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ABSTRACT Voronoi diagrams are widely used for area partitioning and coverage control. Nevertheless,
their utilization in non-convex domains often necessitates additional computational procedures, such as
diffeomorphism application, geodesic distance calculations, or the integration of local markers. Extending
these techniques across diverse non-convex domains proves challenging. This paper introduces the adaptive
centroidal Voronoi tessellation (αCVT) algorithm, which combines iterative centroidal Voronoi tessellation
(iCVT) with an innovative agent dropout and reinsertion strategy. This integration aims to enhance
area coverage control in non-convex domains while maintaining adaptability across varied environments
without the need for complex computational processes. The efficacy of this approach is validated through
simulations involving non-convex domains with disjoint target areas, obstacles, and shape constraints for
both homogeneous and heterogeneous agents. Additionally, the αCVT algorithm is extended for real-time
coverage control scenarios. Performance metrics are employed to assess the distribution of partitioned
Voronoi regions and the overall coverage of the target areas. Results demonstrate improved performance
compared to methods that do not incorporate the agent dropout and reinsertion strategy.

INDEX TERMS Area partitioning, non-convex area coverage control, multi-agent system, Voronoi
tessellation.

I. INTRODUCTION
In coverage control problems involving a multi-agent system,
the entire area is usually partitioned into subareas allocated
to individual agents. In an ideal scenario for homogeneous
agents, the target domain is divided equally among them.
However, subarea assignments for heterogeneous agents may
vary based on their coverage capabilities. Consideration must
also be given to areas with different priorities within the target
domain. Several existing methods for multi-agent coverage
control include ergodic dynamics-based methods [1], [2],
[3], K -means clustering [4], and methods based on Voronoi
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diagrams. Ergodic dynamics-based methods employ the
Fourier Transform to calculate the ergodic metric, represent-
ing coverage performance [1], [2], [3]. K -means clustering-
based methods rely on the agents’ positions relative to the
target locations in the domain [4].

The Voronoi diagram has found extensive use in mobile
sensing networks [5], [6], [7], [8], [9], exploration strate-
gies [10], [11], [12], [13], [14], and task allocation
methodologies [15], [16], [17], [18]. Many existing works
on Voronoi-based coverage control focused on convex
domains. A coverage control law employing homogeneous
agents was derived for convex domains in [5]. Another
work demonstrated how homogeneous agents could perform
adaptive information sampling for coverage control [12].
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FIGURE 1. iCVT used for covering two disjoint targets shown in black in a
bounded open environment: (a) initial positions of 10 agents, (b) the
partitioning result, (c) different initial positions of 10 agents, and (d) the
partitioning result.

In [6], an anisotropic sensor model was integrated into a
coverage control scheme. Furthermore, previous research
has considered heterogeneous agents in convex domains,
considering variations in sensing capabilities [7], [9], [19],
agents’ sizes [20], and speeds [21].

Coverage control strategies for non-convex domains have
also been explored. In [22], researchers approximated a
non-convex domain to a convex environment through dif-
feomorphism. Another study [23] integrated diffeomorphism
with a time- and space-differentiable density function,
representing the relative importance of points in a given
domain. Utilizing geodesic distance instead of Euclidean
distance in Voronoi partitioning was highlighted in a different
study [8], where this method extended Voronoi regions
into non-visible areas obscured by obstacles. Additionally,
multi-robot exploration in non-convex domains was tackled
in [13], employing local Voronoi decomposition and markers
to indicate explored areas. Combining Voronoi tessellation
with deep reinforcement learning was explored in [14], where
the upper-level layer determined agents’ waypoints using
Voronoi tessellation and the lower-level layer calculated path
and control inputs for each agent. Another study [24] adopted
a local search algorithm, discretizing continuous domains
by sampling multiple points. Several studies introduced the
concept of density functions for coverage control in non-
convex environments. For instance, in [25], agents’ positions
locally altered the environment’s density function. Similarly,
a time-varying density function in [26] enabled the agents
to explore invisible regions behind obstacles. This work
employed an adaptive static coverage scheme similar to the
convex weighted Voronoi diagram introduced in [27].
The existing Voronoi-based methods designed for

non-convex domains exhibit several limitations. Firstly,
implementing coverage control via local Voronoi decompo-
sition necessitates markers to signify whether specific areas

have been explored or not [10], [13]. Secondly, these methods
typically entail high computational complexity. For instance,
the geodesic-based approach requires computing hyperbolic
arcs for each agent, resulting in increased computational
demands [8]. Algorithms that integrate diffeomorphism
techniques [22], [23] may encounter an ill-conditioned
Jacobian matrix [22]. Additionally, the utilization of deep
reinforcement learning, as explored in [14], demands
substantial time and resources for the training process. Most
notably, Voronoi-basedmethods, as highlighted in [1], exhibit
poor performance when dealing with domains that contain
disjoint target areas.

In Fig. 1, two disjoint target areas depicted in black are
subject to coverage by mobile agents represented as blue
dots. This environment serves as an illustrative example akin
to the scenario presented in [2] and [3]. We employed a
strictly positive density function ρ to establish the priority of
the target area(s) across the domain. Unlike several previous
works [5], [12], [19], [20], [21], the density function in
this example is not smooth. The iterative centroidal Voronoi
tessellation (iCVT), the classic Lloyd algorithm [28] widely
adopted for coverage control, was applied for two different
initial positions of the agents. With the arbitrary initial
positions displayed in Fig. 1a, the iCVT algorithm resulted
in three agents located outside the target areas, four within
the larger target, and the remaining three in the smaller
one (Fig. 1b). When agents were initially positioned at the
upper-left corner (Fig. 1c), five agents were placed outside
the target areas, four in the larger target, and one in the smaller
one (Fig. 1d). This example highlights two key limitations of
iCVT. Firstly, the method does not guarantee the placement
of all agents within the target areas. Secondly, the coverage
outcomes are significantly influenced by the initial positions
of the agents.

This paper presents an innovative Voronoi-based parti-
tioning algorithm named adaptive centroidal Voronoi tessel-
lation (αCVT), which combines the iCVT and projection
algorithms with a novel agent dropout and reinsertion
strategy. The aim is to compel agents to optimize coverage
control performance based on the proposed metrics that
assess the distribution of individual Voronoi regions and
coverage of target areas. This study focuses on two types
of non-convex environments: i) those featuring obstacles
and ii) environments with disjoint targets. In scenarios with
obstacles, these impediments disrupt agents’ coverage and
mobility. Consequently, mobile agents must navigate to the
centroids of assigned Voronoi regions while circumventing
obstacles to maximize coverage. Environments comprising
disjoint target areas necessitate agents to position themselves
within these defined target regions. It is important to note
that the presented algorithm operates under the assumption
of a centralized system, aligning with similar centralized
approaches as reviewed in previous relevant works [15], [16].
The performance evaluation of the αCVT algorithm

encompassed four distinct non-convex area coverage cases:
1) homogeneous agents tasked with covering disjoint target
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areas, 2) homogeneous agents operating within a target
domain obstructed by obstacles, 3) homogeneous agents
tackling a target domain with shape constraints, and
4) heterogeneous agents deployed in non-convex target
domains. To demonstrate the algorithm’s applicability in
real-time coverage control scenarios utilizing mobile agents,
we adopted a control strategy previously utilized in [3], [11],
[14], and [24]. This strategy involves a two-layer control
algorithm. The upper layer computes goal points for the
agents, while the lower layer generates the desired path and
controls their motion. To assess the effectiveness of this
real-time coverage control scheme, we conducted simulations
using ground robots that emulate mobile agents, implemented
through Unity and Robot Operating System (ROS).

The core innovation of the presented work is in the
agent dropout/reinsertion technique and its versatility in
addressing diverse area coverage problems. Unlike other
methodologies requiring environment-specific control laws
derived on a case-by-case basis, this method eliminates the
need for such mathematical derivations. Notably, the agent
dropout/reinsertion technique enhances performance without
imposing additional computational burdens, distinguishing
itself from methods like geodesic disc [8], diffeomor-
phism [22], [23], and control policy from deep reinforce-
ment learning [14]. Furthermore, most prior Voronoi-based
approaches have predominantly focused on environments
featuring obstacles, often overlooking scenarios with mul-
tiple disjoint targets. In contrast, the proposed algorithm
demonstrates effectiveness in addressing both types of
non-convex environments.

The rest of the paper consists of the following. Section II
first summarizes the iCVT [5], the projection algorithm [11],
and the density definition of the non-convex environ-
ment [22]. This section then introduces the αCVT algorithm
integrating the agent dropout and reinsertion process.
Section III describes the evaluation settings and delineates
the attained results from the experiments. Section IV details
the extension of the αCVT algorithm for real-time coverage
control scenarios involving mobile agents. Finally, Section V
provides a conclusive summary and discussion regarding
potential avenues for future research.

II. ADAPTIVE CENTROIDAL VORONOI TESSELLATION
This section presents the area partitioning method combining
the iCVT and the projection algorithm with the concept of
agent dropout and reinsertion, referred to as αCVT. We begin
by reviewing the iCVT, the projection algorithm, and the
density definition of the non-convex environment.

A. REVIEW OF ITERATIVE CVT
We first briefly review the iCVT (a.k.a. Lloyd algorithm)
described in [5]. In a closed region S of a 2D convex domain
R2, let A = {a1, a2, · · · , ak} be a set of agents located in the
interior of S, and P = {p1, p2, · · · , pk} be a set of agents’
positions. Voronoi partition of S based on P is performed as

follows:

Vi = {s ∈ S | ||s− pi|| ≤ ||s− pj||,∀j ̸= i} (1)

where Vi is the Voronoi region of the ith agent, s is a point in
S, and || · || denotes the Euclidean norm. In [5], the objective
function for locational optimization is given by

H (P) =
k∑
i=1

∫
Vi
||s− pi||2ρ(s)ds (2)

where k is the total number of agent, and ρ is a density
function. The elements of P determine the value of the
objective function.

The mass (MVi ), centroid (CVi ), and polar moment of
inertia about pi (JVi,pi ) corresponding to the i

th Voronoi region
are then obtained as

MVi =

∫
Vi

ρ(s)ds (3a)

CVi =
1
MVi

∫
Vi
sρ(s)ds (3b)

JVi,pi =
∫
Vi
||s− pi||2ρ(s)ds (3c)

Using the parallel axis theorem, (3c) can be expressed as

JVi,pi = JVi,CVi +MVi ||pi − CVi ||
2 (4)

where JVi,CVi is the polar moment of inertia of the Voronoi
region Vi about its centroid. Then, H (P) in (2) and its
derivative with respect to pi are given by

H (P) =
k∑
i=1

JVi,CVi +
k∑
i=1

MVi ||pi − CVi ||
2 (5)

∂H (P)
∂pi

= 2MVi (pi − CVi ) (6)

Therefore,H (P) is minimized when all the agents are located
at the centroids of their Voronoi regions. This statement is
formulated as [5]

CVi = argminpi (H (P)), ∀ai ∈ A (7)

Since CVi is the centroid of Vi, it is always located within Vi.
As described in [5], the iterative scheme can guarantee global
convergence if the domain is convex and unchanged. The
detailed steps are as follows: 1) calculate Voronoi regions (Vi)
corresponding to each pi for all agents; 2) calculate MVi and
CVi corresponding to each Vi; and 3) set the agents’ location
to their centroids (CVi ), and return to the step 1). This process
is iCVT, leading to finding the agents’ final positions with
global convergence.

B. REVIEW OF PROJECTION ALGORITHM AND DENSITY
FUNCTION
If the environment contains obstacles, the target position of
an agent cannot be within the obstacle regions. In that case,
this agent’s target position must be relocated. The projection
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FIGURE 2. Procedure of αCVT-based coverage control using 10 homogeneous agents for two disjoint targets: (a) the initial configuration,
(b) - (f) step-by-step procedure detailing the agent dropout and reinsertion processes, and (g) the final configuration after 22 iterations.

algorithm used in [11] moves such target position to the
closest non-obstacle point by using

treali = argmins∈Sf ||s− t
virt
i ||, tvirti = CVi (8)

where tvirti and treali are the virtual and real target positions
for the ith agent, respectively. Sf is the obstacle-free space
in domain S. In [11], the closest non-obstacle point is
identified by searching the environment. In our presented
work, we adopted a counterclockwise direction for searching.
Also, the target position of the agent is relocated to the closest
point with ρ > 0 if the current target position has ρ = 0.
In [22], a non-convex environment with obstacles was

defined using a density function, assigning ρ = 0 for all
points within the obstacle regions and strictly positive values
for the rest. We slightly modified this definition by setting
ρ = 0 for all points outside of the coverage targets as well
as the obstacle regions. This modification allows all agents
to be located within the target areas when combined with the
projection algorithm. This definition also simplifies the CVT
process by excluding non-target areas and obstacle regions
from calculatingMVi , and CVi in (3).

C. AGENT DROPOUT AND REINSERTION TECHNIQUE
The agent dropout and reinsertion technique drew inspiration
from the dropout method introduced for neural networks [29].
This approach involves randomly deselecting nodes within
neural networks. A similar tactic was employed in a large
neighborhood search method [30], where the removal and
reinsertion tasks among multiple agents were driven by a cost
function in conjunction with a random process. The method
presented in this paper differs from these prior approaches
by employing a distinct strategy to determine which agent to
drop out, rather than relying on a random selection process.
This dropout selection strategy is based on the masses of
individual Voronoi regions. Specifically, for homogeneous
agents, those with a relatively higherMVi compared to others
are temporarily dropped out and identified as ‘greedy’ agents.
Following the dropout phase, the CVT is performed for the
remaining agents.

The pseudocode in Algorithm 1 outlines the agent dropout
process. To begin, the algorithm identifies greedy agents
in Line 3 using a threshold value, τdrop. This threshold
is important in determining these greedy agents. When all

Algorithm 1 AgentDropout Function
1: Anormal = φ, Agreedy = φ

2: for ai ∈ A do
3: if MVi ≥ τdrop then
4: Agreedy← ai
5: else
6: Anormal ← ai
7: end if
8: end for
9: Determine Vi, ∀ai ∈ Anormal from Eq. 1

10: Calculate pi, ∀ai ∈ Anormal from Eq. 7 and Projection

agents show equal masses of their Voronoi regions, all are
categorized as greedy agents if τdrop = MV , where MV
represents the averagemass of the Voronoi regions, as defined
in (9). Therefore, τdrop should be greater than MV . In our
selection, we opted for τdrop =

k
k−1MV , where k denotes the

number of agents. Should MVi for all agents fall below τdrop,
the algorithm terminates the agent dropout and reinsertion
process.

D. ADAPTIVE CVT ALGORITHM
We propose a performance metric tailored for homogeneous
agents, quantifying the average deviation of the individual
masses allocated to k agents. This metric, denoted as I ,
is calculated as:

I =
1
k
(
k∑
i=1

|
MVi

MV
− 1|), MV =

1
k

k∑
i=1

MVi (9)

The objective is to achieve evenly partitioned target areas
among agents, therebyminimizing I .When all agents possess
equal masses of their Voronoi regions (i.e., MVi = MV for
all i = 1, · · · , k), the metric I equals zeros. This metric
also facilitates assigning individual agents at the centroids of
the assigned Voronoi regions, aligning with the objective of
CVT. To determine termination for the agent dropout process,
we define 1I using:

1I = It−1 − It (10)

Here, a low pass filter is applied to smooth the trajectory
of 1I .
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Algorithm 2 Adaptive CVT Using Agent Dropout and
Reinsertion
1: Initialize pi,∀i
2: Determine Vi, ∀i from Eq. 1
3: Update pi, ∀i from Eq. 7 and Projection
4: DropoutOff = False
5: while do
6: if DropoutOff == False then
7: AgentDropout()
8: end if
9: Determine Vi, ∀i from Eq. 1

10: Calculate pi, ∀i from Eq. 7 and Projection
11: Calculate 1I from Eq. 9 and 10
12: if 1I < ϵ then
13: DropoutOff = True
14: end if
15: end while

Algorithm 2 outlines the αCVT algorithm integrating
iCVT, projection, and the agent dropout and reinsertion
process. When the ‘DropoutOff’ flag is ‘False,’ the algorithm
invokes the ‘AgentDropout’ function at Line 7. This function
utilizes Algorithm 1 to identify greedy agents. Subsequently,
CVT is executed without these identified greedy agents (from
Line 9 to 10 in Algorithm 1). Following the ‘AgentDropout’
function call, the algorithm reinserts the previously identified
greedy agents and proceeds to perform CVT with all agents
(from Line 9 to 10 in Algorithm 2). The termination condition
for the dropout process relies on 1I < ϵ, where 1I signifies
the change in the performance metric. If this change falls
below the threshold ϵ, it indicates negligible improvement in
the metric, prompting the dropout process to terminate. The
value of ϵ must be greater than 0 to ensure the termination
of the agent dropout function; in our case, we selected
ϵ = 0.002.

Fig. 2 illustrates the internal process of the proposed
algorithm with the homogeneous agents and two disjoint
targets. Within the figure, non-target regions are shown in
white (ρ = 0), and the two target areas are represented in
gray (ρ = 0.235). Initially, Fig. 2a shows the simulation’s
starting configuration. The agent dropout and reinsertion
algorithm remains continuously active until its termination.
The following sub-figures (Fig. 2b-f) show the internal
process during the third iteration of the algorithm. Fig. 2b
displays the initial positions of agents and their corresponding
Voronoi regions at the onset of this iteration. Subsequently,
in Fig. 2c, the algorithm identifies and selects four greedy
agents based on the specified τdrop value. For instance, Agent
6 initially occupies the upper target area, as depicted in the
figure. Following the removal of these greedy agents, the
algorithm conducts CVT in conjunction with the projection
algorithm (Fig. 2d). Consequently, Agent 6 relocates to the
lower target area. Reinsertion of the previously removed
greedy agents takes place (Fig. 2e), returning them to their
original positions. Post-reinsertion, the algorithm conducts

FIGURE 3. Two disjoint target areas with ρ = 0.235: (a) initial state with
10 homogeneous agents, and the results from (b) iCVT,
(c) iCVT+Projection [11], (d) αCVT, and (e) comparisons of I values over
iterations.

another CVT with projection (Fig. 2f). Once the dropout and
reinsertion process is deactivated, the algorithm exclusively
performs CVT with the projection algorithm until reaching
the final configuration (Fig. 2g). The step-by-step process is
summarized below:

1) Perform initial CVT and projection for all agents to be
located within the target areas in the domain.

2) Determine greedy agents and drop them out.
3) Perform CVT and projection for the remaining agents.
4) Reinsert the greedy agents.
5) Repeat CVT and projection.
6) If the dropout process terminates, return to 5); other-

wise, return to 2).

III. ALGORITHM APPLICATIONS AND EVALUATIONS
This section applies the algorithm to particular applications
and assesses the performance of αCVT in different exper-
imental simulation settings, comparing it against existing
methods. The simulations were executed within ROS, where
the agents were represented as dots moving freely within
a 2D environment. The αCVT algorithm is compared
with ‘iCVT+Projection’ [11], which employs an iterative
scheme of executing CVT and the projection algorithm
at each iteration. In Section III-B, further comparisons
were conducted, extending the evaluation by contrasting the
proposed αCVT method with other recent works presented
in [25], [26], and [31]. We note that the size of the 2D
domains in these evaluations was fixed at 200 × 200 pixels,
standardizing the evaluation criteria and facilitating direct
comparisons between the different methodologies assessed
within this section.

A. HOMOGENEOUS AGENTS FOR DISJOINT TARGETS
We conducted three sets of experiments with homogeneous
agents for disjoint targets in an open, bounded environment
where the agents can freely move around. Open, non-target
space with ρ = 0 is shown in white, and target areas are
shaded in grayscale, where a darker shade indicates a higher
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FIGURE 4. Simulation results (blue dots) for (a) different initial positions
(red dots) of 10 homogeneous agents, (b) 20 homogeneous agents,
(c) a different target priority density distribution, (d) two identical disjoint
targets, and (e) the change of performance metric I over iterations.

FIGURE 5. Simulation results for a bullseye-shaped target: (a) using
iCVT+Projection [11] and (b) using αCVT, (c) change of performance
metric I over iterations.

density (0 < ρ ≤ 1). The same color scheme is applied to all
simulations.

The first experimental scenario involved ten agents for
two disjoint target areas with ρ = 0.235. Fig. 3 shows
(a) the simulation setting and (b-d) results from iCVT,
iCVT+Projection, and αCVT, respectively. Ten agents were
initially located near the upper-left corner (Fig. 3a). When
using the iCVT method, only four agents were placed at
the target areas, and six agents remained at the initial
locations without the assigned Voronoi regions (Fig. 3b). The
iCVT+Projection method placed all agents within the two
target areas, where nine were aggregated in the larger target
and only one in the smaller one (Fig. 3c). The proposed
αCVT method resulted in all agents located in the two
targets with evenly distributed Voronoi regions (Fig. 3d).
We measured the changes of I over iterations for the three
cases (Fig. 3e). Using iCVT shown in (b), I converged to 1.2;
using iCVT+Projection shown in (c), it converged to 0.44;
using αCVT shown in (d), I reached as low as 0.046. The
convergence speed using αCVT was also the fastest.
The second set of experiments adopted αCVT for the

following conditions: different starting positions of the agents
(Fig. 4a), a different number of agents (Fig. 4b), two
targets with different densities (Fig. 4c), and two identical
targets (Fig. 4d). In all four cases, αCVT showed reliable
performance by effectively assigning evenly partitioned
Voronoi regions to all agents. Corresponding performances
measured by I over iterations are shown in Fig. 4e. The I

FIGURE 6. The performance results measured by I over increasing n at
the final state with different agent numbers for (a) the domain including
two disjoint target areas and (b) the bullseye-shaped target.

value converged to 0.076 in (a), 0.246 in (b), 0.22 in (c), and
0.039 in (d).

The third set of experiments considered 20 homogeneous
agents for a bullseye-shaped target in an open, bounded envi-
ronment (Fig. 5), benchmarking the environment introduced
in [3]. We employed (a) iCVT+Projection and (b) αCVT
for comparison. Both algorithms placed all agents within
the target areas, but αCVT showed a significantly improved
distribution of the individually assigned Voronoi regions.
Moreover, αCVT resulted in a faster convergence than the
iCVT+Projection algorithm, as shown in Fig. 5c. The I value
converged to 0.083 using αCVT, while iCVT+Projection
resulted in 0.367.

In all three sets of experiments, I converged to specific
values. Convergence of I implies the convergence of Voronoi
regions and the agents’ positions because I is based on
the mass of individual Voronoi regions MVi and the agents’
positions determine the Voronoi regions. Therefore, the
convergence of the proposed algorithm is achieved when the
agent dropout process terminates. Appendix A-A proves this
convergence statement. For the two environments employed
in Figs. 3 and 5, we also examined the scalability of the two
algorithms (iCVT+Projection and αCVT) by evaluating I
over an increasing number of agents, n = 5, 10, · · · , 30.
As shown in Fig. 6, I from the results using iCVT+Projection
(blue bars) increased as n and was significantly higher than
I from the αCVT results (orange bars) except for when n =
5 and n = 10 in Fig. 6b (the bullseye-shaped target). When
n = 5, I = 0.0576 for iCVT+Projection and I = 0.058 for
αCVT; when n = 10, I = 0.12 for iCVT+Projection and
I = 0.14 for αCVT. When a small number of agents are
considered, iCVT+Projection allows them to easily adjust
their positions because the Voronoi regions determined by
Euclidean norm for individual agents are relatively large.
As the number of agents increases, the Voronoi regions
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FIGURE 7. Simulation results of non-convex domain including obstacles:
(a) initial positions of 10 homogeneous agents in the non-convex
domain [8], (b) result of iCVT+Projection [11], (c) result of αCVT, and
(d) change of performance metric over iterations.

FIGURE 8. Performance metrics at the final state with different agent
numbers of non-convex domain including obstacles.

become compact and the agents have less room to adjust
their positions. Therefore, the agents using iCVT+Projection
can be stuck at a local minimum. On the other hand, the
agent dropout and reinsertion process in αCVT improved the
overall distribution of the coverage regions.

B. HOMOGENEOUS AGENTS FOR TARGET DOMAIN WITH
OBSTACLES
To demonstrate the algorithm performance in a non-convex
domain involving obstacles restricting the agents’ mobility
and coverage capabilities, we adopted the environment
introduced in [8] (Fig. 7). The agents cannot traverse the
obstacles, and the individual agents’ coverage is affected by
the obstacles. Application-specific modifications to the CVT
algorithm and the definition of I are applied.

1) ALGORITHM MODIFICATION
We considered the line of sight when calculating the Voronoi
region as follows [13]:

Li,s = {s ∈ Sf |∀w ∈ {αpi + (1− α)s},w /∈ So} (11)

where α ∈ [0, 1], Li,s is the line of sight of ith agent, and Sf
and So are the free space and the obstacle regions in domain
S, respectively. The term αpi + (1 − α)s depicts the straight
line connecting the agent’s current position pi to a point s,

FIGURE 9. Simulation results to compare αCVT with [25]. (a) Initial
positions of agents in [25]. (b) Final configuration of the coverage control
in [25], and (c) the final configuration of αCVT.

FIGURE 10. Simulation results to compare αCVT with [26]: (a) initial
positions of agents in [26], (b) final configuration of the coverage control
in [26], and (c) final configuration of αCVT.

and w represents all points on the line. If the line connecting
pi to s intersects the obstacle, s /∈ Li,s. Otherwise, s ∈ Li,s.
The Voronoi region, considering the visibility, is redefined as
follows:

V L
i = {s ∈ S | ||s− pi|| ≤ ||s− pj||,∀j ̸= i} ∩ Li,s (12)

where V L
i is a visible Voronoi region of ith agent.

For the performance metrics to capture the partitioning as
well as the coverage performances, we modified (9) to

IL = I + Ic (13)

where

Ic =
1

kM
L
V

(
∫
S
ρ(s)ds−

k∑
i=1

MV Li
), M

L
V =

1
k

k∑
i=1

MV Li
(14)

The first term I in (13) remains the same as (9). The second
term Ic is newly added to calculate the normalized mass of
uncovered (or invisible) areas, as defined in (14). The term∫
S ρ(s)ds captures the total mass of S. The uncovered areas
are the spaces where ρ > 0, but not included in any visible
Voronoi regions. Therefore, the proposed algorithm works
towards reducing the uncovered areas. When the agents cover
the entire target area after completing the iteration, Ic = 0.
To consider visibility, MVi in τdrop, Algorithms 1 and 2 was
replaced withML

Vi .

2) SIMULATION RESULTS
We first considered an environment with two walls, as shown
in Fig. 7a. Figs. 7b,c compare the performances of
iCVT+Projection and αCVT. While both methods resulted
in full coverage of the target area after completing the
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FIGURE 11. Simulation results to compare αCVT with [31]: (a) initial
positions of agents in [31], (b) final configuration of the coverage control
in [31], and (c) final configuration of αCVT.

iterations, αCVT resulted in a better distribution than iCVT.
Fig. 7d plots IL over iterations for the two algorithms. αCVT
showed faster convergence with lower IL (0.169) than the
IL of iCVT+Projection (0.389). The scalability of the two
algorithms for this environment was also tested, and the
results are shown in Fig. 8. Overall, the αCVT algorithm
outperformed iCVT+Projection. The IL values of αCVT for
this environment were generally higher than the environments
introduced in Section III-A, especially when n = 25 (0.392)
and 30 (0.346). An increase in the IL values is attributed
to the long pathways some agents had to take due to the
obstacles. In this case, tuning the τdrop value can further
improve the performance. For example, when we selected
τdrop = 1.025M

L
V , I

L values were decreased to 0.269 and
0.213 for n = 25 and 30, respectively. However, such a
case-by-case tuning process requires significant time and thus
makes the algorithms non-adaptability. With τdrop =

k
k−1M

L
V

for the environment with obstacles or k
k−1MV for disjoint

targets across all simulations (where k is the number of
agents), the αCVT method still resulted in a significantly
better performance than iCVT+Projection. As described in
Proposition 2 in Appendix A-B, the convergence of the
proposed algorithm is achieved under specific conditions.

We also compared the performance of αCVT with other
recent coverage control methods presented in [25], [26],
and [31]. The algorithm in [25] and [31] only concerned
non-convex environments with obstacles. The other [26]
performs the coverage and rendezvous controls in the
non-convex environment with obstacles. For comparison
between αCVT and the algorithm in [25], we replicated
the same non-convex environment used in [25] as shown
in Fig. 9a with the agents’ initial positions (red dots). The
final results of the coverage control are shown in Figs. 9b
and c, respectively. The Voronoi regions in Fig. 9b were
regenerated from the final positions of the agents in [25].
The final configuration using αCVT achieved slightly better

FIGURE 12. Simulation results from a non-convex domain with a shape
constraint: (a) aerial view of the agriculture field, (b) corresponding
density map, (c) result of iCVT+Projection [11], (d) result of αCVT,
(e) result of iCVT+Projection [11] under a shape constraint, and (f) result
of αCVT under a shape constraint. (g) change of performance metric over
iterations.

performance in terms of the distribution of Voronoi regions,
resulting in IL = 0.0901, compared to IL = 0.164 using the
comparison algorithm. Comparisonwith the algorithm in [26]
also adopted the same environment and initial settings as in
this reference (Fig. 10a). The final configurations from the
two algorithms were very similar, as shown in Figs. 10b,c,
resulting in IL = 0.061 using the algorithm in [26]
and IL = 0.044 using αCVT. Lastly, the initial settings
and the environment of [31] were replicated (Fig. 11a) for
comparative evaluations. The final results using the two
algorithms are shown in Figs. 11b,c. The performance metric
values obtained from [31] and αCVT were 0.778 and 0.532,
respectively. αCVT covered a larger area than [31] in this
experimental setting.

C. HOMOGENEOUS AGENTS FOR SHAPE CONSTRAINED
DOMAIN
This scenario concerns the partitioning of a non-convex
domain that has a specific shape constraint. One example
of such cases may include an agricultural field with crops
planted in rows, as shown in Fig. 12a. If the area partitioning
is performed for ground robots to move along the crop rows,
each agent must be assigned to a well-defined rectangular
region. If aerial robots are involved, such a constraint may not
be applied. Some previous works have applied Voronoi-based
area partitioning to agricultural fields [17], [18], but the fields
were considered unconstrained convex environments. In this
simulation environment, we consider a non-convex domain
with multiple disjoint targets with geometric constraints.
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FIGURE 13. Performance metrics at the final state with different agent
numbers of non-convex domain with a shape constraint.

To do so, we propose application-specific modifications to
the presented algorithms.

1) ALGORITHM MODIFICATION
To achieve the desired geometry-constrained partitioning,
we modify (1) as follows:

VG
i = {s ∈ S | ||Tc(s− pi)

T
|| + λℓspi ≤ ||Tc(s− pj)

T
||

+ λℓspj , ∀j ̸= i}, Tc =
[
a 0
0 b

]
, 0 ≤ a, b ≤ 1 (15)

where Tc is a variation of the transformation matrix
introduced in [6], ℓspi is a total length of line, where ρ =

0 between pi and s, and λ is a penalty factor. The form
of (15) is similar to the power diagram in [32], while the
sign in front of λℓspi is ‘+’. Therefore, λℓspi acts as a penalty
when determining the Voronoi regions. The terms a and b
are the weight factors on horizontal and vertical distances,
respectively, when the Voronoi partition is performed. If a =
0, the horizontal distance is ignored for the Voronoi partition;
otherwise, if b = 0, the vertical distance is disregarded.
To consider geometric constraints,MVi in τdrop, Algorithms 1
and 2 was replaced with MG

Vi where M
G
Vi is the mass of VG

i .
In this work, we used a = 1, b = 0, and λ = 2. The
performance metric I is used for this application since the
environment is a non-convex domain with multiple disjoint
targets with geometric constraints.

2) SIMULATION RESULTS
We considered a cotton field located in Corpus Christi, Texas,
USA (Fig. 12a). Vision processing may be applied to convert
this image into a simplified target domain, as shown in
Fig. 12b. Figs. 12c,d show the results of ten homogeneous
agents using iCVT+Projection and αCVT, respectively,
without any geometric constraint; Figs. 12e,f show the results
of the two algorithms with the proper geometric constraint.
Using (15), both algorithms resulted in rectangular-shaped
Voronoi regions, while αCVT resulted in a better distribution
of the target areas. Fig. 12g shows the I values over iterations.
An interesting observation is that the proposed algorithm
with shape constraints (Fig. 12f) shows better coverage
performance than without shape constraints. In the case of
(f) in Fig. 12g, I converged to 0.0788. Fig. 13 shows I over

FIGURE 14. Simulation results of the presented algorithm with
heterogeneous agents and the non-convex domain including disjoint
target areas: (a) initial positions of 10 heterogeneous agents, (b) result of
iCVT+Projection [11], and (c) result of αCVT. (d) change of performance
metric over iterations.

n = 5, 10, · · · , 30. The αCVT algorithm shows significantly
lower I values than iCVT+Projection in all cases.

The convergence of the proposed algorithm was exper-
imentally shown in Fig. 12g. Mathematical proof in the
case when a geometric constraint is applied cannot be
clearly described. Nevertheless, all simulations using αCVT
converged as shown in Fig. 12g.

D. HETEROGENEOUS AGENTS
This example involves heterogeneous mobile agents with
coverage capacities differentiated by their maximum speeds.
When the agents have different maximum speeds, the
temporal cost can be used for Voronoi partitioning [21].
We extend this temporal cost to consider the scalability of
the coverage areas.

1) ALGORITHM MODIFICATION
First, the maximum speed of agents is converted into the
reachable distance within a specific time duration, such that

Ri = vi,max · t (16)

where vi,max is the maximum speed of the ith agent and t is
the time duration for travel. If the maximum speeds of agents
are fixed, we can set a high value of t for large coverage areas
and a low value of t for small ones. In other words, t serves as
a scaling factor. We applied the same value of t to all agents
to maintain synchrony and consistency.

The Voronoi partition with Ri can be redefined as

VH
i = {s ∈ S | ||

s− pi
Ri
|| ≤ ||

s− pj
Rj
||,∀j ̸= i} ∩ Li,s (17)

where Li,s is the same in (11). If the environment is an
open space without obstacles, Li,s is disregarded. The above
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FIGURE 15. Simulation results of the proposed algorithm with
heterogeneous agents and the non-convex domain including obstacles:
(a) initial positions of 10 heterogeneous agents, (b) result of
iCVT+Projection [11], and (c) result of αCVT. (d) change of performance
metric over iterations.

equation follows the characteristics of the Voronoi partition
described in [21]. The performance metric in (9) is also
modified as follows to consider the reachable distance:

IH =
1
k

(
k∑
i=1

∣∣∣∣∣M
h
Vi

M
h
V

− 1

∣∣∣∣∣
)
+ Ic (18)

where

M
h
V =

1
k

k∑
i=1

Mh
Vi; Mh

Vi =
MVHi

πR2i

The modified mass Mh
Vi considers the areas defined by πR2i .

Therefore, Mh
Vi becomes small for a large value of Ri, and

vice versa. We also note that Ic in (18) is defined in (14). If an
open environment without any obstacle is considered, Ic = 0.
To consider heterogeneity, MVi in τdrop, Algorithms 1 and 2
was replaced withMh

Vi .

2) SIMULATION RESULTS
Fig. 14 shows the simulation result of the proposed algorithm
for a domain with two disjoint targets employing two types
of agents, Ri = 8 for i = 1, · · · , 5, and Ri = 16 for
i = 6, · · · , 10. Given the initial status shown in Fig. 14a,
the partitioning results of iCVT+Projection and αCVT are
shown in Figs. 14b and c, respectively. The high-speed agents
occupy larger areas, and the low-speed ones occupy smaller
areas. In Fig. 14b, one high-speed agent is located at the lower
target area. On the other hand, the result of the proposed
algorithm in Fig. 14c shows that three high-speed agents are
located at the lower target area. The performance metrics
of iCVT+Projection and αCVT are 0.0437 and 0.0367,
respectively. Fig. 15 shows the simulation result of the
proposed algorithm considering heterogeneity for a domain

FIGURE 16. (a) Turtlebot3 model adopted for simulation, and
(b) kinematic representation of a two-wheeled robot.

with obstacles. Given the initial state shown in Fig. 15a, two
types of agents were deployed to cover the target area. We set
Ri = 24 for i = 1, · · · , 4, and Ri = 48 for i = 5, · · · , 10.
Figs. 15b and c show the result of iCVT+Projection and
αCVT, respectively. in both cases, the high-speed agents
traveled much farther and had larger coverage areas, and
the low-speed ones were distributed near the initial positions
with smaller coverage areas. As shown in Fig. 15d, αCVT
outperforms iCVT+Projection. The performance metrics of
iCVT+Projection and αCVT converge to 0.402 and 0.318,
respectively.

Voronoi regions, considering the different maximum
speeds of the agents, result in circular boundaries (see
Section II in [21]). However, CVT with this heterogeneity
converges if the agents move to the centroid of their
Voronoi regions (Proposition 1 in [21]). Therefore, the
different maximum speeds of the agents do not influence
the convergence of the proposed algorithm, and Propositions
1 and 2 in the Appendix are still valid.

IV. EXTENSION TO REAL-TIME COVERAGE CONTROL
This section applies αCVT to real-time coverage control
problems using mobile agents in Unity-ROS simulations.
The size of the environment was 20 × 20m2. We assume
that all agents are connected to a centralized computer that
runs the coverage control algorithm and that there is no
communication loss or sensing limit.

A. MOBILE ROBOT IN SIMULATION
We imported the Unity model of Turtlebot3 [33] as a
mobile agent (Fig. 16a). Each robot was equipped with a
2D Lidar to detect obstacles and wheel encoders to calculate
wheel odometry. The associated kinematics is represented in
Fig. 16b and can be expressed as [34],ẋẏ

θ̇

 =
cos θ 0
sin θ 0
0 1

[V
ω

]
(19)

ω =
vr − vl
b
; V =

vr + vl
2

(20)

where x and y represent the robot’s position, θ is the heading
angle of the robot in the global coordinate, b is the distance
between the left and right wheel, V is the linear velocity,
and ω is the angular velocity of the robot. The terms vr
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and vl indicate linear velocities of the right and left wheels,
respectively. V and ω are the control inputs obtained from an
upper-level controller. V and ω are achieved by controlling vr
and vl . The simulations based on this kinematic model were
performed in Unity.

B. REAL-TIME COVERAGE CONTROL

Algorithm 3 αCVT for Real-Time Coverage Control
1: DropoutOff = False
2: while do
3: receive agent pose pi from each ith agent
4: while for 1 second do
5: if DropoutOff == False then
6: AgentDropout()
7: end if
8: Determine Vi, ∀i from Eq. 1
9: Calculate pi,goal , ∀i from Eq. 7 and Projection
10: Calculate △I from Eq. 9 and 10
11: if △I < ϵdrop then
12: DropoutOff = True
13: end if
14: end while
15: Send pi,goal to each ith agent
16: end while

Algorithm 3 extends the presented method for real-time
coverage control. It is similar to Algorithm 2, except for
real-time updating of the agents’ poses (Line 3) and goals
(Line 15). After receiving the real-time pose (Line 3), this
algorithm calculates the goal for each agent within a specific
time duration. The time duration is necessary to calculate
meaningful goals for the agents. We used 1 second for
this, but it can be adjusted as needed. The calculated goals
(Line 15) are sent to individual agents, and each agent
performs path planning and speed control to reach the goal.

Many previous studies derived a control law by adopting
the gradient descent or ascent method from the Voronoi
regions [5], [7], [8], [20], [21], [22], [25], [26]. Different
strategies introduced in [3], [11], and [24] may also be
considered for path planning and motion control for this
study. We adopted the A⋆ algorithm [35] for path planning
and velocity control with reciprocal velocity obstacle (RVO)
[36] for collision avoidance. The advantage of this strategy
is its ability to avoid static and dynamic obstacles. A⋆

algorithm calculates the desired path to the goal point. For
a collision-free path from the static obstacles, A⋆ requires a
pre-determined map. The desired path from A⋆ is inputted
to the RVO algorithm to calculate the command velocity.
The command velocity aims to enable the agent to follow
the desired path, and the RVO algorithm handles static and
dynamic obstacles in the multi-agent system.

To determine the command velocity, the algorithm gen-
erates the velocity samples (vs) within the velocity range,
considering the kinematic constraint of the agent [36],

FIGURE 17. Results of real-time coverage control using Algorithm 3 and
homogeneous mobile agents: (a) result of iCVT+Projection [11], and
(b) result of αCVT in a non-convex domain including disjoint target areas.
(c) change of performance metric over time-lapse in the non-convex
domain with disjoint targets. (d) result of iCVT+Projection [11], and
(e) result of αCVT in a non-convex domain with obstacles. (f) change of
performance metric over time-lapse in the non-convex domain with
obstacles.

FIGURE 18. Results of real-time coverage control using Algorithm 3 and
heterogeneous mobile agents with different maximum speeds: (a) result
of iCVT+Projection [11], and (b) result of αCVT in a non-convex domain
including disjoint target areas. (c) change of performance metric over
time-lapse in the non-convex domain with disjoint targets. (d) result of
iCVT+Projection [11], and (e) result of αCVT in a non-convex domain with
obstacles. (f) change of performance metric over time-lapse in the
non-convex domain with obstacles.

such that

Vset = {vs | ||vs|| < vmax ∧ ||vs − vcur || < amax1t} (21)

where vcur , vmax , and amax are the current velocity, maximum
velocity limit, and maximum acceleration of the agent,
respectively, and 1t is the sampling time. The algorithm
performs forward simulations using Vset to check the time to
collision and trajectory deviation from the desired path, and
then, it calculates the penalty of each velocity sample [36].
Finally, the velocity sample with the lowest penalty is
selected as a command velocity. One difference of our
application from [36] is that the control inputs for the
mobile agent are linear and angular velocities considering the
kinematics in (20). Therefore, the velocity control algorithm
in our work generates linear and angular velocity samples
and calculates the penalty considering both. Finally, the
algorithm returns the linear and angular velocity commands
simultaneously. The algorithm was embedded for each agent
in Unity.
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FIGURE 19. Ten robots employed for simulation (a) and time-lapse sequences of real-time coverage control for the domain shown in
Fig. 18b (b-e).

FIGURE 20. Ten robots employed for simulation (a) and time-lapse sequences of real-time coverage control for the domain shown in
Fig. 18e (b-e).

C. EVALUATION
We evaluated the performance of real-time coverage control
using Algorithm 3 in two experimental settings and two types
of environments for each setting.

We first considered homogeneous agents in two previously
considered environments, an open environment with two dis-
joint targets and one with walled obstacles (Fig. 17). We set
vi,max = 0.4 m/s for the mobile agents with two disjoint
targets. The gray lines indicate the trajectories of individual
agents. Figs. 17a,b show the result of real-time coverage
control for two disjoint targets using iCVT+Projection and
αCVT, respectively, and Fig. 17c compares the I values over
time for the two algorithms. iCVT+Projection resulted in
I = 0.444 while αCVT resulted in I = 0.051. Figs. 17d,e
show the result for the environment, including obstacles
using iCVT+Projection and αCVT, respectively. We set
vi,max = 0.8 m/s for all mobile agents. Fig. 17f shows
similar convergence behavior of I using both methods. After
the convergence, I = 0.387 using iCVT+Projection and
I = 0.187 using αCVT.
Second, we adopted the agents with two different max-

imum speeds. For the environment involving two disjoint
targets, we set vi,max = 0.4 m/s for i = 1, · · · , 5
(blue dots in Fig. 18a,b) and vi,max = 0.8 m/s for i =
6, · · · , 10 (red dots in Fig. 18a,b). Figs. 18a,b show the results
using iCVT+Projection and αCVT, respectively. Fig. 18c
shows the change of performance metrics over time for
both algorithms. The performance metric IH converged to
0.0701 using iCVT+Projection and 0.0375 using αCVT.
Figs. 18d,e show the results for the environment, including
obstacles. We used vi,max = 0.4m/s for i = 1, · · · , 4 (blue
dots in Fig. 18d,e) and vi,max = 0.8m/s for i = 5, · · · , 10 (red
dots in Fig. 18d,e). The performance metrics IH converged
to 0.4003 using iCVT+Projection and 0.3305 using αCVT

(Fig. 18f). Fig. 19 and Fig. 20 show the time-lapse sequences
of real-time coverage control for these two examples. The
speed of blue agents is 0.4m/s, while the speed of red agents
is 0.8m/s.

V. CONCLUSION AND DISCUSSION
We introduced the αCVT algorithm, combining a novel agent
dropout and reinsertion strategy with iCVT+Projection for
efficient coverage control in 2D non-convex domains. Our
evaluation involved simulations across various experimental
settings encompassing both homogeneous and heterogeneous
agents. These scenarios included disjoint target areas and
environments obstructed by obstacles. The presented αCVT
algorithm consistently showcased significant enhancements
in Voronoi region distribution and overall coverage compared
to iCVT+Projection in all evaluated cases. Fine-tuning
τdrop for each case could potentially further enhance per-
formance. However, this fine-tuning process introduces a
trade-off, requiring a trial-and-error-based approach, thereby
sacrificing some level of adaptability.

The proposed algorithm can be applied for exploration
tasks that mandate agents to move within the designated
Voronoi regions continuously. A potential comparison can
be drawn with the ergodic dynamics-based exploration
method [2]. Of particular interest to our study is its potential
application in agriculture, as depicted in Fig. 12. In an
agricultural setting, a human user can designate high-interest
areas within the field for monitoring crop conditions based
on an aerial view. These specified high-interest regions
can subsequently undergo coverage utilizing the algorithm
presented in this study. Ground robots can employ localized
path-planning strategies to cover the allocated regions effec-
tively. This adaptation indicates the algorithm’s versatility
and potential in real-world applications.

5514 VOLUME 12, 2024



K. Lee, K. Lee: αCVT With Agent Dropout and Reinsertion

The presented work assumes a centralized system archi-
tecture. We plan to expand the current work by developing a
decentralized version of αCVT, tailored for implementation
within decentralized multi-robot systems. In this envisioned
framework, each agent would derive its control inputs by
leveraging information received from neighboring agents.
This information exchange would account for factors such
as sensing capability [6], [7], [9], [19] and collision-
avoidance considerations [20], [26]. By transitioning towards
a decentralized approach, the aim is to empower agents
within multi-robot systems to collaborate effectively and
autonomously. This adaptation holds promise for enhancing
adaptability and scalability in real-world applications, where
decentralized agent coordination is pivotal for optimal
performance.

APPENDIX A
PROPOSITIONS AND PROOFS
A. PROPOSITION 1
Once the agent dropout process terminates, the algorithm
converges to one of the local minima in the non-convex
environment with disjoint targets.
Proof: The proposed algorithm (Algorithm 2) only per-

forms the projection algorithm and CVT if ‘AgentDropout’
is deactivated by the termination criterion (1I < ϵ). The
projection algorithm makes all positions of agents located
in the closest target areas (where ρ > 0) by (8). If the
position calculated by CVT is already located in the target
area, the projection algorithm is ignored. Therefore, all agents
are located in the target areas in every iteration. Also, the
proposed algorithm follows the density definition in [22].
It means that the outside of target areas is the infeasible
area (where ρ = 0). The infeasible area is excluded from
calculating the mass and centroid of the Voronoi region since
ρ = 0. After all the agents are located in the disjoint
targets, the centroid of each agent’s Voronoi regions is located
in the disjoint target where the agent is located by the
density definition since the infeasible areas are excluded [22].
Therefore, the agents converge to stationary positions using
CVT in each disjoint target (see Section IV in [22]).

B. PROPOSITION 2
The algorithm converges to one of the local minima in
the non-convex environment with obstacles if the following
specific conditions are satisfied: 1) ‘AgentDropout’ is
terminated; 2) If the boundary between two visible Voronoi
regions exists, the Euclidean distances from the boundary
to the agents of the two visible Voronoi regions are equal.
3) there is no uncovered area.
Proof: By Condition 1), the proposed algorithm

(Algorithm 2) only performs CVT and the projection
algorithm. If there are uncovered areas, the boundary between
the visible Voronoi region and the uncovered area can change
as the agent moves [37]. If there is no uncovered area, the
boundary changes between agents and the uncovered area can

be ignored (see Section II in [37]). If Conditions 2) and 3) are
satisfied, the problem of the non-convex environment with
obstacles can be solved by CVT since the cost function for
locational optimization does not require the constraints of the
uncovered area and visibility [37]. Moreover, the projection
algorithm does not prevent convergence as described in
the proof of Proposition 1 since the role of the projection
algorithm is to find a feasible target position only if the
target position calculated by CVT is set on the infeasible area
(where ρ = 0). Therefore, The algorithm converges to one of
the local minima.

Condition 2) may seem obvious and redundant when
considering the Voronoi region in the convex environment
since the boundary between the two Voronoi regions is
formed at the points that have the same Euclidean distances
from two agents by (1). However, the obstacles in the
non-convex environment sometimes block the visibility of
the agent, and the boundary of the visible Voronoi region
can be formed regardless of the Euclidean distance [37]. The
convergence of the proposed algorithm was experimentally
shown in Fig. 7d since the performance metrics in Fig. 7d
converge to specific values. It means the convergence of
Voronoi regions and agents’ positions as mentioned in
Section III-A. However, One limitation is that the proposed
algorithm can not guarantee convergence for all cases even
though the algorithm works toward reducing the uncovered
area by (13). For example, if the number of agents is too small
to cover the whole area of the environment with obstacles,
then Condition 3) is not satisfied.
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