD. Eleven significant features out of
75 were considered for the process. Variable hidden layers
and other activation functions were applied for further tuning
these models. ANN with one hidden layer and the sigmoid
function gave an Acc of 92.31% and an LR of 90.11%.
The authors in [25] explored the data mining approach for
identifying meaningful patterns from HD datasets. For this
purpose, they used the CD, wherein six ML algorithms were
applied, namely NB, DT, LR, RF, KNN, and SVM, after
applying Information Gain, Chi-Square, Gain Ratio, RELIEF,
and One-R. Amongst these, SVM gave the best accuracy of
83.41% after applying the feature selection method. In [26],
the authors used Al in the healthcare sector to predict heart
diseases and other locomotive disorders. They used the CD,
which consisted of 76 features and 303 instances, among
which 14 important attributes were chosen for the prediction
model. A ten-fold CV was used to measure the mean accuracy

7257



IEEE Access

S. Mondal et al.: Efficient Computational Risk Prediction Model of HD

of the deployed models. In addition, performance indicators
like Acc, Re, Pr, Fs, and Ra were calculated to measure results
acumen. The SVM, LR, NB, DT, KNN, and RF models were
deployed, and, among them, KNN gave the highest accuracy
of 94.1% using seven significant features.

The above-related literature study is considered mainly
for predicting HD using conventional ML models with the
specific motivation of resource-constrained devices’ perspec-
tive use of less memory and a significantly shorter response
time. ML models are less complex and more effective for
the scenario of real-life human disease detection compared to
other approaches that exist in state-of-the-art (SOTA) models
based on deep learning methods by using the ECG signal and
applying CNN models [27], [28], genetic algorithms [29],
fuzzy-based [30], etc.

The existing literature and most relevant articles are sum-
marized in Table 1. All the considered deployed models help
decide on model selection for further deployment in this
research to find out the research gap and improve the existing
SOTA models.

TABLE 1. Summarization of the ML model used in the literature.

ML Model # References used by literature
Name

RF [8], [16], [10], [11], [18], [19], [20], [25], [15], [22], [13],
[14], [26], [4]

DT [91, [16], [10], [11], [12], [17], [18], [19], [25], [22],
[13], [26], [5]

SVM [91,[16],[12],[17],[18], [25], [15],[21], [22], [13], [14],
[26], [5], [4]

LR [10], [12], [17], [18], [24], [19], [20], [25], [15], [21],
[22], [13], [14],[26]

KNN [16], [10], [12], [17], [18], [23], [19], [20], [25], [15],
[21], [13], [14], [26], [5]

XGB [201, [15], [5], [4]

NB (8], [9], [16], [12], [17], [18], [25], [15], [22], [4]

ANN [91,[12], [24]

CART [20], [14], [6]

BN [81, [26]

AB [20], [13]

The above-related articles, particularly those on selected
ML models for HD risk prediction, have noted the number of
occurrences of each used model in the entire literature for the
model selection.

Table 1 helps to select the appropriate ML model for
further deployment. The RF, DT, LR, and SVM classifiers
are selected for this study due to their frequent usage and cor-
responding moderate-to-high-performance results ranging
from 83% to 95% accuracy, as observed by many researchers
in the literature section. The KNN and NB declared results
are not so good compared to others, implying they were not
considered in this study. The high accuracy obtained by the
articles in the literature on the XGB boosting-based model
is deemed to produce better prediction results. So finally,
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five ML models were selected to get a more accurate model
prediction result for HD detection.

In summary, two key points are drawn based on the above
review of the existing literature. First, no existing work has
addressed overfitting or underfitting scenarios of ML models,
and second hyper-parameter tuning is necessary to deploy
prediction models based on the best-performing boosting ML
classifier. These two factors have an impact on how well a
classifier performs.

The prime contribution of this research study is formulated
and noted down as follows:

e The most frequently used ML models are selected
for initial deployment, with boosting-based meta-
ensemble stacking proposed at the final stage for
precise HD illness prediction.

e The k-fold CV is used to eliminate the overfitting prob-
lem on low-data instances in this case.

e Two hyperparameter tuning techniques, Randomized-
SearchCV and GridSearchCV, are added contributions
to the search for the best hyperparameter values of each
model and are executed to get the best possible results.

e A hyperparameter-tuned model-based two-stage stack-
ing ensemble prediction approach is introduced in this
research study.

IIl. PRELIMINARIES AND BACKGROUND STUDY

This section demonstrates a brief overview of the few ML
models that are considered for training and testing to predict
the risk of HD. The performance matrix is elaborated to evalu-
ate the model’s performance using the parameters mentioned
in the earlier section.

A. LOGISTIC REGRESSION (LR)

This ML algorithm is used for grouping data points into
certain labels. It is used to predict new input datasets and
classify them based on the labels it has been trained upon.
In this case, the output achieved is within the range of O and 1,
as the classes mentioned are in binary.

hy(X) = ey

As the formula (1) suggests, parameter X is the input dataset
and w is to be trained as a parameter while also optimiz-
ing the output. Optimizing the classification task properly
requires a loss function to refine the prediction and apply the
log-likelihood function defined below [31].

1 i=1 . . . .
T == 3" (log () + (1 = ylog(1 ) @)

Here in (2), m is the quantity of samples for training the
model. Whereas y' is the class of the ith sample and p' is the
predicted value in the ith sample. J(w) is the quadratic cost
function, smaller values indicate the model fitted better with
the dataset. The gradient descent function is used to optimize
the loss function in the global minimum.
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B. SUPPORT VECTOR MACHINE (SVM)

SVM is a very popular supervised learning algorithm used
for regression and classification of data while also developing
patterns. The SVM models use a hyperplane for separating
the data values of two classes, and for multiple labels, numer-
ous hyperplanes are used. This hyperplane is placed at the
maximum distance between the two or multiple data points
of different classes. It is an algorithm that is used for a small
to medium-sized dataset. In this case, linear SVM is used as
parameter tuning because the dataset used is categorical in
nature. As we know, the equation of a line is y = ax + b. The
equation of a hyperplane is defined in (3).

wx=y—ax—band WX +b=0 3)

Here, w indicates the weight vector, and b is the bias. To opti-
mize the results, we need to maximize the difference between
the two data points and the hyperplane. The loss function that
helps in doing this is referred to as “‘hinge loss” and is given
below in (4) [31].

' 2
Jony =" max (0.1 =y [wx; +b]) + A IIwll3
1
A== 4
C 4
C = Regularization Coefficient
A ||W||% = Regularization
max (0, 1 — y; [w'x; + b]) = Loss Function

C. DECISION TREE (DT)

It is a supervised ML algorithm for solving problems involv-
ing regression and classification. It is a tree-like model that
uses the decision rule to form structures for training on a
dataset and predict the target class. A single root or parent
node is corresponding to an attribute, and there could be
multiple branch nodes for decisions taken using the other
attributes’ values. The algorithm uses the sum of the product
architecture and a top-down, greedy search approach with
selections based on the type of dependent variable. Some
algorithms necessary for decision-making are ID3, C4.5,
CART, etc. ID3 (Iterative Dichotomiser-3) is the most popular
and essential algorithm for generating decision trees. The
primary challenge in forming the tree is the selection of
the correct attribute as a root node and the branch nodes
according to some criteria like, Entropy (E), Information
Gain (IG), Gini Index, Gain Ratio, Reduction in Variance, and
Chi-Square values.

In this case, as the model works on a dataset with a classi-
fication problem, only E and IG are necessary. The formulas
used for selecting an appropriate attribute for multiple labels
available for selection are given below in (5), (6), and (7) [32].

ES)=— z;l pilogzpifor 1 attribute &)
E(T,X) = ZCEX P (¢) E (c) for two attributes (6)
IG(T,X)=E(T)—E(T,X) @)
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Here, S is the current state for the tree while p' is the proba-
bility of an event, i whereas, T is the current state of the tree
and X is the selected attribute.

Entropy is used for computing the stochasticity in the data
being processed. High entropy leads to worse model training
and vice-versa. Information gain is necessary as a statistical
tool for estimating the quality of the information given in
relation to the target feature and the training attribute. Both
entropy and information gain are very important techniques
for understanding the amount of information provided by
training the model with the given attribute and the relation
with the target feature in sight. A high IG and low entropy
are necessary for a model to have good accuracy.

D. RANDOM FOREST (RF)
It is a popular ensemble learning algorithm with the decision
tree at its core for classification of the data into multiple
classes. It is a subset of data and the subset of features
obtained from the multiple decision trees used, as well as the
averages of the scores obtained from multiple decision trees.
Hence, the random forest is known as an ensemble tech-
nique. The use of the Gini importance formula given below
is necessary to calculate the necessity of each node.
This is done by presuming two child nodes, thus forming
a binary tree using the below-mentioned formula in (8) [33].

nij = wiCj — Wiefi(j) Ciefr Gy — Wright(j) CrighiGy — (8)

In this case, nij = the importance of node j, w;j = a weighted
number of samples reaching node j, C; = impurity value of
node j, left(j) = child node from the left split on node j, and
right(j) = child node from the right split on node j.

Then the importance for each node of a decision tree is
further computed using the formula (9), where fi; is the
importance of the feature i.

i > J : node j spilts on feature i ni;
= .
Zke all nodes ™k

Now it can be standardized with the help of the formula
given (10) and brought into a range of values between 0 and
1 with the help of the denominator, i.e., the sum of all attribute
importance values.

©))

, Jfii
fii = , (10)
Zjeallfeatures featuresﬁj
The last level has the random forest’s values which average
the total values by dividing them the total number of trees T
given as the divisor in (11).

. Zjeall trees normsfi,-j
fii =
T

Here, normsfij; is defined as the standardized attribute impor-
tance of node i in tree j, and fi; is the final output of the RF.

The importance of every attribute is measured as the node
impurity decreases with the probability of reaching the node.
The node probability could be measured by the number of

(11)
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samples averaged over the number of samples. A higher value
indicates that the feature is more important.

Hyperparameters are necessary for the problem given, and
using them gives great accuracy and increases the efficiency
of the algorithm. Some of the parameters used increase the
algorithm’s predictive power, whereas others increase the
speed of prediction and the time taken by the model.

E. EXTREME GRADIENT BOOSTING (XGB)

XGBoost is a popular non-proprietary ensemble machine
learning algorithm used to implement distributed gradient
boosting decision trees. It supports multiple tree boost-
ing at the same time and uses this algorithm for multiple
problems such as ranking, categorization, and regression.
It is based on the gradient boosting algorithm, which uses
an approximation-based loss function and different regular-
ization techniques to optimize the learner’s outcome. The
individual decision tree scores are added to get the final
prediction score using the following equation (12) [33].

9i = Bi i) fe €F (12)

Here, K is the total number of trees over the possible decision
tree space Fand small f(x) is the functional space over the
data values. XGB uses an objective function using the for-
mula (13) for the final prediction classes.

equall® =" i GV +f ()l + Q) (13)

It looks like an f(x + Ax), where x = &Etil) and y; is a

real value. The first part of the equation represents the loss
function and the second part is the regularization parameter.

XGBoost uses regularization for correcting the complex
models with the help of L1 (Lasso) and L2 (Ridge regression)
to manage the overfitting problem of the trees. L1 decreases
the unnecessary features coefficient to minimum values,
which helps in the removal of underfitting, and L2 decreases
the chances of the model being overfitted. The important
difference between them is the technique of distinguishing
penalty terms, which uses the following cost function for-
mulas (14) and (15) with the difference of the coefficient of
parameter f;.

p
=3 0= i) FAY B (4

j=1

L2 = ZL] i — ijl xijﬂj)z +A Zj;] ﬁjz (15)

GB uses the first derivative and tries to decrease the loss by
finding the most suitable dimensions. Whereas XGB sums
weak base learners and estimates a multiplex equation com-
prising an anti-gradient and negative second derivative to
calculate an accurate method to decrease loss. The results
obtained are more accurate with the use of both first and
second derivatives by XGB.

XGB uses different hyperparameters to improve model
accuracy by tuning parameters like max_depth, learning rate,
subsample, gamma, etc.
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F. MODEL PERFORMANCE MEASUREMENT

The various performance metrics are used to evaluate the
deployed model’s efficiency using a confusion matrix and
calculating measures like accuracy, recall, precision, and F1
score values. Also, the k-fold mean accuracy, Cohen Kappa
score, model standard deviation, and ROC-AUC values are
considered for the model evaluation.

A confusion matrix is a method of computing used for
finding different statistical estimates of the predictions made
by the ML classification algorithm to measure the perfor-
mance of a classification problem. For a confusion matrix to
work successfully, it requires a model trained on a dataset
with similar features and a good quantity of data for accurate
predictions on the test dataset.

The confusion matrix is used for computing metrics such
as Precision, Accuracy, Sensitivity or recall values, and the
Specificity of a custom user-made model built using multiple
ML classification models is represented in Table 2, and the
performance metrics are described in Table 3.

TABLE 2. The confusion matrix in the binary classification of HD.

Actual target level Prediction target level
HD =1 (Positive)

True Positive (TP)

Normal = 0 (Negative)

HD =1 (True) True Negative (TN)

Normal = 0 (False)  False Positive (FP) False Negative (FN)

In standard deviation, the value of the ith element of xi and
the mean () among the N number of elements.

In Ks, the po is derived by adding the sum of the diagonal
values of the confusion matrix divided by the other values; it
is the actual and predicted value agreement, and the p, is the
probability values of the by chance agreement between the
true and false values.

Mean accuracy n indicates the total observations, yi and
f(xi) is the actual and predicted value of the iteration. The
mean square error is calculated in each iteration concerning
each fold data split.

IV. PROPOSED METHODOLOGY

The below segment illustrates the collected dataset descrip-
tions, various data pre-processing techniques used in the
model creation, and the proposed stacked model. The entire
flow of this research is presented in a diagram in Fig. 1.

Fig. 1 depicts the detailed insight, which consists of dataset
acquisition followed by exploratory data analysis and dataset
splitting, the next model training using default and hyper-
parameter tuning, and finally, the proposed stacking model.

A. DATASET DESCRIPTION

This study uses a dataset collected from an open-source
online portal, IEEE Data Port [7]. The dataset was associated
with five other datasets: the Hungarian dataset, the Cleveland
dataset, the Switzerland dataset, the Long Beach dataset,
and the Statlog dataset. This combined dataset (DF1) contains
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TABLE 3. Performance measurement metrics of the ML models.

Performance Description Mathematical
Metrics Formula
Accuracy Calculates the exact correct TP+TN
(Acc) prediction by the TP+ FP +FN + TN
classification models.
Precision Measures the correct positive TP
(Pr) prediction among all the TP + FP
positive predictions by the
model.
Recall (Re) Measure the actual positive TP
prediction among all the TP + FN
correct predictions by the
models. FN is a major
concern in the medical
disease detection model.
F1-Score It is a harmonic mean or Pr 2 X Pr X Re
(Fs) and Re, where both are Pr + Re

important to predict the
trends of a model.

Standard Indicates the errors in the

Deviation dicted values and 2ea—w?
predicted values an o= &2 P

(Sd) measures the difference N

between the incorrect and the

actual score to be predicted.

Less Sd means a more stable

model.

The model’s reliability and k= Po"Pe

validity are measured by this

metric and indicate the two k=1- 1P

raters’ agreement for the

prediction model.

AUC score tells the correct . rp

separation of classes and

measures the efficiency of the

prediction model. Higher

values indicate the goodness

of fit. It is a good choice for

the imbalanced dataset. The

TPR and FPR plot the entire

area under the curve with

different threshold values.

Mean The k-fold cross-validation is

Accuracy used to average the

(Ma) performance metrics of the
values predicted by the model
by training and testing on the
different number of k-split
datasets.

Cohen’s
Kappa
Score (Cs)

ROC-AUC
Score (Ra)

MSE = (1/n) *
2(yi- f(xi))2

Test MSE = (1/
k) * ZMSEi

1190 instances, a total of 11 important features, and a target
outcome describing whether a person has a heart risk, which
is all collected from the above five datasets. The description
of the datasets with their respective instances is given below
in Table 4.

The detailed analysis of the features, their definitions,
datatypes, and the number of null values, is given in Table 5.

Also, another dataset is collected from the Mendeley Data
portal [34], named DF2, like the IEEE Data Port, with fewer
instances of about 1000 records and 12 related features
of the heart disease risk of a person. Only one additional
feature named ‘“‘number of major vessels” was there. The
DF2 is used to validate the performance of the deployed
model with similar features but more diverse variance of the
databases.
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FIGURE 1. The workflow diagram of the proposed framework of the
stacked model.

TABLE 4. Description of the considered dataset (DF1) features.

Dataset Name Instances taken

Statlog (Heart) Dataset 270
Switzerland 123
Hungarian 294
Cleveland 303
Long Beach VA 200
Total 1190

B. DATA PRE-PROCESSING

Data pre-processing, or feature engineering, is an important
tool in ML models for preparing the raw data, making it
suitable for model training and testing. The features are
simplified and reshaped to achieve the goal of getting a
better result. We have applied a few data pre-processing
processes to train the used dataset properly. The same
pre-processing techniques were applied to both the datasets
DF1 and DF2 due to their similar characteristics of each
feature.

1) NULL VALUES REMOVAL

Null values represent missing values in a dataset. After
proper analysis, we found that the feature ‘cholesterol’ in
DF1 has approximately 172 null values, and in DF2, the
feature ‘serumcholestrol’ has 53 null values. So, to fill those
null values, the customized imputation technique is applied.
we first replaced them with zeroes and reinstated them with
the median value of the concern feature column. Due to the
lower number of instances of both datasets and to intact
their originality we decided to do customized imputation
approaches.
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TABLE 5. Describing the dataset names along with their instances taken.

Feature Datatype | #NULL Description
Name Integer values
0
Float (F)
Age 1 0 Age of patients in years
Sex I 0 Describing gender male (1) and
female (0)
Chestpain | I 0 1 describes typical chest pain, 2
type describes typical angina, 3
describes non-anginal pain, and
4 is asymptomatic
Resting BP | I 0 Rest mode blood pressure level
Cholesterol | I 172 Concentration of Cholesterol
Fasting I 0 Fasting Blood sugar> 120 mg/dl
blood represents 1 for true and 0 as
sugar false
Resting 1 0 ECG test result during rest is

ECG categorized as 0 for normal and
1 for abnormality

Max heart I 0 Maximum heart rate measured

Rate

Exercise 1 0 0 depicting no angina induced

Angina and 1 describes angina induced

Old Peak F 0 Exercise-induced ST-depression
rate/ rest state.

ST slope 1 0 ST slope measured during
exercise 0: Normal 1: Unsloping
2: Flat 3: Down sloping.

Target I 0 1 (HD) and 0 (Normal)

2) FINDING THE CORRELATION

Correlation means finding the relationship between two or
more variables. In this case, we need to find how the features
correspond with the target variable so that the training can
be done with highly correlated features. This can be easily
done using the correlation feature heatmap of the dataset.
the positive and negative correlation of each feature with
the target features is represented in dark and cool colors
respectively. The heatmap of the DF1 and DF2 is shown in
Fig. 2 and 3.

3) FEATURE DENSITY

Feature density can easily find the distribution of the features
through the entire dataset, which thereby helps to find any
outliers present or not. The probability distribution of each
feature is represented by a histogram. The features are in a
dense nature, and most of the values are viewed as non-zero.
So, the ML classifiers can easily handle the dense feature vec-
tors. Each feature space value is relatively small, so for HD
prediction purposes features should play an important role.
The feature influence-based HD prediction model should be
the other alternative approach. The feature density curves
of all the features for both DF1 and DF2 were derived but
for authenticity, only DF1 density curves are given below
in Fig. 4.

4) SCALING THE VALUES

Scaling generally means bringing down the values of all the
features except the target outcome of the dataset to the same
scale between O to 1; it is also useful for removing the
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FIGURE 2. The feature correlation heatmap of the used dataset DF1.
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FIGURE 3. The feature correlation heatmap of the used dataset DF2.

outliers of each feature of the dataset. We have applied the
StandardScaler library from Sci-Kit Learn to standardize
and scalarize the ranges of values in both DF1 and DF2
datasets.

5) BALANCING THE DATASET

After examining the dataset properly, we found that the target
variable, which depicts whether a patient has HD or not,
was almost balanced, so no further oversampling techniques
were applied to make it balanced. In disease prediction, it is
undesirable to create the synthetic values of the target col-
umn which may create biases in the ML model prediction
outcomes. The probability graph of the target variable of DF1
and DF?2 is given below in Fig. 5 and 6.
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FIGURE 4. The density distribution curve for each feature present in the
dataset of DF1.

C. MODEL TRAINING & EXPERIMENTAL RESULTS

Machine Learning is the process of training and teaching
machines to achieve human intelligence. In this proposed
research study, we used different classical ML classifiers to
build the prediction models of HD risk. After applying the
preprocessing methods on the collected two datasets, now
the DF1 and DF2 are suitable to deploy the ML models.
As the dataset has fewer instances, next to decide how the
models will be trained with how many instances as training
data. So, we must split the dataset properly before training the
models with the desired datasets. For this purpose, we used
k-fold cross-validation, which is a technique where a proper
splitting point is discovered in the dataset and split into train
and test ratios, respectively. This is mainly used to estimate
the prediction model skill to test every time on unseen data.
The different reference values of k were applied to choose
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FIGURE 6. Target outcome instance distribution of DF2.

the exact value of k-fold to generalize the model prediction
during training and testing. To trade off the bias-variance
of the deployed models as well as the considered collected
data, the proper value of k was chosen before each model
deployment. The 10-fold cross-validation was used to get
more accurate results with a lower chance of overfitting the
deployed models.

The next step was ML classifier selection and training
the models properly. As discussed previously, we selected
five well-known ML models from the literature survey: LR,
SVM, DT, RF, and XGB. Researchers in the literature most
frequently used those models for HD risk prediction in a more
accurate and precise way.

The above models were trained and tested using the best
configurable experimental simulation platform defined by the
above architecture, which is replicated programmatically to
deploy the models to find the experimental results in the
Google Colab Python 3.2 compute engine with the GPU set
to execute the models. To execute the hyperparameter tuning
to search for the best parameter values of each model by
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GridSearchCV and RandomizedSearchCV, the cloud engine
DGX station is equipped with a Tesla PCle V100 GPU,
system RAM of 128 GB, and graphics RAM of 16 GB,
which is used to get the deployed models’ results to deliver
high-speed processing and more accurate performances. The
experimental results are stored in the classification metrics:
Acc, Pr, Re, Fs, Cs, Ra. Also, each model’s standard deviation
(Sd) was calculated by using the accuracy metric.

The detailed analysis of the above-mentioned default mod-
els’ experimental results under test conditions with default
parameters set as random_state equal to ‘zero’ is noted in
Table 6 of DF1 and DF2.

TABLE 6. The experimental results with the default parameter of
deployed models.

Model @‘Z‘)’ PP Re Fs Cs Sd  Ra
DF1

XGB 9160 092 092 092 083 160 092

RF 9496 095 095 095 082 034 095

DT 88.66 0.89 0.89 0.89 0.77 0.74 0.89
LR 84.03 0.84 0.84 0.84 0.68 1.43 0.84
SVM 70.59 0.71 0.71 0.71 0.41 1.85 0.71
DF2
XGB 95.65 096 095 0.96 0.92 1.52 0.95
RF 96.00 096 0.96 0.96 0.92 0.36 0.96
DT 93.00 092 092 0.92 0.84 0.65 0.92
LR 87.00 0.87 0.86 0.86 0.73 1.65 0.86
SVM 78.00 0.77 0.78 0.77 0.55 2.03 0.78

The outcome was not up to par after observing the results of
the different performance metrics in the above table. Only the
XGB, RF, and DT models with default parameters performed
in both datasets above 90% with mean accuracy after apply-
ing a 10-fold CV. Also, the stability of the three models was
observed in healthy positions. The experimental observations
on the dataset DF2 performed better for DF1 due to low
instances. So, we decided to apply hyper-parameter search
tuning techniques: RandimizedSearchCV and GridSearchCV
to each ML model. Fine-tuning each model’s best parameters
with their estimator values might be the best solution for the
HD prediction.

D. RANDOMIZED SEARCH CV

Randomized Search (RS) is an ML technique where the
different hyperparameters are used in a random combination
with the related training parameters of a model to find the best
estimators’ values of the corresponding parameters from the
models. All the above-mentioned five models were trained
with RS-CV, and the best parameter values were noted after
executing the tuning method with the help of those param-
eters. The models were again trained by passing the best
parameter values to achieve a better outcome under the test
condition. The outcomes of the RS-CV models with 10-fold

7264

cross-validation are mentioned below in Table 7 on both the
DF1 and DF2 under the testing environment.

TABLE 7. Experimental results of the different metrics of the deployed
models with RS CV.

Model Acc (%) Pr Re Fs Cs Sd Ra
DF1
XGB-RS 9538 095 095 095 091 1.63 095
RF-RS 95.00 095 095 095 082 032 091
DT-RS 94.53 095 095 095 08 072 095
SVM-RS  84.87 085 0.85 085 070 1.89 0.85
LR-RS 84.45 0.84 0.84 084 069 147 085
DF2
XGB-RS  97.00 097 097 096 092 159 093
RF-RS 96.65 095 094 095 092 043 094
DT-RS 95.85 095 095 096 091 0.82 094
LR-RS 84.50 084 0.83 0.84 0.67 217 083
SVM-RS  87.50 087 0.87 087 074 201 0.87

The experimental outcome of RS-CV models correspond-
ing to XGB, RF, and DT on both datasets is increased.
Performing the RS-CV on each model to find the best
estimator values did not take more time and was less
complex.

E. GRID SEARCH CV

Grid Search (GS) is also a hyper-parameter tuning method
that is used to search through every possible combination of
the best parameter values from the given set of parameters.
With the help of GS CV, we noted the best parameters of
each model mentioned in Table 10. After that, we trained the
models with those best parameters, and the executed results
obtained after testing the model using the test dataset of
10-fold CV are mentioned below in Table 8.

TABLE 8. Experimental results of the different metrics of the deployed
models with GS CV.

Model Acc (%) Pr Re Fs Cs Sd Ra
DF1
XGB-GS 93.20 093 093 093 086 1.72 093
RF-GS 91.00 091 091 091 082 041 091
DT-GS 85.29 085 0.85 085 0.71 0.77 0.85
LR-GS 85.29 0.85 0.85 0.85 071 1.53 0.85
SVM-GS 84.03 0.84 0.84 084 0.68 193 0.84
DF2
XGB-GS 96.00 096 095 095 091 198 095
RF-GS 95.00 095 094 095 0.89 0.60 0.94
DT-GS 88.00 0.88 0.88 088 0.75 0.71 0.87
LR-GS 84.50 0.84 0.83 0.84 0.67 141 083
SVM-GS 88.50 0.89 087 088 0.76 1.88 0.87

The parameter selection of each model was the main chal-
lenge faced during the GS-CV process. GS usually takes
more time to execute due to considering each combination
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TABLE 9. The best estimator of the deployed models with RS CV.

TABLE 10. The best estimator of the deployed models with GS CV.

Model RS-CV Best Estimators RS-CV searching Estimators Model GS-CV Best Estimators GS-CV Searching Estimators
value Value

XGB learning_rate="0.1", "n_estimators": [start=100, XGB max_depth=6, 'max_depth': range (2, 10, 1),
min_child weight=7, stop=1200] learning_rate="0.05", 'n_estimators': range (60,
subsample=0.7, "learning_rate": ['0.05','0.1", n_estimators=180, 220, 40),
max_depth=30, '0.2','0.3','0.5','0.6'], min_child_weight=7, 'learning_rate'": [0.1, 0.01,
n_estimators=400 "max_depth": [5 to 30], subsample=0.8 0.05],

"subsample": [0.7, 0.6, 0.8], subsample= [0.6, 0.7, 0.8],
"min_child weight": [3, 4, 5, "min_child weight": [3, 4, 5,
6,7] 6,7]

LR (C=22.54434690031882, 'C'": array ([1.00e-03, 1.47e- LR C=21.54434690031882, 'C'": array ([1.00e-03, 1.47e-
max_iter=100, 01, 2.15e+01, 3.16e+03, max_iter=100, 01, 2.15e+01, 3.16e+03,
multi_class="auto’, 4.64¢+05, 6.81e+07, multi_class="auto’, 4.64¢+05, 6.81e+07,
intercept_scaling=1, 1.00e+107), intercept_scaling=1, 1.00e+10]),
penalty="12", t0l=0.0001, 'penalty": ['12', 11", penalty="12", t0l=0.0001, 'penalty": ['12', 11",
solver="1bfgs’ ‘elasticnet'], max_iter=(100 solver="1bfgs’ ‘elasticnet'], max_iter=(100

to 500), multi_class="auto’, to 500), multi_class="auto’,
intercept_scaling=1, intercept_scaling=1,
t01=0.0001, solver="1bfgs’ t01=0.0001, solver="1bfgs’

SVM C=1300, cache_size=200, 'C": [0.1, 1, 10, 100, 1000, SVM C=1000, cache_size=200, 'C": [0.1, 1, 10, 100, 1000],
decision_function_shape=’ 1300], 'gamma': [1, 0.1, 0.01, kernel="rbf’, degree=3, 'gamma’: [1, 0.1, 0.01, 0.001,
ovr’, t0l=0.0001, degree=3,  0.001, 0.0001], 'kernel": decision_function_shape=’ 0.0001], 'kernel": ['rbf'],
kernel="rbf”, ['rbf'], cache size=200, ovr’, gamma=0.0001, cache_size=200,
gamma=0.0001, kernel="rbf’, degree=3, max_iter=-1, kernel="rbf’, kernel="rbf’, degree=3,
max_iter=-1, tol=0.001 decision_function_shape="ov tol=0.001 decision_function_shape="ov

r’, max_iter=-1, tol=0.001 r’, max_iter=-1, tol=0.001

RF criterion="entropy’, "n_estimators": [(start=100, RF criterion="entropy’, 'n_estimators': [200, 500],
max_features="log2’, stop=1200, num=12)], min_samples_leaf=2, 'max_features': ['auto', 'sqrt',
max_depth=20, "criterion": ["gini", max_depth=8, 'log2'], 'max_depth":
n_estimators=600, "entropy"], "max_depth": n_estimators=200 [4,5,6,7,8], 'criterion' :['gini',
min_samples_leaf=2, [(5, 30, num=6)], min_samples_split=5 ‘entropy'],

"min_samples_split": min_samples_split=[5, 10,
[2,5,10,15, 100], 15]
"min_samples leaf": DT criterion="gini’, 'criterion': ['gini', 'entropy'],
[1,2,5,10], "max_features": splitter="best’, 'max_depth": [5, 10, 15, 20,
["auto", "sqrt", "log2"] max_depth=15, 25, 30], 'max_features':

DT criterion="entropy’, "criterion": ["gini", min_samples_split=2, ['auto’, 'sqrt', 'log2'],

min_samples_split=5,
max_depth=25,

min_samples_leaf=2,
max_features="log2’,

"entropy"], "max_depth":
[(5, 30, num=6)],
"min_samples_split":
[2,5,10,15, 100],
"min_samples_leaf": [1, 2, 5,
10], "max_features": ["auto",

max_features="sqrt’,
min_samples_leaf=>5

'min_samples_leaf": [1, 2, 5,
10], 'min_samples_split": [2,
5, 10, 15, 100]

"Sql"t", "10g2"]

of parameters. So, it is better to choose a few parameters
but the most prominent parameters selection will produce
the best results. Also, it requires more system resources to
perform the entire process. Despite facing the challenges,
we performed the parameter searching by providing sufficient
resources. However, the experimental results were not sat-
isfactory compared to default and RS-CV model outcomes.
Only the boosting model performed better but tree-based and
other linear models did not produce suitable outcomes due to
their inherent nature.

F. EXPERIMENTAL ANALYSIS

The experimental results analysis regarding the k-fold
mean accuracy and ROC-AUC score of the three types
of prediction models, as the default model, and with
two hyper-parameter tuning models are discussed in this
section. Also, the selected best parameters of the tun-
ing models corresponding to the best estimator values of
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RS-CV and GS-CV are represented here. The best esti-
mator parameter values of all the deployed models were
obtained after executing the RS-CV and GS-CV by con-
sidering all possible tuning parameters of each model,
the searching estimators and the best searching parame-
ter values are represented in Tables 9 and 10 for the DF1
respectively. The same parameter and the same estima-
tor values of each ML model were considered for the
deployment by using the DF2 under an identical experimen-
tal environment. To generalize the model hyperparameter
same estimator values were taken regardless of the different
dataset.

The accuracy of the models with a standalone classifier
with default parameter values, RS-CV, and GS-CV classi-
fiers’ comparative results are depicted graphically in Fig. 7
for the DF1 and DF2. From the diagram, the random-
ized search CV model’s performance is better concerning
others.

The ROC-AUC curve of all the five deployed models with
Standalone default parameters, RS-CV, and GS-CV plotted
with their probabilistic values is depicted in Fig. 8 to 12,
respectively concerning DF1.
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FIGURE 7. Comparative accuracy of the deployed models for DF1 & DF2.
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FIGURE 8. The ROC-AUC probabilistic curve of the XGB model concerning
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G. STACKING ENSEMBLE MODEL

After proper analysis and observation, we found that the
results shown by the standalone models were not up to the
mark. So that is why we incorporated the concept of stacking,
a widely used ensemble learning approach. The different
heterogeneous weak learners are stacked as a base prediction,
and usually, strong learners are pushed as a meta-predictor,
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FIGURE 10. The ROC-AUC probabilistic curve of the DT model concerning
Default, RS-CV, & GS-CV.
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FIGURE 11. The ROC-AUC probabilistic curve of the LR model concerning
Default, RS-CV, & GS-CV.

producing much better results. On analyzing the model results
from the tables of both RS-CV and GS-CV, it was noticed

VOLUME 12, 2024



S. Mondal et al.: Efficient Computational Risk Prediction Model of HD

IEEE Access

o SVM=Receiver Operating Characteristic

True Positive Rate

. —— SVC-RS-AUC = 0.61
e SVC-GS-AUC = 0.60
/-7 —— SVC-Default-AUC = 0.87

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 12. The ROC-AUC probabilistic curve of the SVC model concerning
Default, RS-CV, & GS-CV.

TABLE 11. The staking models’ experimental results.

Stack Model (RF, DT, XGB) - CV-10

# Dataset | Acc (%) Pr Re Fs Cs Ra Sd
DF1 96.00 0.96 0.98 096 | 0.92 | 096 | 2.83
DF2 96.88 0.96 0.97 9.97 | 093 | 097 | 2.64

that three standalone models, namely RF, DT, and XGB,
gave the best results for the RS-CV model. we decided to
build the stacked model using these three. However, we faced
difficulties in deciding whether a model should be kept as
a meta-learner or base-level learner. So, we tried different
permutations and combinations and concluded that selecting
DT and RF base learners and XGB meta-learners would yield
the best result regarding considered performance metrics. The
tested proposed stack model with the holdout dataset after
applying a 10-fold CV was kept independent, and the results
are shown in Table 11. The ROC-AUC curve, prediction
curve, and confusion matrix are given below in Fig. 13 and
Fig.14 for DF1 and DF2.

The model considered ten-fold cross-validation and the
standard deviation (Sd) to overcome the overfitting phe-
nomenon. The results indicate that no such situation arises,
and the actual and validation results show that the proposed
model is more accurate.

During hyperparameter tuning of each model, we faced
major difficulties and challenges in searching the best
estimators’ values under the GridSearchCV and Random-
izedSearchCV method executions because it takes more time
to search each parameter’s best estimator values. Also, the
tuning method takes up a lot of computing resources and uses
a cloud engine to execute each model. So, fitting the five
models with a proper parameter was a crucial challenge in
this research study.

This study particularly focused on using the conventional
ML classification model to predict HD from the perspective
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FIGURE 13. Dual-stage stacked model experimental outcome as
ROC-AUC curve, CM, and Prediction curve for DF1.

of resource-constrained devices with the specific aim of
a quick response disease detection model. The prediction
accuracy may increase using other approaches like deep
learning-based ANN models.

V. COMPARATIVE RESULTS ANALYSIS

This chapter represents a detailed investigation of the exper-
imental outcomes of this study with the related literature
observable results under their explained test conditions using
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FIGURE 14. Dual-stage stacked model experimental outcome as
ROC-AUC curve, CM, and Prediction curve for DF2.

the IEEE comprehensive HD dataset [7] and Mendeley
dataset [34] and considering the well-known performance
metrics mentioned earlier. Many researchers presented their
results only considering the Acc, Pr, Re, and Fs, but few
mentioned the ROC-AUC values. This study considers all
these parameters to analyze the performance of this proposed
model.
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TABLE 12. The claimed literature outcomes analysis with the proposed
model.

#Ref Acc Pr Re Fs Ra Dataset used
(%) # Instances
DF1 DF2
1190 | 1000
[4] 9339 | 099 | 088 | 0.90 | - N
[4] 96.75 | 098 | 096 | 097 | - N
[6] 8725 | 0.88 | 0.89 - N
Proposed | 96.88 0.96 0.97 0.97 | 0.97 N
Study 79600 | 0.96 | 0.98 | 0.96 | 0.9 |

Compared with the literature [4] and [6], the stacked model
is more accurate, and the recall and ROC-AUC values are
better than all the literature. The results of the proposed
stacking model analysis with all other researchers’ studies
are represented in Table 12. The blank cell indicates that
the authors have not provided any results corresponding to
metrics.

The same experiment, considering all the parameters and
the test conditions, was replicated over the dataset [34] after
applying the same data preprocessing steps and deploying
the models. The experimental outcome observed with an
accuracy of 96.88% and the ROC-AUC values of 0.97 are
far better than the literature in the above table. The above
two datasets are the most current and appropriate heart
disease-related risk prediction open-source datasets that are
used for research purposes.

VI. CONCLUSION & FUTURE WORK
This research study concludes a two-stage stacking-based
ensemble prediction model for the HD risk using three
best-performing ML models: RF, DT, and XGB. The Ran-
domizedSearchCV and GridSearchCV were used for the best
parameter searching of each model, and the results of the
RandomizedSearchCV of the above three deployed models
were stacked to get the average accurate prediction results for
the final model selection. The model’s performance creates
a new benchmark with an average accuracy of 96%, which
is better than the other researcher’s observable model results.
The proposed model also defeats the overfitting problem with
less standard deviation and uses the k-fold CV technique. The
recall value is very attractive in this disease prediction model,
with negligible False Negative values of 0.84% under test
conditions. The outcome simulation results will work effec-
tively on resource-constrained devices in the case of lower
dataset instances because disease detection has a limitation on
input data. The other low-resource dataset demonstrates the
prediction model’s stability and robustness, with an excellent
accuracy of 96.88% and a low standard deviation for the
proposed HD risk prediction model.

This research study will be further extended with feature
selection algorithms and deployed on reduced features to
reach a new milestone finding. Also, a deep learning-based
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ANN model can be incorporated to compare with these find-
ings, and a more generalized model should be proposed using
the larger instances of a dataset on the diversified domain of
human disease prediction.
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