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ABSTRACT The performance of semiconductors has greatly improved due to the miniaturization of the
transistor. To shrink the size of a transistor, the channel length must be decreased. Short-channel effects
become noticeable as the gate length is reduced. Short-channel effects are observable at dimensions below
7 nm as a consequence of the shorter gate length. However, nanosheet structures have been proposed to
replace FinFET and nanowire transistors at the 7 nm and 3 nm technological nodes. The purpose of this
research is to construct an artificial neuron based on nanosheet transistors and evaluate its spiking behaviour
and power consumption. We are building a regular Axon Hillock and our proposed neuron model using
GPDK 45 nm and nanosheet transistor 20 nm technology. The simulation results clearly show that the
nanosheet transistor consumes less power than the GPDK 45 nm transistors. Furthermore, we verified the
validity of our suggested neuron model by performing Monte Carlo simulation, PVT analysis, AC response,
noise response and layout. Additionally, the proposed neuron was tested with a variety of input currents,
including pulse current, ramp current, sinusoidal current, and arbitrary current, and their associated spike
patterns were recorded. According to our research, nanosheet-based Axon Hillock consumes 156 fW, and
our proposed neuron consumes 1.9 pW of power.

INDEX TERMS Neuromorphic, nanosheet, gate all aruond, FinFET, nanowire, neuron, spiking patterns,
axon hillock, end of Moore’s law.

I. INTRODUCTION
Significant progress has been made in the semiconductor
sector to improve device performance. This is made possible
by reducing the size of the transistor. By decreasing the size
of the device, the number of transistors on the chip can be
enhanced. Miniaturising a transistor requires shortening its
channel length. As the length of the channel gets shorter,
the distance between the source and drain will get closer
together. As the gate length decreases, the gate has less
control over the channel, allowing short-channel effects
(SCE), self-heating effects (SHEs), and leakage currents
to occur. When the channel length is on the same scale
as the widths of the depletion layers at the source and
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drain junctions, short-channel effects are observed. Impact
ionisation, velocity saturation/mobility degradation, drain-
induced barrier lowering (DIBL), drain punch through,
surface scattering, channel length modulation, threshold
voltage roll-off, and drain punch through are all examples
of short channel effects. Leakage current arises because of
tunnelling through the gate oxide. Multiple-gate devices like
FinFET, GAA Nanowire, and nanosheet transistors as shown
in Figure 1 have been developed to address this issue [1].

When compared to FinFETs and gate-all-around nanowire
transistors, nanosheet transistors are more advantageous due
to their smaller footprint, low power consumption, and high
speed. The drive current delivered by nanosheet transistors is
much higher than that of FinFET technology within the same
footprint. By stacking nanosheets, an effective channel width
is created, which boosts the device’s drive current capability.
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FIGURE 1. Evaluation of transistors [4] from planner FET to nanosheet
Transistors.

Due to its ability to overcome the FinFET’s physical
limitations and fabrication hurdles, the nanosheet transistor
has recently garnered a great deal of attention. The nanosheet
transistor is also called the Multi Bridge Channel FET
(MBCFET) [2], [3]. Under the 7nm technological node,
nanosheet structures have been proposed as a replacement for
FinFET and nanowire transistors. When compared to FinFET
and NWFET, NSFET is the nano-dimension transistor best
suited for the new 3 nm node technology because of its
ideal electrical properties, such as sub-threshold swing SS,
DIBL, and threshold voltage (VT). Switching to an NSFET
solves most of the problems associated with a FinFET,
including the need for constant scaling down, short channel
regression, manufacturing complexity, and restricted device
performance. It has been observed that the utilisation of
NSFET is a suitable alternative for FinFET and nanowire
transistors [4]. Mismatches in ION current seem to have less
of an effect on NSFETs than NWFETs [6]. So, these NSFETs
will undoubtedly be at the forefront of the semiconductor
device industry for the foreseeable future.

The article is organized as follows: In Section II, the
electrical properties of nanosheet transistors are examined.
Section III focuses on the input and output characteristics
of nanosheet transistors. The implementation of the Axon
Hillock circuit and its spiking patterns are addressed in
Section IV. Section V delves into the proposed neuronmodel,
covering its layout, Monte Carlo simulation, AC response,
noise response, PVT analysis, spiking behavior, and power
consumption. Section VI discusses potential difficulties and
restrictions associated with nanosheet transistors. Section VII
outlines future research opportunities in neuromorphic com-
puting using nanosheet transistors, Finally Section VIII
addresses the anticipated applications of nanosheet based
neurons.

II. NSFET STRUCTURE AND ITS ELECTRICAL PROPERTIES
The effects of channel orientations and widths on the
electrical characteristics of p-type vertically stacked NSFETs
with Si and Ge have been studied. It was discovered that
p-type NS-FETs with vertically stacked nanosheets exhibit
higher ION current when compared with single NSFETs.
In addition, the orientation of the Si and Ge channels
is a significant factor in influencing the ION current of
the NSFET [5].
Figure 2 depicts the orientation of a single nanosheet

FET and a nanosheet FET that has been stacked vertically.

FIGURE 2. Single and vertically stacked nanosheet transistor [5].

TABLE 1. Comparison between FinFET, NWFET, NSFET [7].

FIGURE 3. (a) NSFET with Nitride spacer (b) 3D NSFET (c) 2D Cross section
of NSFET [1].

The vertically stacked NSFETs are a potential successor to
the trigate FinFETs in terms of ongoing scaling difficulties
[7]. NSFETs are well-suited to demanding computing
requirements due to their versatility and compatibility with
a wide range of materials [5].

To model sophisticated devices at the extreme scaling
limit, even at 3 nm gate length, a TCAD-based technique is
proposed in Ref. [7]. Devices with gate-all-around FET and
FinFET structures, as well as horizontally stacked NSFETs
and NWFETs, have been designed using this method; the
results are listed in Table 1.

Cogenda Genius, a 3D TCAD simulator, is used to create
the NSFET device structure in this work. Each sheet of the
3D NSFET is 5 nm thick, 10 nm width and 16 nm gate
length. Doping concentrations of 1020cm−3 and 1015cm−3

are applied to the n-type source/drain and p-type channel
sections, respectively. A 5 nm long nitride spacer is kept
throughout the simulations to enhance the sub threshold
behaviour [1]. In Figure 3(a), we can see a nitride-spaced 2D
NSFET. Figure 3(b) depicts a three-dimensional model of an
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TABLE 2. Device parameters used in simulation [1].

FIGURE 4. Nanosheet MOSFET ((a) NMOS, (b) PMOS) circuit biasing for
examining input and output characteristics.

NSFET constructed from stacked nanosheets, and Figure 3(c)
shows 2D cross sectional view of an NSFET.

It has been discovered that switching ratio, DIBL, and
subthreshold swing (SS) deteriorate when the size of the
nanosheet is increased. As width and thickness rise towards
50 nm and 9 nm, analogue/RF FOMs such as transcon-
ductance (gm), output conductance (gds), cutoff frequency
(fT), Transconductance frequency product (TFP), and Gain
bandwidth product (GBW) increase. However, when the
physical dimensions of the NSFET grow larger, the intrinsic
gain, as well as gain frequency product (GFP) and gain
transconductance frequency product (GTFP), become lower
[8]. The information regarding the various parameters taken
into consideration for the simulation is presented in Table 2.

III. INPUT AND OUTPUT CHARACTERISTICS OF NSFET
This section describes the input and output characteristics of
the nanosheet nmos/pmos transistors. The device was initially
conceived in the Visual TCAD programme. The Visual Fab
parallel simulation platform is then used to get the DC and
AC properties. The lookup tables are constructed from the
collected characteristics. The Cadence Virtuoso tool is used
to build the symbol based on lookup tables and the VerilogA
model, which is then used in schematic diagrams.

By adjusting Vds from 0 to 1.8 Volts as shown in
Figure 4(a), the input characteristics of a nanosheet nmos
transistor are obtained between Vgs and Id . Cadence Virtuoso
is used to run the simulation, and the resulting plot can be seen
in Figure 5(a). Whereas the output characteristics is obtained
between Vds and Id by varying Vgs from 0 to 1.8 Volts.
Figure 5(b) presents the graph that was produced as a result.
Similarlly, the input characteristics of a nanosheet pmos

transistor can be achieved between Vgs and Id by altering

FIGURE 5. Nanosheet MOSFET’s input and output characteristics.

TABLE 3. Comparison of power consumption in NSFET and MOSFET
technologies.

Vds from 0 to −1.8 Volts, as illustrated in Figure 4(b). The
simulation is carried out with the assistance of Cadence
Virtuoso, and the resulting plot can be found in the
Figure 5(c). Whereas the characteristics of the output can be
found between Vds and Id by adjusting Vgs anywhere from
0 to −1.8 Volts. The graph that was produced as a result can
be seen in Figure 5(d).
As can be seen in Figure 5, the input and output

characteristics of nanosheet FETs have characteristics that are
quite close to those of conventional metal oxide FETs. As a
result, in this work, we are going to propose a neuron that
is based on nanosheet field effect transistors and compare
the results with a neuron that is based on conventional
field effect transistors. The Table 3 shows that compared
to conventional nmos and pmos, the power consumption of
nanosheet MOSFET is reduced.

IV. AXON HILLOCK USING NANOSHEET TRANSISTOR
The injected current Iin into the circuit will integrate and
fire a spike when the membrane voltage (Vmem) reaches the
threshold voltage. The further current injection will produce
a sequence of spikes. On the other hand, when the membrane
voltage is less than the threshold voltage, the circuit remains
in quiescent state. i.e., no spike is generated. V0 is the
initial voltage on Vmem before the feedback sequence. The
output voltage Vspike can be increased by increasing the
input voltage through Vmem. When the output voltage is
raised, it forces current to flow back through Cf , raising the
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FIGURE 6. Axon hillock circuit proposed by carver mead.

TABLE 4. Comparison of power consumption in axon hillock circuit using
NSFET and MOSFET technologies.

input voltage, which in turn raises the output voltage more
rapidly. There will be a spike at Vspike once the positive
feedback begins to take effect. The maximum value of Vmem
is given by the capacitive-voltage divider relation. Voltage-
dependent sodium channels are responsible for the positive
feedback in a biological axon hillock. The objective of the
MN3 and MNW transistors is to allow the current to flow to
ground when the output is high, thus resetting the neuron.
The voltage at node Vmem is discharged by MN3 via MNW .
Action potential pulse duration is controlled by MNW and
Vpw. The Voltage-dependent potassium channels serve as
the reset transistors in a real neuron. This circuit shown in
Figure 6 is originally proposed by Carver and Ismail [9] and
it is affected by static power dissipation through inverters.
Hence this circuit consumes high amount of power. The
Figure 7 displays membrane voltage and its corresponding
spike output for various input currents.

Using GPDK 45 nm technology and nanosheet transistors
of 20 nm, the Axon Hillock circuit was built. Table 4 details
the power consumption of both studies. As can be seen in
Table 4, both the input current required to cause the spike
and the power required by the circuit are drastically reduced
when using a nanosheet transistor.

V. PROPOSED NEURON USING NANOSHEET FET
This proposed neuron model is able to reproduce spikes
without compromising the biological features of genuine
neurons. To put it simply, genuine neurons are dynamical
systems. As a dynamical system, the proposed neuron model

FIGURE 7. Simulation results of the axon hillock utilizing nanosheet
transistors.

FIGURE 8. Proposed Neuron circuit includes Leak conductance,
Deactivation block, Slow activation block and fast activation block.

can process a nonlinear arbitrary input signal. It can process
spatially or temporally oriented input signals. Additionally,
the threshold voltage, refractory time, and F-I curve are all
dynamic. It has the ability to function as either an excitatory
or inhibitory neuron. Like real biological neurons, it is
capable of displaying rebound spikes, delayed spikes, and
damped subthreshold oscillations of membrane voltage.

The proposed neuron shown in Figure 8 is made up of
25 transistors and 9 voltage sources. which is divided into
four blocks named as Leaky conductance, Fast activation,
Slow activation and Deactivation block. Each ionic channel
in the proposed neuron design is built using a body biased
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FIGURE 9. Five transistor operational transconductance amplifier.

differential amplifier, transconductance amplifier (TCA) and
Follower Integrator (FI). This neuron is able to process
10 kHz of input synaptic currents. These components, as well
as the various channels currents, will be discussed below.

ICm = ILeak + Iinj − Iion (1)

A. OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA)
The operational transconductance amplifier (OTA) has
emerged as a fundamental component of many contemporary
analog and mixed signal systems. Because of their ability
to regulate voltage, OTAs are a crucial component in many
different types of circuits. An operational transconductance
amplifier (OTA) produces current (Iout ) at its output terminal
in response to a differential input voltage (V1 − V2).
To describe this feature, we use the term ‘‘voltage-controlled
current source,’’ or ‘‘VCCS’’ for short. Therefore, the OTA’s
transconductance and the differential input voltage determine
the output current. The transconductance of the amplifier
is typically adjusted via a third input (Vb). In many cases,
a setup current can also be used to regulate an OTA’s
transconductance.

The schematic for the operational transconductance ampli-
fier is depicted in Figure 9. The drain currents I1 and
2 are subtracted using a differential pair (M1,M2) and a
current mirror (M3,M4). Since the current drawn from M3
is mirrored at M4, the output current (Iout ) is equal to the
difference between the two currents (I1 − I2), and given by

Iout = I1 − I2 (2)

Iout = Ib tanh (V1 − V2) (3)

Gm =
∂Iout
∂Vin

(4)

where Ib is biasing current from Mb transistor, Gm is the
transconductance and Vin is difference voltage (V1 − V2).

FIGURE 10. Ion channel currents representing sodium activation
current(Ina(Act)), sodium inactivation current (Ina(Inact)) and potassium
inactivation current (Ik (InAct)).

The leaky conductance of a neuron can be reproduced with
the help of transconductance amplifier depicted in Figure 9.
Neuron resting potential is controlled by the VLeak . The
membrane voltage, denoted by Vmem, depends initially on
leaky conductance and injected current [12] and is calculated
as follows:

ILeak (Vmem) = Ib tanh ((VLeak − Vmem)) (5)

B. ION CHANNEL CURRENTS
The sodium and potassium currents of HH neuron model is
generelized by ionic currents (Iion) and deactivation current
(Ide) as shown in Figure 10(a). These currents are produced
by FastAct (TCA2), SlowAct (FI) and DeAct (TCA1) blocks
respectively.

Where ICm is the membrane current stored in capacitor
Cmem, Iinj is the post synaptic input current from another
neuron, ILeak is the Leakage current from body biased
differential amplifier and Iion is the ionic current. The ionic
current is generated by TCA1, FI,TCA2 and current mirrors
(PMOS,NMOS).

The deactivation current Ide is achieved by the negative
feedback loop through Transconductance Amplifier (TCA1).
As long as Vmem is below threshold (VT1) the TCA1 output
is low (Vde=11 mV and Ide=120 pA) and it turns ON the
PMOS pass transistor and allows Vdd to flow to the next
level. When Vmem is less than VT1, The output of TCA1 is
high (Vde=1.9 Volt and Ide=1.6 nA) which turns off the
pass transistor.Therefore the chances of spike generation is
reduced. The gain of TCA1 is controlled by the Vd .

The deactivation current can be given as

Ide = Id tanh(Vmem − VT1) (6)

where Id is maximum gain current of TCA1. After the
membrane voltage has increased to its maximum, the
current responsible for deactivation acts to reduce it, causing
the neuron to hyperpolarize. When Vmem exceeds VT1,
a deactivation current (Ide) is produced at the TCA1 output.
It blocks the further increase of membrane voltage and delays
the next spike generation. Hence, VT1 is responsible for
damped oscillations and frequency adaptation since it blocks
further spikes. When VT1 is higher than Vmem, no spikes are
initiated.
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When 1Vslow is smaller than VT3, the FastAct block
(TCA2) does not emit any ionic current (Iion). The output
of TCA2 drops low when 1Vslow is greater than VT3, which
turns ON the PMOS current mirror and produces the current
Im. The likelihood of a spike firing increases as VT3 rises
because the amplitude of Iion rises with rising VT3. The ionic
current can be written as [12]

Iion = Im.θ (1Vslow(t,Vmem)) (7)

where θ is the Heaviside function and is 1 for x > 0 and 0 for
x ≤ 0. Im is the current delivered by PMOS current mirror in
response to 1Vslow and can be given as

Im = Ifg tanh(1Vslow(t,Vmem)) (8)

where Ifg is the maximmum gain current of TCA2. As Vmem
rises, the voltage at node 1Vslow rises linearly with time
and fall linearly when Vmem is less than Vslow. The
follower integrator (FI), constructed from a transconductance
amplifier and an output driving capacitor, is responsible for
producing the time varying signal 1Vslow and can be given
as,

C2
dVslow
dt

= Isg tanh(VT2 − Vslow) (9)

where C2 is the output driving capacitor of the follower
integrator. Isg is the maximum gain current of follower
integrator (FI). The voltage Vslow at any given time for small
signals can be calculated as

Vslow (t) =

∫
∞

0
VT2 (t − 1)e−1/τd1 (10)

where VT2 is the threshold voltage of follower integrator, t
is the time of measurement (present value) and 1 is the time
beforemeasurement (previous value). Finally, Iion current can
be given from the eq 15, 16 and 18

Iion(Vmem, t) = Ifg tanh(1Vslow(t,Vmem)).θ (1Vslow(t,Vmem))

(11)

Since tanh behaviour causes the Iion to decay after its
maximum value, the ionic current gradually decreases over
time as shown in Figure 10(b). The spike rate and width of the
spikes are controlled by the capacitor (C1) in the DeAct block
(TCA1). The capacitor (C2) in the fastAct block (TCA2)
controls the time constant of Iion current and Vref controls
the refractory period.

There is no mismatch between the layout in Figure 11
and the schematic in Figure 8. The post-layout simulation
matches with the pre-layout simulation. This arrangement
occupies a total area of 32 µm2.

C. MONTE CARLO ANALYSIS OF PROPOSED NEURON
Since threshold voltage, capacitance, resistance, and other
device attributes can vary from one semiconductor device to
the next as a result of changes in manufacturing techniques,
these parameters can have an impact on neuron function.

Device performance is also susceptible to environmental fac-
tors like temperature and power supply voltage. To examine
the effect of parameter modifications and uncertainties on
the performance of a proposed neuron design, a statistical
analysis approach known as Monte Carlo simulation is
employed. To perform the Monte Carlo simulation, one
thousand samples were ran with different set of parameters.
Based on the data presented in the Figure 12, we can conclude
that the proposed neuron has a maximum power consumption
of between 20 pW and 80 pW (Mean: 58.98 p, Std Dev:
34.84 p).

D. AC RESPONCE AND NOISE ANALYSIS
Understanding how a circuit reacts to alternating current
(AC) signals is crucial for designing circuits for applications
such as amplifiers, oscillators, and filters. We can use
this information to choose appropriate components and
configurations to achieve the desired performance. The
proposed neuron is also subjected to an AC response to
determine the circuit’s behavior at different frequencies.
An AC signal of 100 pA with zero phase shift is applied
as input to the neuron, and the circuit’s frequency and
phase response is monitored across a frequency spectrum
of 10 Hz to 10 kHz. The proposed neuron spiking frequency
is around 220 Hz, as seen in the Figure 13(a), which is
comparable to the biological neuron spiking frequency of
around 200 to 250 Hz.

Noise analysis of a neuron involves studying the impact
of random electrical fluctuations on the performance of the
circuit. Noise is an unwanted disturbance that can affect
signal integrity, accuracy, and overall system behavior. Noise
can arise from various sources, including thermal effects,
semiconductor properties, and external electromagnetic inter-
ference. Noise analysis is essential for designing circuits
that need to maintain a certain level of signal quality and
reliability.

The Figure 13(b) shows input and output noise analysis
of proposed neuron for the frequencies ranging from 10Hz
to 10KHz. Input noise refers to the unwanted electrical
fluctuations or disturbances that affect the input signal of
a circuit or device. It can originate from various sources
such as thermal noise, electromagnetic interference, and
other external factors. Input noise can introduce errors or
distortions in the signal being processed by the circuit.
Output noise refers to the unwanted electrical fluctuations or
disturbances present in the output signal of a circuit. It can
result from the inherent noise sources within the circuit,
as well as the amplification and processing of input noise.
Output noise can degrade the quality of the signal being
delivered to subsequent stages of a system.

As a result of the noise study, we were able to determine
which parts of the system contributed the more noise. In an
NMOS current mirror configuration, the M7 MOSFET is
responsible for 14.45 percent of the drain current noise and
12.28 percent of the flicker noise. In the fast activation block,
the NM1 MOSFET is responsible for 13.77 percent of the
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FIGURE 11. Layout of proposed neuron model using GPDK 45 nm technology occupying 32µm2.

FIGURE 12. Monte carlo simulation of proposed neuron: maximum
power consumption concentrated in the range of 20 pW to 80 pW.

flickering noise. As can be seen in the Figure 13, both the
input and output noises are high at low spiking frequencies
and decrease as the frequency increases to that of a biological
neuron (150-250 Hz). At a frequency of 220 Hz, the total
input and output noise measured is 4.43fA/sqrt(Hz) and
22.65uV/sqrt(Hz) respectively.

E. PVT ANALYSIS OF PROPOSED NEURON
Semiconductor manufacturing processes are subject to inher-
ent variability. PVT analysis allows designers to account
for variations in transistor characteristics and other factors
that can affect circuit performance. PVT analysis helps
optimize the performance of integrated circuits by con-
sidering variations in the manufacturing process, supply
voltage (VDD), and operating temperature. By simulating our
neurons behavior under different PVT conditions, we ensure
that our circuit meets the performance specifications across a
range of real world scenarios.

FIGURE 13. AC response and noise analysis of proposed neuron.

The PVT study is conducted to evaluate average power
consumption and spiking nature of proposed neuron. The
supply voltage exhibits variations of 270 mV , 300 mV , and
330 mV . The verification of process variation is conducted
for all corners, namely ff, fs, mc, sf, and ss. Additionally, the
variation in temperature is examined under three conditions:
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FIGURE 14. Process-voltage-temperature analysis of proposed neuron.

FIGURE 15. Simulation results of proposed neuron using nanosheet
MOSFET.

0, 27, and 50 degrees Celsius. The response is depicted in the
Figure 14. Based on the PVT results, we know that the pro-
posed neuron can fire spikes in every corners but ff (fast, fast).
For all of the aforementioned changes in process, voltage, and
temperature, we find that the least power usage is 13 pW and
the maximum is 388 pW , with a mean of 80.59 pW .
In summary, the Monte Carlo simulation results indicate

that the proposed neuron maintains a maximum power
consumption confinedwithin the pW range. The AC response

TABLE 5. Power consumption comparison of the proposed neuron
utilizing nanosheet transistors and GPDK 45 nm.

TABLE 6. Comparison of various neuron models with respect their power
consumption.

reveals that the spiking frequency of the proposed neuron
closely mimics that of biological neurons. Noise analysis
demonstrates a reduction in noise as the spiking frequency
approaches the actual spiking frequency of neurons. PVT
analysis further illustrates that the neuron consistently fires
spikes across all corners except for ff (fast, fast). Considering
the comprehensive analyses conducted, it is clear that the
proposed neuron demonstrates robustness through various
technical validation processes.

Figure 15 illustrates a range of spiking patterns gener-
ated by our proposed neuron model, employing nanosheet
MOSFETs, under various input syna[tic currents. The voltage
configurations are as follows: Vdd = 250 mV, VT1 = 120 mV,
VT2 = 38 mV, VT3 = 40 mV, Vd = 202 mV, VLeak = 30 mV,
Vsg = 220 mV, Vfg = 200 mV, Vbias = 250 mV, Vref = 50 mV,
and Iin = 1 pA. The capacitance values are Cmem = 5 fF,
and C1 = C2 = 10 fF. By keeping the voltages fixed as
specified above, various spike patterns can be obtained by
solely adjusting the input current. The provided voltage set
pertains to the nanosheet-based neuron, and for GPDK45 nm,
a different set of voltages will be employed to induce spikes.

Based on the data in Table 5, it is obvious that the suggested
neuron requires a maximum of 4nW of power when utilising
GPDK 45 nm technology and a pulse input current of 2
nA. For a 1 pA pulse input current, the same circuit with
nanosheet transistors needs only 1.9 pW of power. As a
result, our suggested neuron employing a nanosheet transistor
can provide the lowest documented power consumption in
neuromorphic engineering.

In Table 6, we contrast the power requirements of our
suggested neuron model with those of previously known
neuron models. Our statistics show that, whether built with a
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TABLE 7. Comparative analysis of various type of transistors used to build analog neuron models.

regular transistor or a nanosheet transistor, our neuron model
has lower power requirements than previous neuron models.

Transistors play a crucial role in neuromorphic computing
by serving as the building blocks for the implementation of
artificial neurons and synapses. There are several types of
transistors that can be used in neuromorphic computing, each
with its own characteristics. Here are some common types of
transistors used to build analog neurons: FINFET, FGMOS,
CNTFET, SPINTRONICS, and CMOS transistors. In this
work, we are presenting a nanosheet transistor-based neuron
model. The detailed comparisons of neuron models built with
these transistors are listed in Table 7. From this analysis, it is
clear that the neuron model built with nanosheet transistors
provides better performance and power consumption with a
minimal footprint. It is important to note that the field of
neuromorphic computing is rapidly evolving, and researchers
are continuously exploring new transistor technologies and
architectures to improve the efficiency and performance of
neuromorphic systems. The choice of transistor type depends
on various factors, such as power efficiency, scalability, and
the specific requirements of the neuromorphic application.

VI. POTENTIAL CHALLENGES AND LIMITATIONS
Nanosheet transistors represent an advanced semiconductor
technology designed to address some of the limitations
of traditional MOSFETs. However, like any emerging
technology, nanosheet transistors come with their own set of
challenges and limitations.

• One of the primary challenges is that the fabrication
process involves precise control over multiple layers,
and any deviations or defects in the manufacturing
process can significantly impact device performance.

• As transistor dimensions shrink, tunneling effects can
impact transistor behavior, leading to increased leakage

currents that consequently increase power consumption.
As transistor dimensions shrink, tunneling effects can
impact transistor behavior, leading to increased leakage
currents that consequently increase power consumption.

• The reduction in transistor dimensions also increases
the proximity of neighboring devices, which can lead
to increased crosstalk and interference. This can affect
signal integrity and pose challenges for designing
high-density integrated circuits.

• Integrating nanosheet transistors with other compo-
nents, such as memory and interconnects, poses chal-
lenges in ensuring compatibility and optimal perfor-
mance across the entire integrated circuit.

Addressing these challenges requires collaborative efforts
from researchers, engineers, and the semiconductor industry.

VII. SUGGESTIONS FOR FUTURE RELATED RESEARCH
Research in the field of nanosheet transistor-based neurons
holds promising avenues for advancing neuromorphic com-
puting and artificial intelligence. Here are some suggestions
for future research directions:

• Investigate strategies to incorporate more bio-inspired
features [16] into nanosheet transistor-based neurons.

• Investigate the implementation of synaptic plasticity
mechanisms in nanosheet transistor-based neurons to
enhance learning capabilities.

• Promote collaboration between hardware and software
researchers to develop efficient algorithms and pro-
gramming models tailored to nanosheet transistor-based
neuromorphic hardware.

• Establish standardized benchmarks for evaluating the
performance of nanosheet transistor-based neuromor-
phic systems. This can facilitate fair comparisons
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between different designs and implementations, foster-
ing advancements in the field.

Collaborative efforts across interdisciplinary fields, including
materials science, electrical engineering, computer science,
and neuroscience, will be crucial for advancing research on
nanosheet transistor-based neurons and unlocking their full
potential in neuromorphic computing.

VIII. ANTICIPATED APPLICATIONS OF NANOSHEET
BASED NEURONS
Neuromorphic engineering aims to design and develop
circuits and systems that mimic the structure and function
of the brain. Nanosheet transistors offer advantages such
as improved performance, reduced power consumption, and
enhanced scalability, making them potentially suitable for
various neuromorphic applications, such as

• Nanosheet transistors can operate at lower voltages,
enabling more energy-efficient neuromorphic comput-
ing. The reduced power consumption is crucial for
applications like edge computing and wearable devices,
where energy efficiency is a primary concern.

• The scalability of nanosheet transistors allows for higher
integration densities on a chip. This is particularly
beneficial for neuromorphic systems that require a large
number of synapses and neurons for complex cognitive
tasks.

• The three-dimensional structure of nanosheet transistors
can be advantageous in creating complex synaptic and
neuronal connectivity patterns.

• Nanosheet transistors offer improved switching speeds
that can enhance the real-time processing capabilities of
neuromorphic systems. This is critical for applications
such as sensory processing, robotics, and autonomous
systems.

Although these applications highlight the potential of
nanosheet-based neurons, further research and development
are needed to realize their full potential in real-world
scenarios.

IX. CONCLUSION
Our research has demonstrated the promising potential of
nanosheet transistors in the realm of neuromorphic engineer-
ing. Utilizing GPDK 45 nm and nanosheet 20 nm technology,
we construct two distinct types of neurons: traditional Axon
Hillock and our proposed neuron model. According to our
research findings, nanosheet transistors prove to be a highly
favorable option for neuromorphic engineering. It is capable
of generating a variety of spike patterns while consuming
a very small portion of power, and it might also overcome
Moor’s law bottleneck in the future. Our proposed neuron
model, implemented with nanosheet transistors, showcases
exceptional sensitivity to the femtoampere range of input
synaptic currents, a crucial characteristic in mirroring the
intricacies of real neural systems. In comparison to GPDK 45
nm transistors, the power consumption has beenminimized to

an ultra-low level. Nanosheet transistors may play a crucial
role in advancing the development of energy-efficient and
scalable neuromorphic architectures, offering advantages in
terms of compactness and integration density. Nanosheet
transistors can also be integrated into neuromorphic memory
systems, providing benefits in terms of high-speed access,
low power usage, and non-volatility. Through this work,
we are strongly recommending nanosheet transistors for
future neuromorphic engineering.
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