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ABSTRACT Accurate simulation techniques are indispensable to efficiently propose new memory or
architectural organizations. As implementing new hardware concepts in real systems is often not feasible,
cycle-accurate simulators employed together with certain benchmarks are commonly used. However,
detailed simulators may take too much time to execute these programs until completion. Therefore, several
techniques aimed at reducing this time are usually employed. These schemes select fragments of the source
code considered as representative of the entire application’s behaviour–mainly in terms of performance, but
not plenty considering the behaviour of cache memory levels–and only these intervals are simulated. Our
hypothesis is that the different simulation windows currently employed when evaluating microarchitectural
proposals, especially those involving the last level cache (LLC), do not reproduce the overall cache behaviour
during the entire execution, potentially leading to wrong conclusions on the real performance of the proposals
assessed. In this work, we first demonstrate this hypothesis by evaluating different cache replacement
policies using various typical simulation approaches. Consequently, we also propose a simulation strategy,
based on the applications’ LLC activity, which mimics the overall behaviour of the cache much closer
than conventional simulation intervals. Our proposal allows a fairer comparison between cache-related
approaches as it reports, on average, a number of changes in the relative order among the policies assessed
–with respect to the full simulation–more than 30% lower than that of conventional strategies, maintaining
the simulation time largely unchanged and without losing accuracy on performance terms, especially for
memory-intensive applications.

INDEX TERMS Cache memory, computer architecture, computer simulation, hardware, memory
architecture, microarchitecture.

I. INTRODUCTION
Currently, most researchers in computer architecture employ
a real machine or a simulator to evaluate their proposals.
However, both approaches exhibit some drawbacks.

On the one hand, native execution can effectively be
employed to evaluate new architectural approaches, but
at the cost of a large reduction in exploration space.

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

Fortunately, many commercial systems include performance
monitoring support to record execution events and obtain
different metrics, that can be used for proposal assessment
or benchmark characterization.

On the other hand, the entire execution of a benchmark in a
cycle-level simulator that models the operation of a complex
system (processor, multi-level memory hierarchy, intercon-
nection network, etc.) may require unacceptable long time.
Notably, in recent years, processor performance has increased
significantly, and also augmented the design complexity
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of the organizations they currently integrate, mainly multi-
core, heterogeneous and specialized-hardware architectures.
Moreover, memory hierarchy is one of the principal com-
ponents because of its significant impact on performance,
energy consumption and area occupied, so that an accurate
and fast experimental evaluation by means of simulation
becomes decisive. Hence, researchers leverage sampling
techniques that allow to approximate the behaviour of a full
application by using small sections of the program code as
simulation intervals [1], [2]. However, in microarchitectural
research there is great diversity in the selection of these
simulation windows. Thus, many authors [3], [4], [5], [6], [7],
[8] employ SimPoint [2], which defines application-specific
simulation intervals, whereas other authors [9], [10], [11],
[12] choose to perform an initial fast forwarding or warm up
of a determined number of instructions followed by a detailed
simulation of a fixed number of subsequent instructions
(both processes –forwarding and detailed simulation– are
not application-specific and imply the same number of
instructions for all evaluated benchmarks). This diversity
also exists in the simulator employed (gem5 [13] in [4],
[5], [7], [11], and [14], Sniper [15] in [9], and [16], or
Scarab [17] in [6] and [18], among others), the benchmarks
used and the input data these applications receive (e.g.,
in the case of SPEC CPU suites, reference inputs in
[3], [4], [7], [18], and [19], test inputs in [16] or train
inputs in [20]). Our motivational hypothesis in this work
is that the particular simulation window employed when
evaluating microarchitectural proposals related to the last
level cache (LLC), such as cache replacement policies, can
lead to incorrect conclusions. To demonstrate this, we assess
different conventional cache replacement policies using
various established simulation intervals, and also simulate
the entire benchmarks. The results obtained confirm that the
particular simulation window employed significantly affects
the relative performance of the policies evaluated. Therefore,
we also propose a systematic methodology for selecting
simulation intervals aimed at reporting results that reproduce
the overall cache behaviour during program execution more
accurately than conventional simulation strategies.

To reinforce the demonstration of our hypothesis, in this
work we also employ the hardware performance monitoring
counters (PMCs) available on a real ARM machine to
further study the level of accuracy that SimPoint reports
in reproducing the LLC behaviour. The motivation behind
this combined analysis is that a key aspect in determining
the simulation intervals of SimPoint is the correlation
between the performance delivered in the complete execution
of the benchmark and that obtained when running the
selected portions of the program. Nevertheless, the suitability
of these simulation intervals for approximating the LLC
activity has not been studied in detail previously [21]. Our
experiments reveal that, although SimPoint is appropriate
for characterizing the entire application behaviour in terms
of performance, it fails to properly characterize the LLC
behaviour of applications.

In this work, we make the following contributions: we
demonstrate that 1) following our systematic method-
ology for using the original SimPoint intervals in a
different way –considering applications’ LLC activity–
leads to a fairer comparison among cache-related pro-
posals. Also, in the case of memory-intensive programs
and compared to conventional simulation strategies,
2) our approach significantly increases the degree of
similarity with the full simulation in terms of both
cache activity and performance, without impacting on
simulation time.

The rest of the paper is organized as follows: Section II
presents some background and related work. Section III
details the experimental framework used. Section IV moti-
vates and describes our proposed simulation intervals and
Section V presents the results obtained. Finally, Section VI
concludes.

II. BACKGROUND AND RELATED WORK
New memory technologies and organizations contribute
to significantly augment the complexity in performing an
accurate and efficient simulation of the memory hierarchy
behaviour. Consequently, many studies have aimed to verify
whether current simulation strategies are still valid for new
complex memory systems. A widespread strategy consists
in characterizing the workloads by selecting a specific
subset of benchmarks and then simulating this set using a
cycle-accurate simulator [21], [22], [23].

Next, we briefly describe how SimPoint operates and the
cache replacement policies employed in this study.

A. SIMPOINT
Although it was proposed almost 20 years ago, it is still
the most referenced technique for automatic off-line phase
detection. In selecting the specific fragments of a program
code to approximate the behaviour of each full application
with a significantly reduced execution time, SimPoint first
slices the program into chunks with the same number of
instructions. Then, for each chunk, its Basic Block Vector
(BBV) is determined, which implies to record the times
every single basic block is executed inside the region. After
dimensionality reduction performed by random projection,
SimPoint employs the K-means algorithm to find the optimal
clustering of the program regions, where a similar code is
executed and consequently similar behaviour in the system
(mainly in terms of performance) is expected. Finally, a single
region is selected from each cluster as a representative Sim-
Point. Although several simulation intervals are determined
for each application, only the most representative interval is
typically employed in many research works.

B. CACHE REPLACEMENT POLICIES
In this work, we employ the gem5 simulator, which includes
several out-of-the-box replacement policies [24]. Each one
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uses its specific replacement data to determine a replacement
victim on evictions [24]. Next, we briefly describe the five
cache replacement algorithms that we evaluate:

• Least Recently Used (LRU): The victim is chosen based
on a last touch timestamp: the older it is, the more likely
its respective entry is to be victimized.

• Tree LRU: LRU variation that uses a binary tree to keep
track of the temporal locality of the entries through 1-bit
pointers.

• Random: In this straightforward approach, the block to
be replaced is always randomly selected.

• Re-Reference Interval Prediction (RRIP): It uses a
re-reference prediction value (RRPV) to determine if
blocks are going to be re-used in the near future or not.
The higher the RRPV value, the more distant the block
is from its next access. From the original paper [19],
this implementation of RRIP is also called Static RRIP
(SRRIP), as it always inserts blocks with the same
RRPV.

• Bimodal Re-Reference Interval Prediction (BRRIP):
BRRIP [19] modifies the insertion of RRIP so that it
inserts the majority of cache blocks with a distant RRIP
and infrequently inserts new blocks with a long RRIP.

III. EXPERIMENTAL SETUP
In this section we detail the experimental environments we
employed in this work (both a simulator and a real machine)
as well as the benchmarks used.

A. EXPERIMENTAL ENVIRONMENTS
We motivate and evaluate our proposal by using the gem5
simulator. Moreover, some experiments were conducted on
the 2-socket ARM Huawei Taishan 2280 v2 server, equipped
with two 64-bit Kunpeng 920 CPUs (model 4826, 48 cores
each) running at 2.6 GHz. Among all the PMCs available on
our platform, we selected those able to measure the events
closely related to the cache hierarchy (number of cache
misses, cycles executed and instructions retired), employing
the perf tool [25] to obtain PMC information. When the gem5
simulator was used, we employed the Syscall Emulation
mode and the O3CPU model. Taishan configuration is
roughly simulated from available specification data, with
the per-core main features of the cache hierarchy shown in
Table 1. Note that no prefetching technique is applied to any
cache level.

B. EXPERIMENTAL WORKLOADS
For both the Taishan platform and its simulated gem5 coun-
terpart, we employed the 20 speed benchmarks from SPEC
CPU2017 suite [26], compiled with gcc v6. We leverage train
inputs, using only one input data set per benchmark except in
the cases of perlbench (5), gcc (3), bwaves (2), xz (2) and nab
(2), where we experiment with different inputs (the particular
number is expressed in parentheses right after the name of the
benchmark).

TABLE 1. Cache parameters employed in the gem5 simulator.

IV. MOTIVATION AND PROPOSAL
To motivate our work, we first evaluate with gem5 –using the
settings detailed in Table 1– the five aforementioned cache
replacement policies by running the speed benchmarks from
the SPEC CPU2017 suite under four different simulation
approaches:

• Fast-forwarding of the first 1000M instructions followed
by a detailed simulation of the subsequent 1000M
or 2000M instructions (we refer to these simulation
strategies as ff1000 and ff2000, respectively).

• Simulation of 100M-instruction windows according to
SimPoint (we denote this strategy as spt). Note that,
for the sake of fairness, we employ all the SimPoint
simulation intervals, not only that of the highest weight.
Table 2 shows the specific number of simulation
intervals employed for each application used. It is also
worth noting that as we are using windows of enough
interval size, no warmup is required, as other works
pointed out [27], [28], [29].

• Full simulation. We drop intermediate results every
100 ms so that we can partly reconstruct the temporal
behaviour of the application (we refer to this approach
as full).

A. MOTIVATIONAL ANALYSIS
In this section we aim to validate our hypothesis. Recall
that it states that the chosen simulation intervals may
lead to incorrect conclusions when exploring cache-related
microarchitectural proposals.

1) GENERAL BEHAVIOUR
We explore the LLC misses per 1K instructions (MPKI)
and the cycles per instruction (CPI) values for the evaluated
applications.

Regarding the LLC misses it is worth noting that we
measure the total numbers of misses, including both data
misses and instruction misses without distinction. This is
based on the fact that instruction misses in the LLC are
extremely rare. Recall that our simulated configuration
roughly models that of the Taishan platform, which features
a separated first level cache for instructions (IL1) and data
(DL1), whereas the second level cache (L2) and the LLC
(L3) are both shared by instructions and data, as typically
occurs in commodity systems. According to our experiments,
instruction misses in LLC represents less than 0.5% of the
total LLC misses for the vast majority of the benchmarks
assessed. The average value, using the arithmetic mean and
considering all the 20 applications, is around 5.5%. If we omit
the contribution of the very few outlier benchmarks exhibiting
a high percentage of LLC instruction misses, this number
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FIGURE 1. LLC MPKI obtained with the four simulation strategies, using gem5, for different benchmarks and cache replacement policies.

is just 0.8%. If we employ the geometric mean, the average
value is 0.06% considering all the 20 applications and 0.03%
removing the contribution of the outliers.

As a representative sample of the results obtained, Fig. 1
shows the MPKI values reported in the execution of six
benchmarks under the four different simulation strategies
described (the y-axis represents the absolute number of
MPKI, so the scales in each figure may be different). The
following conclusions can be drawn:

First, for all the applications shown, we can observe
how the MPKI values vary significantly depending on the
specific intervals simulated. MPKI figures obtained with the
full simulation are generally substantially higher than those
reported by the first two simulation windows. When using
fast-forwarding, doubling the simulation window slightly
improves the results, but they generally remain significantly
far from the reference (except for pop2). Therefore, the results
obtained when using these two first simulation strategies
seems to be not representative of the application’s overall
behaviour, which suggests that no reliable conclusions on the
cache-related proposals evaluated under these strategies can
be extracted. SimPoint results are closer to the full simulation
results (except for pop2 again), but the differences, in relative
terms, are also notable. In the applications shown, these
variations range up to 20-55% for some cache replacement
policies. In the case of mcf –the benchmark with the highest
LLC MPKI among the 20 evaluated applications, as shown
in Table 2– LRU, Tree LRU and RRIP policies all report
an MPKI value with SimPoint approximately 55% lower

TABLE 2. Number of SimPoint intervals per evaluated benchmark-input
pairs and LLC MPKI values obtained with LRU policy.

than when using full simulation. These significant differences
also occur in most of the evaluated applications. Actually,
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FIGURE 2. Zoom into LLC MPKI obtained with SimPoint and full simulation, using gem5, for different benchmarks and cache replacement policies.

considering the maximum difference (between MPKI values
using SimPoint and the full simulation) reported by any of
the replacement policies assessed for each benchmark, the
average value considering all benchmarks is around 23%.
Note that each benchmark contributes only one value to
the final mean (we use the average value for benchmarks
with more than one input). In addition, we excluded the
contribution of xalancbmk, exchange2, perlbench (perfect
input) and nab (aminos input), because they all report very
low MPKI values (below 0.1 –we choose this threshold as
it constitutes the 1% of the average MPKI obtained with
the LRU policy considering the 20 benchmarks evaluated–),
so that relatively small variations in absolute numbers lead
to extraordinarily high variations in percentage, distorting
the final result. Note that all the numbers reported in this
experiment were obtained with the same simulator toolchain,
so comparisons between the different approaches are
fair.

Even when considering simulator inaccuracies,
we believe that these large relative differences are
representative, and both fast-forwarding and SimPoint
consistently underestimate the MPKI in the LLC,
worsening the representativeness of the simulation
intervals for the cache system with respect to the entire
application’s behaviour.

Second, and more importantly, traditional simulation
techniques may lead to incorrect conclusions regarding the
relative efficiency of the different replacement policies. For

clarity, Fig. 2 zooms into the MPKI results reported by the
corresponding SimPoint intervals and the full simulation of
the same six benchmarks shown in Fig. 1. According to
these data, the relative order between different policies is
changed in four (pop2, gcc, x264 and roms) of these six cases.
Thus, for example, if we were to compare RRIP with LRU
policies in gcc, the selected SimPoint intervals would benefit
the former, whereas LRU performs better when considering
the whole benchmark. This benchmark and x264 may not
be statistically significant, because the absolute values of
the differences are quite small. pop2 shows a more clear
behaviour in that concern, with BRRIP clearly penalized
when using SimPoint, behaviour also observed in roms.
In the case of mcf and imagick (and other applications not
shown), although no changes in the relative order between
the different replacement policies is observed, we can also
note significant relative variations. For example, in mcf,
whereas using SimPoint the BRRIP approach reports an
MPKI value around 27% lower than those of LRU, TreeLRU
and RRIP policies, this percentage rises to 47% in the full
simulation. Regarding the rest of applications evaluated,
we also obtain significant changes in the relative order
between the replacement policies employed depending on
the simulation strategy used (in particular when comparing
SimPoint and the full simulation) in all the benchmarks
evaluated except bwaves, cactuBSSN, wrf, deepsjeng, nab,
exchange2, fotonik, xz and lbm, so we can conclude that
these changes occur in roughly a half of the evaluated
benchmarks.

As for the CPI values, the figures obtained exhibit
the same trends as the MPKI values, with significant

VOLUME 12, 2024 5977



N. Bueno et al.: Improving the Representativeness of Simulation Intervals

FIGURE 3. LLC MPKI values obtained with the full simulation, using gem5, for different benchmarks as instructions are executed using LRU policy.

differences (and also changes in the relative order between
policies) depending on the simulated instruction window.
Indeed, the average maximum difference (derived from any
of the replacement policies evaluated) between the CPI
values using SimPoint and the full simulation is close to
15%. In applications with high LLC activity, such as mcf,
in which we are especially interested (MPKI variations can
lead to high impact on performance), this variation is up
to 40%.

Overall, we can conclude that, in many applica-
tions, conventional simulation techniques may affect
the insights derived from the evaluation of cache
approaches, either because the ordering in the relative
performance is changed with respect to that obtained
with the full simulation, or because the relative differ-
ences among the approaches assessed are significantly
far from those obtained when the entire simulation is
performed.

Moreover, if for a specific metric conventional simulation
strategies report values significantly far from those of the full
simulation, this can also impact the accuracy on other metrics
which depend on the first one, such as energy consumption on
the memory hierarchy and the processor, memory endurance
or CPI values, which all depend on the LLC MPKI values.

2) LLC VALUES FOR THE WHOLE EXECUTION
Previous results suggest that conventional simulation inter-
vals do not correctly capture the cache behaviour along the

entire execution of applications. To further confirm this,
we measure how the MPKI value varies during the whole
simulation as instructions are executed. This way, we are
able to check if the simulation intervals defined by SimPoint
are located in code regions with relevant LLC activity (we
repeated this experiment with data from PMCs on real
execution, obtaining analogous results).

Fig. 3 shows these data for six of the evaluated benchmarks,
where the vertical bars show the starting points of the five
most-weighted SimPoint intervals for each application (the
highest one is highlighted in purple; the other four in green).
For the sake of completeness, we now show the results for two
of the previously evaluated benchmarks (gcc and mcf), two
applications exhibiting changes in the relative order between
cache replacement policies in terms of both MPKI and CPI
but not previously shown (perlbench and omnetpp) and two
applications that do not experiment these changes in terms of
MPKI nor CPI (xz and wrf).

As illustrated, for perlbench, gcc mcf and omnetpp –which
all exhibit irregular patterns in LLC activity–, SimPoint
intervals do not capture the zones of high LLC activity.
Notably, in these benchmarks, the main simulation interval
(the only one employed by many authors when they apply
the SimPoint technique) does not cover –with a typical
simulation window of 100M instructions– any zone of the
code with high LLC activity. Moreover, almost all these
SimPoint intervals are located in zones with low LLC activity.
This is because SimPoint relies on a static criteria based on
the code’s similarity for selecting the simulation intervals,
and this does not necessarily imply a direct correspondence
with the LLC behaviour, which is more directly related to the
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phases of the code. Thus, for xz andwrf, both of which exhibit
a regular LLC activity pattern with highly defined phases,
SimPoint intervals do capture the parts of the code with high
LLC activity. In fact, with such a regular pattern, regular
sampling is likely to report satisfactory results in identifying
representative zones of the code in terms of LLC activity.

B. PROPOSAL

We just verified that the simulation intervals defined
by SimPoint do not capture the zones of high LLC
activity, where the replacement policy plays a more
important role, so that the various approaches cannot be
properly compared under SimPoint or other conventional
simulation schemes commonly employed.

As a result, we now propose a systematic simulation
methodology oriented to employ code fragments that are
more representative of the applications’ LLC activity and,
therefore, to allow a more correct comparison among cache-
related proposals. However, it is also needed to maintain
a high level of representativeness in terms of performance.
To balance both goals and not increase the simulation time
required, we suggest employing the same simulation intervals
defined by SimPoint, but redefining the associated weights.
Essentially, we suggest sorting the intervals based on different
criteria related to the LLC activity. Thus, the SimPoint
interval exhibiting the highest value according to this criterion
becomes the interval with the highest weight in our approach.

Consequently, aimed to derive from the evaluation of
LLC-related proposals, such as cache replacement policies,
the same conclusions on the relative performance among
them than those of the full simulation, we have experimented
with different criteria that assign more representativeness
of the overall LLC behaviour to those intervals of the
program execution where the LLC suffers a high level of
pressure due to significant numbers of MPKI. Accordingly
to this goal, we explored different criteria when sorting the
simulation intervals for each benchmark, but we focused
on the following two approaches as they report the most
satisfactory results:

1) mpkilru: The average MPKI obtained in each interval
when the LRU policy is employed. The weight of each
interval is proportional to its LLCMPKI, so the weight
for a specific simulation interval swithin an application
is calculated as follows:

weights =
MPKILRU ,s∑n
i=1MPKILRU ,i

(1)

where n denotes the number of simulations intervals
defined by SimPoint for a particular benchmark.

2) mpkimax: The maximum LLC MPKI value obtained
among all assessed cache replacement policies. Anal-
ogously, the weight of each simulation interval within

an application is computed as follows:

weights =
MPKImaxs∑n
i=1MPKImaxi

(2)

The different steps of the described simulation methodol-
ogy are recapped in Algorithm 1 for thempkilru approach and
in Algorithm 2 for the mpkimax strategy.

Algorithm 1Configuration of Simulation Intervals (mpkilru)
Establish simulation intervals using SimPoint
Weight redefinition according to MPKI LRU

Require: LLCMPKI values for each SimPoint interval with
LRU

Ensure: New weights for the intervals defined by SimPoint
for All intervals do
Determine the LLC MPKI value with LRU policy and
accumulate it in sum

end for
for Every single interval s do
Divide its LLC MPKI value obtained with LRU policy
by sum
Assign the previous result as new weight

end for

Algorithm 2 Configuration of Simulation Intervals (mpki-
max)
Establish simulation intervals using SimPoint
Weight redefinition according to MPKI max

Require: LLC MPKI values for each SimPoint interval for
all evaluated cache replacement policies

Ensure: New weights for the intervals defined by SimPoint
for All intervals do
Determine the maximum LLC MPKI value among all
evaluated cache replacement policies and add it in sum

end for
for Every single interval s do
Divide its maximum LLC MPKI value among all
policies by sum
Assign the previous result as new weight

end for

It is worth noting that ourmpkilru andmpkimax approaches
do not require any extra simulation time with respect to
conventional SimPoint. In the case of original SimPoint, the
final value of a particular metric (such as LLC MPKI) is
calculated by weighting the metric values obtained in each
of the simulation intervals employing the original weights
defined by this simulation technique. In our proposals,
we employ the same simulation intervals as conventional
SimPoint, but changing the associated weights as described
in (1) and (2) for mpkilru and mpkimax, respectively. In the
case of mpkilru we need to perform the simulation with the
LRU policy first, in order to compute then the final LLC
MPKI values obtained with the other cache replacement
policies by using for the different simulation intervals the
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weights obtained from the LRU simulation. When mpkimax
is employed, the only one restriction is that we first need
to perform the simulation of all cache replacement policies
evaluated, in order to obtain for each interval the maximum
LLC MPKI value among all policies (new weights), and
therefore to be able to compute the final LLC MPKI values
for all the replacement policies. It is also noticeable that
when following the original SimPoint simulation strategy
using a simulator like gem5, a checkpoint of every region
to be simulated is computed first. This allows to replay
these regions much faster when performing an architectural
exploration. According to our experiments, this time is
negligible compared to the checkpoint generation itself
(approximately 69 times shorter on average).

Moreover, it is also important to highlight that our
approaches, as original SimPoint, entail the simulation of
a number of instructions much lower than that of the
full simulation. As previously illustrated in Table 2, the
number of 100M-instruction simulation intervals we employ
ranges between 6 and 28 depending on the benchmark
evaluated, so the number of instructions we simulate varies
between 600M and 2800M instructions. However, when the
applications are entirely executed, the number of instructions
simulated is generally significantly higher. Table 3 shows,
for all the evaluated benchmark-input pairs, the total number
of instructions that the full simulation entails (referred to as
full size in the table) and the percentage that the instructions
simulated with our approaches represent over the full size
(denoted in the table as spt vs full). According to Table 3,
considering all benchmarks we are simulating, on average,
the 2.14% of the total instructions (again, each benchmark
contributes only one value to the final mean –we use the
average value for benchmarks with more than one input–),
sowe can also infer that the simulation time of our approaches
is significantly lower than that of the entire simulation of the
applications.

Finally, please also note that it is expected that analogous
criteria to the mpkilru and mpkimax approaches proposed for
cache replacement policies could be applied when other type
of cache-related proposals are evaluated.

V. EVALUATION
In this section we assess our proposals by employing two
metrics: order and closeness, which are discussed next.

A. RELATIVE ORDERING OF REPLACEMENT POLICIES
FROM LLC MPKI RESULTS
Our goal is to obtain the same relative order among the
replacement policies used (in terms of LLC MPKI) from the
simulation intervals as that observed in the full simulation.
Thus, we measure how close of this goal we are by
comparing the relative order experienced –in our proposals
vs. the entire simulation– by each pair of employed cache
replacement policies. Although we evaluate five approaches
in our experiments, we do not take into account the random
results due to their unpredictable behaviour, so we work with

TABLE 3. Size of the full workloads in number of instructions per
evaluated benchmark-input pairs and relative portion (%) of instructions
selected by SimPoint and our approaches.

six pairs (combinations 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4; each
number identifies one of the four cache policies used).

Our proposed per-benchmarkmetric named order (initially
set to zero) ranges between 0 and 6 and is computed as
follows: if a specific pair maintains the same relative order
under our simulation intervals as when simulating the entire
benchmark, the metric remains unchanged; otherwise, the
metric is incremented by one. Thus, an application that under
our approach exactlymatches the same relative order between
the four cache replacement policies derives an order value
of 0, and if it provides different orders between the six
evaluated pairs it reports an order of 6. Thus, numbers close to
zero indicate a high level of similaritywith the full simulation.

Table 4 recaps the average order obtained using just the
original most-weighted SimPoint (denoted as weight), using
all SimPoint intervals with original weights (spt approach),
and also using ourmpkilru andmpkimax proposals, where we
employ all the SimPoint intervals but ordered andweighted as
stated in Section IV-B.We show order values in four different
scenarios:

• Considering all the 20 evaluated benchmarks (Avg).
• Excluding the applications with MPKI values –under
LRU policy– below 0.1 (Avg w/o low).

• Considering only the seven applications with the highest
MPKIs (Avg-high). Note that we have chosen the
number of benchmarks needed to obtain an accumulated
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TABLE 4. Order metric for different proposals.

MPKI value –under the LRU replacement scheme–
which exceeds the 80% of the total accumulated MPKI
number considering all the 20 evaluated benchmarks.

• Considering only those benchmarks where the relative
order among cache policies in the spt approach does not
match the order of the full simulation (Avg-changes).
Note that for all programs where the relative order
between policies obtained with spt matches that of the
full simulation, our two proposals manage to report the
same order as well.

As illustrated, our proposals report the lowest order value
in all the four scenarios assessed.

Overall,mpkilru reduces the number of changes in the
relative order among the policies by more than 30%with
respect to conventional SimPoint (spt).

The same reduction is also achieved when considering
only the benchmarks exhibiting changes in spt with respect
to the full simulation order. In the case of memory-
intensive applications, our mpkimax and mpkilru schemes
report order values 30% and 27% lower than that of spt,
respectively. Furthermore, we do demonstrate that using only
one SimPoint with its original weight (an approach used
by many authors), significantly increases the number of
changes in the relative order among the policies, leading to
incorrect comparisons between cache replacement schemes
as previously explained in Section IV-A.
If we focus on individual applications, we may highlight

benchmarks such as x264 and pop2, which with spt exhibit
order values of 4 and 3, respectively (therefore a relative order
among the replacement policies assessed quite far from that
of the full simulation), but that when using our proposals
they derive order values of 1 and zero, respectively, so that
they practically match the same behaviour as when the entire
simulation is performed.

B. CLOSENESS TO ABSOLUTE FULL SIMULATION MPKI
NUMBERS
Although our proposals have been demonstrated to provide a
higher level of similarity with the full simulation order than
that of conventional SimPoint, we also pursue the goal of
reporting MPKI values close to those of the full simulation
because, as previously stated, these numbers are usually
underestimated in conventional simulation schemes.

Fig. 4 illustrates –for six benchmarks as a representative
sample of the results obtained– the LLCMPKI values derived

under the spt, weight, mpkilru and mpkimax approaches as
well as by the full simulation. We report the results for
four applications also shown in the motivational study (gcc,
mcf, roms and x264) and two other benchmarks (wrf and
leela). For the three applications in the upper part of Fig. 4,
we observe that both of our proposals report MPKI numbers
much closer to those of the full simulation than the original
SimPoint (both weight and spt alternatives). In the case of
wrf, our proposals also obtain LLC MPKI values closer to
those of the entire simulation than conventional SimPoint,
overestimating the values of the full simulation moderately
less than the spt underestimate them. In the x264 benchmark,
spt can report MPKI values closer to those of the full
simulation than our proposals, but it does not capture the
high MPKI value of BRRIP (compared to the other policies),
which do capture both of our proposals. Finally, for the leela
application (and also in the case of cam4, not shown in the
graph), our proposals significantly overestimate the MPKI
values, leading to numbers notably far from those of the full
simulation and spt. To quantify the closeness of the MPKI
values reported by the various simulation approaches from
the values derived from the full simulation, we introduce the
lower-is-better closenessmetric. For each specific simulation
strategy, this metric accumulates the percentage deviation of
the LLCMPKI values obtained for all evaluated replacement
policies (except random) from those obtained with the
entire simulation. Hence, low values of closeness under a
certain simulation approach imply that it is more accurate
to reproduce MPKIs derived from the full simulation, and
therefore it is also more likely to obtain the same conclusions
from the evaluation of LLC-related proposals employing the
specific simulation intervals as when performing the entire
simulation. Accordingly, we define the metric as follows:

closeness(MPKI ) =

4∑
i=1

|
MPKIi,full −MPKIi,proposal

MPKIi,full
| (3)

Table 5 shows the arithmetic and geometric means of
MPKI closeness obtained in the Avg w/o low and Avg-high
scenarios already considered for the order metric, as well as
when considering all applications except those with MPKI
values below 0.1 and the outliers leela and cam4 (Avg w/o
low +2). We do not show results when considering all
applications because the closenessmetric in applications with
very low MPKI, such as exchange2 (on the order of 10−5),
reaches extraordinarily high and distorting values (higher
than 5000 for all simulation strategies). This is why we also
shown geometric mean values in order to mitigate the effect
of the extraordinary contribution to the final arithmetic mean
value of a few applications with low values of LLC MPKI.
In addition, we do not report the results for the (Avg-changes)
scenario because it only makes sense in the context of the
order metric.

As shown, our proposals report closeness values sig-
nificantly higher than those of original SimPoint when
considering all applications except those with MPKI values
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FIGURE 4. LLC MPKI obtained with full simulation, weight, spt, mpkilru and mpkimax simulation strategies, using gem5, for different benchmarks and
cache replacement policies.

TABLE 5. MPKI closeness metric (arithmetic and geometric mean) for different simulation proposals.

below 0.1 (Avg w/o low scenario) and we employ the
arithmetic mean of the values reported by the different
benchmarks (this difference significantly decreases when
the geometric mean is used). This is related to applications
exhibiting moderately low MPKI values (much less relevant
when comparing cache-related approaches such as cache
replacement policies), since small variations in absolute
MPKI numbersmay still lead to high closeness numbers. This
is the case of x264 and leela applications shown in Fig. 4,
which according to Table 2, exhibit LLC MPKI numbers
with the LRU policy of just 0.34 and 0.38, respectively.
Note also that for the cam4 application, not being a
benchmark exhibiting low LLCMPKI values, our approaches
significantly overestimate this metric. In this case it has to do
with the fact that the new weights that our strategies assign to
the 28 SimPoint intervals of this program present a significant
imbalance (due to the high disparity in LLC MPKI values
across SimPoint intervals), much greater than in most of
the remaining applications. This application has the highest
number of simulation intervals of all evaluated programs,
increasing the probability that some intervals capture zones
of high LLC activity. Although original most-weighted
simulation intervals in cam4 do not fall in this kind of zones,

there are other original low-weighted intervals that do capture
these zones. Notably, the simulation interval exhibiting the
second lowest weight according to original weights (lower
than 0.1%) becomes the most-weighted interval in our
approaches, contributing to the final LLC MPKI value with
more than 30%, significantly more than any of the other
intervals, reporting an LLC MPKI value just for this interval
around 4X the mean value obtained with the full simulation.
If we focus on the four most-weighted intervals in our
mpkilru approach, they contribute with more than 56% to
the final LLC MPKI value, while the same four intervals
using their original weights contribute to the final value with
just 2.2%. It is also important to recall that as our mpkilru
and mpkimax approaches are assigning higher weights to
those simulation intervals with high LLC activity (high
LLC MPKI numbers), it was expected that our strategies
overestimate MPKI numbers in some cases. However, the
differences with respect to the full simulation numbers clearly
decrease when we also exclude the outliers cam4 and leela
applications. Moreover, when we only consider the seven
most memory-intensive programs, our mpkilru and mpkimax
proposals manage to outperform all the other simulation
strategies, reportingMPKI closeness values when we employ
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TABLE 6. CPI closeness metric (arithmetic and geometric mean) for different simulation proposals.

the arithmetic mean approximately 22% and 24% lower
than that of spt, respectively, and around 37% and 35%
respectively when the geometric mean is used. We consider
this as significantly relevant, as our approaches are especially
targeted to evaluate microarchitectural proposals involving
the cache system, such as LLC replacement policies, which
play a more important role in applications with high LLC
MPKI numbers.

Hence, for memory-intensive applications and com-
pared to SimPoint, we significantly improve the repre-
sentativeness of our simulation intervals –in terms of
LLCMPKI numbers– with respect to the full simulation,

as illustrated in Fig. 4 for mcf, roms, gcc and also wrf, all
of them applications with high LLC MPKI numbers.

C. CLOSENESS TO ABSOLUTE FULL SIMULATION CPI
NUMBERS
Although we have demonstrated that our proposed simulation
strategy outperforms the conventional SimPoint in terms of
the order metric in all scenarios evaluated, as well as in
terms of MPKI closeness in the case of memory-intensive
programs, we must also explore how our proposals work in
terms of performance if these approaches aim to postulate as
an alternative to conventional simulation schemes. For this
purpose, we also introduce the CPI closeness metric, which
is defined –analogously to the case of MPKI– as follows:

closeness(CPI ) =

4∑
i=1

|
CPIi,full − CPIi,proposal

CPIi,full
| (4)

Table 6 recaps the geometric and arithmetic means of the
closeness obtained for CPI values in the same scenarios as
in the case of the LLC MPKI closeness, and also when
considering all the benchmarks evaluated. As expected,
spt reports the CPI values closest to those of the full
simulation when considering all applications. In the same
scenario, when we employ the geometric mean, our mpkilru
and mpkimax approaches are able to report CPI values
significantly close to those of the weight approach, although
still moderately far from spt. This could be considered as
expectable, as we are mainly focusing on LLC activity to
assign weights to SimPoint intervals and it is important to
note that original SimPoint defines simulation intervals and
the corresponding weights aimed to reproduce the overall
behaviour of applications mainly in terms of performance.
However, the differences between spt and our proposals

decrease when we do not take into account the programs
with low LLC activity, until the point where our proposals
practically match (especially when considering the geometric
mean) the performance numbers reported by spt when we
exclude the applications with LLC MPKI values below
0.1 and also the outliers leela and cam4 (Avg w/o low +2)
scenario. More importantly, even when we just consider the
most memory-intensive applications, our proposals manage
to report performance closeness values around 13-15% lower
than that of SimPoint when the arithmetic mean is used and
around a significant 56-62% when we employ the geometric
mean, with CPI numbers significantly close to those of
the full simulation. In this way, with our redefinition of
the weights associated to the simulation intervals defined
by original SimPoint, we effectively achieve a satisfactory
trade-off in reproducing the overall behaviour of applications
in terms of LLC activity and also performance. As a result,
for programs with high LLCMPKI numbers we significantly
outperform spt in terms of MPKI closeness (as expected and
previously shown) but also in terms of CPI closeness, despite
of being original SimPoint a technique mainly conceived
to match performance numbers of full execution. This also
reveals that the impact of an accurate determination of LLC
MPKI on other metrics such as CPI is significantly relevant
for memory-intensive programs, where the LLC activity is
high, so that original SimPoint is, generally, increasingly less
accurate on CPI values as we progressively consider only
more memory-intensive applications (see spt column from
top to bottom in Table 6 in the case of the geometric mean)
whereas our approaches follow exactly the opposite trend.

We can conclude that for memory-intensive bench-
marks, our simulation intervals obtain, also in terms of
performance numbers, a higher level of representative-
ness of the entire simulation than original SimPoint.

VI. CONCLUSION
In this paper, we first demonstrated our hypothesis regarding
the evaluation of microarchitectural cache-related proposals:
the particular simulation window employed can lead to incor-
rect conclusions. As a motivational case study, we explored
the impact of different commonly used simulation windows
on the performance of various replacement policies imple-
mented in the LLC. This analysis made it possible to infer
that current simulation strategies do not fully capture the
behaviour of the LLC; therefore the specific simulation
window employed may entail wrongful comparisons.
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Consequently, we also proposed a different simulation
strategy oriented to maintain a proper trade-off in repro-
ducing the overall behaviour of applications in terms of
both LLC activity and performance, without affecting the
simulation time. For this purpose, we suggested employing
the same simulation intervals as SimPoint, but ordered
and weighted according to different metrics that take into
account the number of LLC misses, aimed to improve the
representativeness of the simulation windows for the cache
system.

Our experimental evaluation demonstrated that our
approaches outperform conventional SimPoint in terms of
the order metric (up to 30%) in all scenarios evaluated,
and, in the case of memory-intensive programs, also in
terms of MPKI and CPI closeness (up to 24 and 15%,
respectively). Overall, we can conclude that our simulation
strategies report a satisfactory trade-off in reproducing the
overall behaviour of the applications in terms of both
LLC activity and performance, particularly in the case
of memory-intensive benchmarks, which also makes it
possible a more accurate simulation in terms of other
features at the whole processor level which depend on the
mentioned metrics, such as energy consumption or memory
endurance.
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