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ABSTRACT In recent years, there has been evidence of a growing interest on the part of universities to
know in advance the academic performance of their students and allow them to establish timely strategies
to avoid desertion and failure. One of the biggest challenges to predicting student performance is presented
in the course ‘““‘Programming Fundamentals™ of Computer Science, Software Engineering, and Information
Systems Engineering careers in Peruvian universities for high student dropout rates. The objective of this
research was to explore the efficiency of Long-Short Term Memory Networks (LSTM) in the field of
Educational Data Mining (EDM) to predict the academic performance of students during the seventh, eighth,
twelfth, and sixteenth weeks of the academic semester, which allowed us to identify students at risk of
failing the course. This research compares several predictive models, such as Deep Neural Network (DNN),
Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Support Vector Classifier (SVM), and
K-Nearest Neighbor (KNN). A major challenge machine learning algorithms face is a class imbalance in a
dataset, resulting in over-fitting to the available data and, consequently, low accuracy. We use Generative
Adversarial Networks (GAN) and Synthetic Minority Over-sampling Technique (SMOTE) to balance the
data needed in our proposal. From the experimental results based on accuracy, precision, recall, and F1-Score,
the superiority of our model is verified concerning a better classification, with 98.3% accuracy in week 8
using LSTM-GAN, followed by DNN-GAN with 98.1% accuracy.

INDEX TERMS Educational data mining, generative adversarial networks, long-short term memory,
synthetic minority over-sampling technique.

I. INTRODUCTION

The Peruvian university educational process presents the
challenge of generating strategies that improve the quality
of teaching to form individuals with cognitive, creative, and
innovative capacities. In this sense, the need arises to analyze
the student dropout rate and disapproval due to economic,
social, and cognitive factors. According to [1], the dropout
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rate of university students according to the geographical
area in 2018 was: Lima-Center (13.4%), mountain (18.2%),
jungle (24.6%), and coastal (24%). However, the COVID-19
pandemic increased the dropout rate, reaching 42.6% in
coastal, mountain, and jungle areas and 18.1% in Lima-
Center. In Engineering careers, which include the careers
of Software Engineering (SE), Computer Science (CS), and
Information Systems Engineering (IS) the dropout rate is
between 15% to 20% [2], and the failure rates range from
25% t0 30% [3]. However, the failure rate increases in the first

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

5882 For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024


https://orcid.org/0000-0003-0280-2990
https://orcid.org/0000-0001-8950-6996
https://orcid.org/0000-0003-0988-9881
https://orcid.org/0000-0003-0232-2129
https://orcid.org/0000-0003-0536-3882
https://orcid.org/0000-0002-1865-8287
https://orcid.org/0000-0002-0103-7222
https://orcid.org/0000-0002-1929-8447

L. Vives et al.: Prediction of Students’ Academic Performance

IEEE Access

course of the specialty and ranges from 25% to 35% [4], [5].
Therefore, early identification of students at risk of dropping
out or failing a course involves the analysis of attributes,
characteristics, or factors during the academic process that
influence academic performance.

In recent years, Educational Data Mining (EDM) has
gained importance due to its results in predicting academic
performance, dropout, course approval, or failure [6].

EDM is a sub-area of data mining that applies statistics and
machine learning to extract, process, interpret, and evaluate
hidden patterns in educational datasets [7]. Education experts
utilize EDM to support academic decisions that benefit
students and the academic community [8].

EDM is combined with machine learning techniques,
such as Random Forest, Decision Tree, Support Vector
Classifier, Logistic Regression, K-Nearest Neighbor, Deep
Artificial Neural Network, and Convolutional Neural Net-
work (CNN) whose aim is to generate predictive models
based on the extraction of patterns from educational data [6],
[9], [10], [11], to predict academic performance, dropout,
approval, disapproval of students at an early stage. Therefore,
based on the results, universities can apply strategies that
reinforce student knowledge and reduce a course’s dropout
or failure rate [12].

One of the challenges of EDM is the amount of available
data and the imbalance of data used as input in the proposed
models, which causes instability in the accuracy of the
results. Problems associated with unbalanced class datasets
cause machine learning algorithms to converge slowly when
trained, generalize overfitting to available data, and poorly
resolve unseen data [13], [14].

In this research, we compare the Generative Adversarial
Network [15] and the Synthetic Minority Over-sampling
Technique [16] as resampling techniques to address the
problem of unbalanced data and generate reliability in the
results.

This study’s data collected over three years belong to stu-
dents from two Peruvian universities’ Software Engineering,
Computer Science, and Information Systems Engineering
programs. A predictive model based on Long-Short Term
Memory Networks was developed and compared with six
models: Deep Neural Network, Decision Tree, Random
Forest, Logistic Regression, Support Vector Classifier, and
K-Nearest Neighbor. The proposal’s framework is divided
into 5 phases: Data Collection, Data Balancing, Training
Data, Testing Data, and Model Evaluation. This study makes
the following contributions:

o Collect and preprocess open academic data, making it

available for future research.

« Evaluates two data oversampling techniques, GAN and
SMOTE, for tackling the unbalanced data problem.

o Performs experimental evaluation and analysis of
machine learning techniques such as Long short-term
memory, Random Forest, Decision Tree, Support Vector
Classifier, Logistic Regression, K-Nearest Neighbor,
and Deep Artificial Neural Network.
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« Evaluates quantitative performance-based accuracy, pre-
cision, recall, F1 Score, classification error, sensitivity,
specificity, and confusion matrix.

This document is organized as follows: Section II discusses
related work. Section III introduces the proposed method.
Section IV provides an analysis of the experimental results
and discusses their implications. Finally, Section V concludes
the paper and outlines future work based on the results
obtained.

Il. RELATED WORK

In this section, we explore and analyze EDM research, focus-
ing on applying various Machine Learning techniques. Our
analysis includes performance measures, feature patterns,
objectives, and algorithms used in these studies.

Recent years have seen a surge in Educational Data
Mining and Machine Learning research. In their survey,
[10] specifically examines the application of Artificial
Neural Network techniques in EDM for predicting students’
academic performance. This survey identified 21 articles,
categorizing them based on objectives, education levels,
predictor and output variables, algorithms, model accuracy,
and key findings. They conclude that ANNS obtain accuracies
above 84%. On the other hand, in [9], a systematic mapping
of machine learning techniques was applied to EDM. They
analyzed 39 articles and concluded that ANNs are the most
used, followed by SVM, LR, and KNN.

Table 1 presents an evaluation of articles that utilize
machine learning algorithms in EDM for predicting academic
performance. Among the most commonly used algorithms
to predict academic performance are ANN [17], [20], [21],
[23], [24], [25], [27], [30], [32], [33], LR [18], [26], [27],
[29], [30], [32], DT [18], [21], [22], [23], [24], [25], [29],
RF [21], [24], [25], [26], [27], [29], SVC [22], [25], [26],
[27], [29], [30], LSTM [24], [25], [30], [31], [33], KNN [26],
[27], [29], K-means [28], [34], [35], DNN [19], [29],
NB [22], [26], Bagging [21], [22], Boosting [17], [21],
CNN [22], and GB [29]. In [34], 47 predictive models were
evaluated. We identified that traditional algorithms, such as
ANN, LR, RF, KNN, SVC, and K-means, have been widely
used in EDM, while the current trend is to rely on predictive
algorithms such as LSTM, DNN, and CNN.

Moreover, we can observe the limited use of data-balancing
algorithms in research. In [29], four data balancing algo-
rithms were compared - SMOTE, ADASYN, ROS, SMOTE-
ENN -, to handle unbalanced data sets and improve GB, LR,
SVC, and KNN. The authors determined that the Synthetic
Minority Over-sampling Technique (SMOTE) yields superior
results in managing unbalanced datasets. In this context, Deep
Neural Networks (DNNs) achieved an accuracy of 89%,
closely followed by Random Forests at 88%. We infer
that data balancing not only facilitates achieving class
equilibrium but also mitigates the bias associated with
class disproportionality. Furthermore, it provides a more
substantial dataset for training, thereby positively influencing
the enhancement of performance metrics.
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TABLE 1. Summary of review of some previous work on student academic performance using machine learning.

Reference  Year  Country Propose Algorithm Dataset Number of Performance Metrics Highest accuracy ~ Data Balanced
of study models used attributes & Best Algorithm
[17] 2021  Portugal ANN application to ANN 649 33 Accuracy 88% No
Predlcl student Boosting True Positive Rate (Bagging)
performance centered K -
on economic Bagging False Positive rate
environment data Precision
Recall
F-Measure
Confusion Matrix
[18] 2021 United Application of ML to LR 145 4 Accuracy 84% No
States predlct' DT precision (DT)
concepts/skills to
write computer Recall
programs F1-Score
AUC
[19] 2020 Greece Application of Transfer learning 192 - Accuracy 86% No
transfer learning with with DNN T-test
DNN to predict
student performance.
[20] 2020  Ecuador ANN application to ANN 1308 5 Accuracy 74.5% No
predict student Precision (ANN)
performance with
academic and Recall
socioeconomic data.
[21] 2020 - Application of DT 480 16 Geometric Mean 85% No
machine learning to ANN Precision (GA+RF)
predict dropout .
RF True Negative Rate
Voting True Positive Rate
Bagging F1-Score
boosting Area Under Curve
[22] 2020 India CNN application to CNN 480 16 Accuracy 90% No
predict if a student NB Recall (CNN)
can complete the .
course. DT Precision
NY%e F-measures
[23] 2020 Cuban Application of DT 456 19 Accuracy 96.71% No
machine leaming to ANN precision (ANN, DT)
predict dropout
Recall
F-Measure
[24] 2023 Yemen Using ANN-LSTM ANN+LSTM 32593 students 206 Accuracy ANN+LSTM No
for m}lhl_({lass RNN 7 courses Precision 68.8%
classification.
GRU Recall (Week 15)
DFFNN MAP 71.35% (Week 25)
RF MAR
AML
[25] 2023 India Using LSTM with LSTM+RF+GB 32593 30 Accuracy LSTM+RF+GB No
random forest and RNN Precision 96.40%
gradient boosting
with a 4-layer CNN Recall
archnecture to predict ANN Fomeasure
student performance.
LSTM
NB
DT
RF
SVM
[26] 2022 Turkish ML application to RF 1854 3 Confusion matrix 74.6% No
predict the final KNN Accuracy (RF, NN)
grade.
Svc Precision
LR Recall
NB F-Score
AUC
[27] 2022 Saudi ML application to SvC 842 10 Mean Absolute Error 93.7% No
Arabia pr;g:;:(t’ rz:]:z;ﬂi::mc RE (MAE) (RF)
. KNN Mean Absolute
Percentage Error
ANN (MAPE
LR
5884 VOLUME 12, 2024
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TABLE 1. (Continued.) Summary of review of some previous work on student academic performance using machine learning.

[28] 2022 Japan Proposes framework K-means 537
using unsupervised
algorithms (k-means)
[29] 2021 Egypt ML application to DNN 4266
predict disapprovals DT
and dropouts.
RF
GB
LR
svC
KNN
[30] 2019 Saudi Using LSTM to LSTM 23593
Arabia prefilcl student ANN
performance by
weeks SVM
LR
[31] 2019 China Application of CNN, (CNN-LSTM- 39 courses
LSTM, and SVM to SVC)
predict student (CNN-LSTM)
performance.
(CNN-RNN)
[32] 2019 - LSTM application to LSTM 25541
predict the
withdrawal of courses ANN
LR
[33] 2019 - Application of ANN 900
machine learning to
predict academic
assistance for
Students
[34] 2019 Turkish Constructing an 47 models 400
ensemble meta-base
classifier technique to
predict students’
performance.
[35] 2018 - ANN application to LR 284
predict student K .
-means
performance

70 000 Without information Without information No
real-world
problem-
solving
12 Accuracy Using SMOTE for SMOTE
precision da‘i;::ﬁ';“k‘g"“ ADASYN
Recall 89% (DNN) ROS
F1-Score 88% (RF) SMOTE-ENN
classification error 87% (GB)
84% (DT)
76% (SVC)
75% (KNN)
74% (LR)
20 Accuracy LSTM achieved an No
11 Precision (CNN-LSTM-SVC No
Recall 91.55%
F1-Score
AUC
20 Accuracy LSTM No
Loss (97.25 %
Precision in 25 weeks)
Recall LSTM
(84.15%
in 10 weeks)
10 Accuracy 97.4% No
Recall (ANN)
13 Accuracy 98.5% No
Recall (Naive Bayes +
Fomeasure Adaboots_J48)
ROC metric
5 Without information LR, K-means (50%) No

Likewise, the amount of data and attributes used to
train predictive models varies among the research. In [24]
and [25], they used 32593 student records and considered
206 attributes corresponding to demographics and academic
data. In [32], they used 25,541 student records collected
over nine months and analyzed 20 attributes from an
online platform where notes on activities such as forums,
quizzes, and tests stand out. In [29], they used 4,266 records
and considered 12 attributes corresponding to grades from
different courses. In [26], they analyzed 1,854 records and
only three attributes (previous exams, school data, and
faculty data). In [20], they analyzed 1,308 records with five
attributes (score, vulnerability index, regime, gender, and
population segment). In [33], they used 900 records with
ten attributes obtained from the interaction of students with
an online platform. In [27], they used 842 records with ten
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attributes distributed in personal and academic attributes.
In [17], they used 649 records with 33 attributes extracted
from 3 categories (personal attributes, academic background,
economic background). In [28], they used 537 attributes;
no specific use was evident. In [21] and [22], they used
480 records with sixteen attributes distributed in three
categories (demographic category, academic category, and
behavioral category). In [34], they used 400 records with
thirteen attributes corresponding to academic and personal
data. In [35], they used 284 with five attributes extracted
from the interaction of students with a virtual platform (view,
post, forum view, forum post, successful submission). In [18],
they used 145 records with four attributes (repetition concept,
selection concept, repetition skills, and method skills). The
amount of data and an adequate number of attributes are
necessary for predictive models to learn from the interaction
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of the data and its attributes. Predictive models such as DNN,
LSTM, and CNN require much data to learn and predict
correctly.

On the other hand, the accuracy percentage varies accord-
ing to the predictive model used, the data set, and the trained
attributes. In [34], they achieved an accuracy of 98.5%. The
authors combined Naive Bayes (NB) with ababoots_J48.
The authors constructed an ensemble meta-based tree model
that combines a boosting method with Naive Bayes trees
to predict student performance. They used the Pearson
correlation method to find attributes with high correlation,
with the visited resource attribute having a high impact on
the final result.

Meanwhile, in [33], they achieve an accuracy of 97.4%
using ANN. The authors manage to predict whether a
student requires academic assistance in their course using
an ANN.

According to the proposed architecture, the ANN was
designed with a network of 4 input neurons, 12 hidden
layers, and three outputs. Likewise, in [32], the authors
used Long Short-Term Memory (LSTM) to predict course
withdrawal. LSTM achieved an accuracy of 97.25% to predict
a student’s withdrawal in week 25 and 84.15% to predict a
student’s withdrawal in week 10. In [23], they used Decision
Trees and Artificial Neural Networks to predict student
dropout in an undergraduate program. The classification
comprised two (promoted or not promoted) and three classes
(promotion, repetition, dropout). They conclude that ANN
and DT achieve an accuracy of 96.71% using all variables
for both classes.

Meanwhile, in [25], they propose using LSTM with
RF and gradient boosting with a 4-layer architecture to
predict student performance. They were compared with
eight predictive models and achieved the best accuracy,
95.40%. In [30], they propose using LSTM with three
layers to predict for weeks, whether a student passes
or fails a course. They used data from virtual learning
environments and comparisons against ANN, SVM and LR.
LSTM achieved an accuracy of 93.46% in predicting a
student’s performance in week 8, ANN achieved 85%, SVM
achieved 75%, and LR achieved 80% in the same week.
In [31], the researchers utilized CNN, LSTM, and SVC in
their study. The CNN was employed for feature extraction,
while the LSTM model was utilized to retain historical data.
Additionally, SVC was employed to address the issue of
data imbalance. The authors compared their predictive model
against several established models, including CNN-LSTM,
CNN-RNN, RF, DT, LR, and SVC. The proposed model
achieves 91.55%.

On the other hand, in [22], they propose using a
Convolutional Neural Network to predict whether a stu-
dent will complete their course. The authors demonstrate
that CNN achieves an accuracy of 90%. However, they
conclude that the small amount of data and variables
affect the model’s accuracy. In [29], they used Deep
Neural Networks to predict undergraduate students’ pass and
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dropout rates. They compared data balancing algorithms to
handle unbalanced data sets. They concluded that Deep Neu-
ral Network achieved 89% accuracy, followed by Random
Forest with 88%. In [17], they trained an Artificial Neural
Network to predict student performance using economic
environment data. The authors compared three predictive
models: ANN, Booting, and Bagging. They conclude that
Bagging classifiers achieve a better accuracy of 88% and
consider economic data important for predicting student
performance. In [21] they used Genetic Algorithm (GA)
to select features and Random Forest to classify students
according to their performance. They compared six predictive
models: DT, ANN, RF, Voting, Bagging, and Boosting.
The authors concluded that the use of GA+RF achieves
an accuracy of 85%. However, it is considered for future
work to obtain more training data and compare other
algorithms for feature selection. In [18] they managed to
predict concepts/skills for writing computer programs using
DT and LR. The results show that DT achieves 84% accuracy.
The authors conclude that the concept of selective logic
is an essential prerequisite for writing computer programs,
and they also suggest evaluating the models with a larger
amount of training data. In [19], the authors used Transfer
Learning with DNN in response to the limited quantity of
available data to predict student performance. An accuracy
rate of 86% was attained. The prediction models in question
were not evaluated by comparative analysis. In [26], they
compared six models: RF, NB, NN, SVC, LR, and KNN,
to predict the final grade of undergraduate students. They
found that Random Forest and Nearest Neighbors achieve
74.6% accuracy while KNN achieves 69.9%. The authors
suggest that other training variables should be used to
improve the accuracy of the models. In [20], they trained
an ANN with academic and socioeconomic data to predict
students who fail in undergraduate programs. They used two
predictive models. The first model presents 48 input neurons,
39 hidden layers, and one output, while the second model
presents seven input neurons, four hidden layers, and one
output as the network architecture. The authors achieved
74.5% accuracy with the second ANN model. However, they
consider that the number of variables is limited for their
training.

In [24], they used ANN-LSTM for multi-class classifica-
tion (distinction, pass, fail, and withdrawn). The architecture
of the LSTM network is composed of i) an input layer for
200 attributes, ii) a dense hidden layer with an output of
100 units and an activation function “Relu”, and iii) an
output layer with function “SoftMax” activation with four
output units representing four categories: Distinction, Pass,
Fail, and Withdrawn.

In [35], the authors seek to predict academic performance
in online learning systems using a linear regression model and
a k-means classifier. Both algorithms achieved an accuracy
of 50%. The authors recommend using a dataset with more
records and attributes. Also, other algorithms should be
evaluated, and performance measures of the models should
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L. Vives et al.: Prediction of Students’ Academic Performance

IEEE Access

TABLE 2. Dataset attribute list.

Attribute name Type Values
Year of admission Numeric 2020, 2021, 2022
Software Engineering (SE),
Career Nominal Computer Science (CS),
Information Systems Engineering (IS)
Gender Nominal Male(m), female(f)
Qualified Practice 1 Numeric [0-20]
Partial Task Numeric [0-20]
Midterm Exam Numeric [0-20]
Qualified Practice 2 Numeric [0-20]
Final Task Numeric [0-20]
Participation in Class Numeric [0-20]
Final Exam Numeric [0-20]
Linguistic Comprehension ~ Numeric [0-20]
Mathematics Numeric [0-20]
Target Nominal [Pass, Fail]

be tested. In [28], they lack the results of their evaluations on
k-means.

Based on the related works discussed, the research gap
addressed in this study is described as follows. Firstly,
most of the proposed models [20], [26], [27], [29], [30],
[32], [33], aim to predict student performance using imbal-
anced data. Secondly, while many studies propose predictive
models for assessing student performance at the end of
a course, instructors often require weekly or even daily
predictions.

In this research, seven machine learning algorithms (DNN,
LSTM, DT, RF, LR, SVC, and KNN) were employed to
evaluate results in terms of student performance prediction.
Studies [24], [25], [28], [30], [31], [32] utilized LSTM.
However, in our research, we applied and compared the
prediction results using original data and synthetic data
generated by two data balancing methods (SMOTE and
GAN). We used 5-fold stratified cross-validation to stabilize
the resulting evaluation measures.

Ill. RESEARCH METHOD

In this section, Fig. 1 shows the proposed approach flowchart,
involving i) data collection, ii) data preprocessing, iii) data
balancing, iv) training data, v) testing data, and vi) model
validation:

A. DATA COLLECTION

The data collected were from university students in Soft-
ware Engineering, Information Systems Engineering, and
Computer Science careers from two Peruvian universities
from 2020-2022. We obtained 677 records with 13 aca-
demic attributes related to academic grades in programming
fundamentals, linguistic comprehension, and mathematics.
Table 2 presents the academic attributes of the data set used
to predict whether a student passes or fails the programming
fundamentals course. Demographic and family data were
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not considered due to data restrictions and privacy by
universities.

B. DATA PRE-PROCESSING

We carried out the process of data cleaning, data discretiza-
tion, and feature encoding to obtain a unified and error-free
data set, which allows for better results.

1) DATA CLEANING

The data cleaning process was carried out to eliminate records
with missing data. We were able to identify six records with
one or more missing attributes.

2) DATA DISCRETIZATION

The discretization process allowed us to transform the
numerical values of student grades into nominal values. Since
the goal is to classify whether a student passes or fails
the programming fundamentals course, the label ‘“‘Passed”
considers the grade range from 12.5 to 20. In contrast,
the label “Failed” considers a grade from O to 12.49,
as illustrated in Table 3.

TABLE 3. Attribute discretization.

Attribute name Value Student marks
Taroet Pass >=12.5
arge Fail <125

3) FEATURE ENCODING

In the feature encoding stage, nominal data was taken to be
converted into numerical labels. In Table 4, we can see the
attributes, their values, and their encoded label.

TABLE 4. Feature encoding of attributes.

Attribute name Values Label encoding
Software engineering (SE) 1
Career Computer Science (CS) 2
Information Systems (IS) 3
Male(M) 1
Gender Female(F) 0
Pass 1
Target Fail 0

C. DATA BALANCING
To solve the problem of unbalanced data, which leads to
the domination of majority classes when training and testing
machine learning models, we used two techniques: i) The
Synthetic Minority Over-Sampling Technique (SMOTE) [16]
and ii) Generative Adversarial Networks (GAN) [15], [36].
Fig. 2 presents the data imbalance on the attributes of the
class label, where the majority class (Pass) represents 68% of
the data and the minority class (Fail) accounts for 32% of the
data.
In Fig. 3, the analysis of attribute correlation is presented.
There is a 51% correlation between graded practice one and
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Fourth Step:
Training Data

. S, K S,

Sixth Step: Model
Evaluation

Discretization

Over-Sampling

Voo - 3

{ Generative b i EI‘\II?;::::: i

........................... - : Adversarial | Prediction I !
= Data Cleanin, ] | —! i
{ i g ! Networks (GAN) : Model ot i
! i : : 4 P Display !
Original Data p— Dot _’: Synthetic Minority ' \ i Results /

Encoding

First Step: Data M _—
Collection Feature Third Step:
Data Balancing

Technique (SMOTE)

Testing

/

Second Step: Data
Preprocessing

FIGURE 1. Flow diagram of the proposed approach.

210 (32%)

M Pass

W Fail
451 (68%)

FIGURE 2. Imbalanced distribution of the class label.

the midterm exam, a 51% correlation between graded practice
one and the final exam, and a 51% correlation between
graded practice one and the target. Similarly, the correlation
between the midterm and final exams is 64%, and between
the midterm exam and the target, it is 68%. Moreover, graded
practice two correlates with the final exam and the 55% and
62% target, respectively. The correlation between the final
project and class participation is 67%. Finally, a correlation
of 71% is observed between the final exam and the target.

D. TRAINING DATA

For the training process, we configured seven machine
learning techniques: Long Short-Term Memory, Deep Neural
Network, Decision Tree, Random Forest, Logistic Regres-
sion, Support Vector Machine, and K-Nearest Neighbor.
Table 5 presents the configuration parameters of the machine
learning models used in this research.

Long Short-Term Memory is a Recurrent Neural Network
created by Hochreiter and Schmidhuber in 1997 [37] to
address the problems of explosion and disappearance of
gradient obtained in traditional RNN models.
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Fourth Step:
Testing Data

Qualified Practice 1

Partial Task -

Midterm Exam |

Qualified Practice 2 -

Final Task -

Participaton in Class- 036 0.17

Final ExamI 051 027

Linguistic Comprehension-  0.37  0.26

Mathematic - 047 016

Qualified Practice 1%
Partial Task
Mathematic -

Participation in Class -
Linguistic Comprehension -

FIGURE 3. Correlation between the attributes.

LSTM has been used in time series problems [38],
[39], [40].

In this study, we will use LSTM to predict student
performance. The configuration parameters of the proposed
model are presented in Table 6.

An LSTM network contains four main components: i) cell
state, ii) input gate, iii) output gate, and iv) forget gate. The
input gate, cell state, and output gate are necessary to update,
maintain, and delete information from the forget gate. The
architecture of an LSTM cell and its components is shown
in Fig. 4.

The forget gate at a given time t(f;) is designed using a
neural network and a sigmoid function. It receives as input
a data point representing the current state at time t(X;) and
the hidden state of a previous data point (h;—1), concatenates
them, and applies the sigmoid function, yielding a value
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TABLE 5. Parameter configuration of each machine learning model.

Parameters

(64, activation="relu’, input_shape=13)
(32, activation="relu’)

(2, activation="softmax"”)
(optimizer="adam’,
loss="categorical_crossentropy’,
metrics=[accuracy’])
DecisionTreeClassifier (Criterion="gini”,
Spliter="best", random_state=42)
RandomForestClassifier (N_estimator=100,
criterion="gini", random_state=42,
n_jobs=-1)

LogisticRegression (random_state=42,
n_jobs=-1, penalty="12")

SVC (random_state=42, C=1.0,
kernel="rbf’, degree=3, gamma="scale’)
KNeighborsClassifier (random_state=42,
n_neighbors=5, weights="uniform’,
n_jobs=-1)

Machine learning model

Deep Artificial Neural Network

Decision Tree

Random Forest

Logistic Regression
Support Vector

K-Nearest Neighbor

TABLE 6. Parameter configuration for the LSTM model.

Parameters

Number of layers = 3

(64, activation="relu’, input_shape=13)
(32, activation="relu’)

(2, activation="softmax’)
(optimizer="adam’,
loss="categorical_crossentropy’,
metrics=["accuracy’])

Machine Learning model

Long Short-Term Memory

Input gate

Output gate

FIGURE 4. The architecture of the LSTM cell.

between 0 and 1. A value of 1 signifies that the outcome
will be retained, while O indicates that the outcome will be
discarded. This process is described in Equation 1.

fo =0 (Wr [ha-1Xw] + br) ey

The input gate facilitates updating the cell’s current state
and comprises two steps. The first step involves obtaining
information (it) by multiplying the input (X;) and the
hidden state from a previous time (h;,_1), concatenating
them, and applying the sigmoid function. The resulting value
determines whether the information is retained or rejected,
as described in Equation 2. The second step calculates (pt)
using the same current state information (X;) and the hidden
state (ht-1)concatenating them in a tanh function, expressed
in Equation 3.

ir = 0 (Wi [ha-1), Xin] + b:) @
pr = tanh (Wp [h(rfl), X(t)] + bp) G)
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Algorithm 1 Pseudocode of LSTM Layer
Input: X = (X1, X2, ..., X))
Output: & = (hy, ha, ..., hy)
Given parameters: Wy, W;, W,,, W,,, by, b;, by, b,
Initialize: 7,1 =0,C,—; =0
for each input X at time do
Calculate: Forget gate f; = (1);
Calculate: Input gate i; = (2), and p; = (3);
Calculate: Cell state C; = (4);
Calculate: Output gate O; = (5);
Calculate: New state h; = (6) ;

End for
Apply the activation function to obtain the output of
the LSTM layer.

The cell state, or the update of the cell state, utilizes
information from both the forget gate and input gate to decide
and store the new state in the cell of state. The previous
cell state (Ct-1) is multiplied by the vector (ft). If the result
is 0, then the values are discarded. If the result is 1, then
the previous memory state is completely passed to the cell,
allowing the calculation of the new state by taking the output
values of the vectors (it) y (pt). This process is described
in Equation 4.

Cr = (Cr—1 *f1) + (ir * pr) @

An output gate determines the value of the following
hidden state (h;). First, it multiplies the previous hidden
state (h,_1) with the current state (X;) concatenated in a
sigmoid function, as shown in Equation 5. Then, it updates
the cell state (C;) by multiplying it by a tanh function.
Finally, it predicts the student’s performance by obtaining h;,
as described in Equation 6.

or =0 (W [h—1, Xi] + bo) 5
ht = O * tanh (Ct) (6)

In Equations 1, 2, 3, 4 y 5, W represents the weights of
the gates, and b represents the biases. Algorithm 1 shows the
pseudocode of the LSTM layer. The input for each student’s
learning notes is distributed at each time t, from week 4 to
week 16. It is represented in the vector X = [X,.... X;], The
data for the forget gate, input gate, cell state, and output gate
are calculated, and the new state in the vector ht is obtained.
An activation function is applied to obtain the output of the
LSTM layer, which allows for predicting whether a student
passes or fails the course.

The design of our LSTM network consists of i) an
LSTM encoder with 64 neurons that receives inputs ranging
from 5 to 12 attributes depending on the week being
evaluated, using a ReLu activation function, ii) an LSTM
Decoder with a 32-neuron LSTM layer and a ReLu function,
and it also has a Dense layer with two neurons that
connect all outputs from the previous layer through the
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LSTM LSTM Output
S . S5 S S, ____Encoder__ —....Decoder Layer

-u

Dense Layer

Features
Hidden States

|
Layer 1: LSTM (64)
Input 12 x64
Activation: Relu
Output 1x64

Layer 2: LSTM (32)  Laver 3: Dense (2)
Input 1 x 64 Input 1 x 32
Activation: ReLu  Activation: Softmax

Output 1x32 Output 1x1

FIGURE 5. Architecture LSTM model.

SoftMax function. The output is 0, indicating that the model
predicts the student will fail the course, and 1 indicates that
the model predicts the student will pass the course. Fig. 5
shows the details of the LSTM architecture used in this
research.

E. TESTING DATA
We applied K-fold stratified cross-validation, where k=5 for
all evaluated models.

F. MODEL VALIDATION

To verify the results of our models, we used five evaluation
measures: accuracy, precision, recall, F1-Score, and classifi-
cation error. Accuracy measures the quality of our model 7.
Precision allows us to measure the percentage of cases the
model gets right 8. Recall provides us with information about
the number of cases the model can identify 9. F1-Score
compares performance by combining precision and recall 10.
The classification error lets you know the percentage of
error our model generates 11. The outcomes of our model
in comparison to the existing outcomes were categorized
as follows: true positive (PT), true negative (TN), false
positive (FP), and false negative (FN). Sensitivity is a measure
that indicates the likelihood that a student who has actually
passed the test will be correctly identified as having passed by
the predictive model. On the other hand, specificity indicates
the likelihood that a student who has actually failed the test
will be correctly identified as having failed by the predictive
model.

TP + TN
Accuracy = @)
TP + TN + FP + FN
. P
Precision = ——— 8)
TP + FP
TP
Recall = ——— )
TP + FN
Recall * Precision
F1 — Score =2 % — (10)
Precision + Recall
. FP + FN
ClassificationError = (11
TP +TN + FP + FN
Sensitivity = TP /(TP + FN) (12)
Specificity = TN /(TN + FP) (13)
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FIGURE 6. Diagram of the 5-fold cross-validation method.

K-fold stratified cross-validation was applied five times.
This process ensures that the evaluation measures (accu-
racy, precision, recall, F1-Score, classification error, and
confusion matrix) are obtained through the average of
the five iterations generated by cross-validation. Fig. 6
shows the details of obtaining the evaluation measures after
comparing the model’s results with the test data in each
iteration.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. ENVIRONMENT

This research used a laptop with a Ryzen 7-5800X processor,
16 GB of RAM, and a 1 TB hard drive. The source code
was developed in Python, using Jupyter Notebook. We used
Python libraries such as NumPy, Matplotlib, Pandas, Scikit-
Learn, Keras, and TensorFlow.

B. RESULTS AND DISCUSSION

The experimental results were carried out to verify that the
proposed technique of using LSTM and EDM to predict
students’ performance in the programming fundamentals
course achieves high performance over the other evaluated
techniques. In this sense, we evaluated i) The performance
of the classifiers on the data set without applying balancing
techniques, ii) The performance of the classifiers applying
data balancing techniques, and iii) The performance of
classifiers specifically in week 8.
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FIGURE 7. Accuracy of predictive models distributed by weeks.

1) PERFORMANCE EVALUATION OF THE CLASSIFIERS ON
THE DATASET WITHOUT APPLYING BALANCING
TECHNIQUES

Performance measures such as precision, Recall, and
F1-Score were applied to the seven predictive models (Long
Short-Term Memory, Deep Neural Network, Decision Tree,
Random Forest, Logistic Regression, Support Vector Classi-
fier, and K-Nearest Neighbor). The dataset with unbalanced
data was used.

Fig. 7 presents the accuracy results achieved by the
predictive models and their distribution by week. In week 7,
RF achieved the highest accuracy of 77%, while SVC
recorded the lowest at 75.3%. In weeks 8, 12, and 16,
DT maintains an increase in accuracy ranging from 93.4% to
100%, followed by RF, achieving an accuracy of 92%, 97.1%,
and 100% in weeks 8, 12, and 16, respectively. However, the
LSTM algorithmic model reaches 76.2%, 87.4%, 90.8%, and
97.7% in weeks 7, 8, 12, and 16. This is attributed to the
limited data quantity and bias due to imbalanced data, which
allows traditional models to focus their predictions on the
majority class (Passed).

Regarding the precision measure, in weeks 7, 8, 12,
and 16, DT better classify approved cases, achieving 84.9%,
92.1%, 97.6%, and 100% accuracy, respectively. RF exhibits
a similar pattern, better classifying approved student cases
with percentages of 83.6%, 90.6%, 95.3%, and 100% in
weeks 7, 8, 12, and 16. LSTM achieves the lowest percentage
in classifying approved students in weeks 7, 8, and 12 with
values of 79.3%, 86.7%, and 89.5%, and in week 16, it only
surpasses DNN with a precision of 97%. Fig. 8 displays the
weekly results of the recall measure for each algorithmic
model.

Regarding the recall measure, in week 7, KNN achieved
12% in classifying false negatives, meaning students are
classified as failed when their current status is passed.
In week 8, DT achieves a recall of 97.9%, indicating that 2.1%
of students are classified as failed while their actual status
is passed. In week 12, DT achieved a recall of 99.7%, and
in week 16, DT, LR, and RF all achieved a recall of 100%.
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FIGURE 8. Precision of predictive models distributed by weeks.
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FIGURE 9. Recall of predictive models distributed by weeks.

Fig. 9 displays the weekly results of the recall measure by
each algorithmic model.

Regarding the F1-Score, in week 7, KNN and SVC show
better management of imbalanced data with 88% and 87.5%,
respectively. Similarly, in week 8, DT and RF achieved the
highest values of 97.9% and 97.8% for managing imbalanced
data. In week 12, DT and RF continue to obtain the best
values, and finally, in week 16, DT, LR, and RF achieve
a 100% F1-Score. LSTM presents 84.7%, 92.7%, 94.6%,
and 98.9% in weeks 7, 8, 12, and 16, respectively. Fig. 10
displays the weekly results of the F1-Score measure for each
predictive model.

2) EVALUATION OF THE PERFORMANCE OF

THE CLASSIFIERS APPLYING DATA

BALANCING TECHNIQUES

The problem of unbalanced data and the small amount of data
for training machine learning predictive models lead to biased
results and performance. Data balancing techniques such as
SMOTE and GAN were used to address both problems.
Stratified cross-validation was performed five times. The
synthetic data for SMOTE and GAN were 4000. However,
after obtaining the data with GAN, a data cleaning was carried
out, as it generated 64 inconsistent records.
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105.0%

100.0%

983%

s &

94.6%
937%
94.6%

95.0%

93.1%
922%
929%
93.4%

89.7%

88.9%

88.1%
89.2%

°
8
3
Ed

883%

Accuracy

o
@
9
Ed

80.0%

L

75.0%

70.0%

7 8 12 16
Week
uDT =mKNN =DNN =LSTM =LR =RF = SVC

FIGURE 11. Accuracy of predictive models distributed by weeks with
SMOTE.

a: PERFORMANCE EVALUATION OF THE MODELS OF
MACHINE LEARNING USING THE SMOTE TECHNIQUE

Fig. 11 shows the results of the seven predictive models based
on their accuracy using SMOTE to classify two categories
(pass and fail). It can be observed that DT achieves a
precision of 75.8%, 93.1%, and 98.3% in weeks 7, 8, and 12,
respectively. However, in week 16, the DNN, LSTM, and
KNN models reach a precision of 99% accuracy.

Regarding the precision measure, KNN with SMOTE in
week 7 achieves the best precision measure with 83.9%,
equating to a 16.1% error rate in classifying false positives,
meaning the model considers students as passed, whereas
they actually failed. In weeks 8 and 12, DT achieves the
best precision measure with 92.1% and 98.1%, respectively.
However, in week 16, KNN, DNN, and LSTM achieved better
management of false positives, with a precision of 98.7%.
Fig. 12 displays the results of the precision measure with
SMOTE.

Regarding the recall measure, DT and SVC with SMOTE
achieve better results in classifying false negatives. Fig. 13
shows the results of the recall measure with SMOTE for the
predictive models distributed by week.

Regarding the F1-Score measure, DT with SMOTE
emerges as the best classifier in weeks 7, 8, and 12 with
percentages of 81.8%, 94.3%, and 98.8%, respectively.
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FIGURE 14. F1-Score of predictive models distributed by weeks with
SMOTE.

However, in week 16, it drops to 96.6%. Likewise, in week 16,
KNN, DNN, and LSTM with SMOTE are presented as the
best classifiers with 99%. Fig. 14 displays the results of the
F1-Score measure with SMOTE.

b: PERFORMANCE EVALUATION OF THE MODELS OF
MACHINE LEARNING USING THE GAN TECHNIQUE

In Fig. 15 the results of the seven predictive models based
on their accuracy using GAN to classify two categories (pass
and fail) are presented. It can be observed that LSTM achieves
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FIGURE 15. F1-Score of predictive models distributed by weeks with GAN.

accuracies of 51.3%, 98.3%, 98.5%, and 99.77% in weeks 7,
8, 12, and 16, respectively. Another notable predictive model
is DNN, which achieves accuracies of 51.1%, 98.1%, 98.3%,
and 99.5% in weeks 7, 8, 12, and 16.

Regarding the average precision, LSTM with GAN shows
precision values of 65.8%, 98.3%, 98.5%, and 99.7% in
weeks 7, 8, 12, and 16, indicating it learned to mitigate the
error of false positives Fig. 16 displays the results of the
precision measure for predictive models with GAN.
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The recall and Fl1-score measures follow the same
classification trend, as shown in Figs. 17, and 18.

¢: THE PERFORMANCE OF CLASSIFIERS SPECIFICALLY IN
WEEK 8
Fig. 19 summarizes the evaluation of the predictive models
in week 8 according to their accuracy. DT achieves 93.4%
accuracy using the original data and 93.1% accuracy using
SMOTE as a data balancing method. When applying GAN to
balance the data, we can see that LSTM achieves an accuracy
of 98.3%.

Fig. 20 summarizes the evaluation of the predictive models
in week eight based on their precision. DT achieves 92.1%
accuracy using the original data and 92.1% using SMOTE as
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FIGURE 19. Accuracy obtained by each predictive model at week 8.

a data balancing method. However, it can be observed that
traditional predictive models using GAN achieve precision
measures lower than 75%, while DNN and LSTM reach
98.1% and 98.3% precision, respectively, when using GAN.

Fig. 21 presents the evaluation results of the recall
measure for the seven predictive models in week 8. DT and
RF achieve 97.9% and 97.8% using the original data,
respectively. Similarly, DT and RF attain a recall of 97.6%
using SMOTE. However, when using GAN, the traditional
predictive models show an increased error percentage in
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FIGURE 21. The recall obtained by each predictive model at week 8.

classifying false negatives, while DNN and LSTM, using
GAN, achieve 98.1% and 98.3% recall.

Regarding the F1-Score measure, DT and RF show better
percentages with original data, 94.5% and 93.5%, respec-
tively. Using SMOTE, they achieved 94.3% and 93.7% in
week 8, respectively. However, both measures drop to 75.8%
and 75.9% using GAN, implying that the classifier error using
GAN is 24.2% and 24.1%, respectively. In contrast, DNN and
LSTM achieve 98.1% and 98.3% using GAN, respectively.
Fig. 22 presents the results of the predictive models using data
balancing methods in week 8.

Table 7 presents the confusion matrix of each predictive
model (DT, KNN, DNN, LSTM, LR, RF, SVC) with respect
to the application of data balancing methods (unbalanced
data, SMOTE, GAN) distributed in week 8. The confusion
matrix allows for the derivation of accuracy, recall, precision,
and F1-Score measures, as well as the classification error
of each model. We can conclude that LSTM and DNN,
both using GAN, manage to predict two students, according
to their academic performance, as false positives and two
students, according to their academic performance, as false
negatives, resulting in a 3% error rate in classification.
However, the predictive model DT achieves a 34% error rate
in classification, meaning this model predicts 25 students,
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according to their academic performance, as false positives
and 20 students as false negatives. According to the analysis,
the data generated by SMOTE, and the original data
present a similar distribution; however, the data generated by
GAN show floating-point values with decimal parts ranging
from 1 to 8 decimals. GAN presents data that adapts to deep
learning predictive models such as LSTM and DNN, but
traditional models do not train adequately with these data.
Likewise, we can observe data distribution according to the
attributes and the original data generated by SMOTE and
GAN, as shown in Table 8.

Table 9 shows the values obtained by the sensitivity
measure to evaluate the models’ ability to predict a passing
student as a true positive. With unbalanced data and
SMOTE, LSTM shows a lower percentage of 93% and 92%,
respectively. However, using GAN, LSTM presents a better
ratio of true positives at 98% compared to other predictive
models. Similarly, the specificity measure demonstrates the
models’ ability to predict a failing student as a true negative.
LSTM shows the lowest percentages of 72% and 75% in
unbalanced data and SMOTE, respectively; however, LSTM
better classifies failing students with a percentage of 95%
using GAN.

According to the Receiver Operating Characteristic (AUC)
measure, all predictive models show values above 0.5,
indicating that they have learned to predict or classify student
performance as positive, with the outcome being approved.
RF obtains the best value with 96% and the lowest by DT
with 92%. On the other hand, we have the AUCs obtained
by applying the SMOTE data balancing method, with KNN,
LSTM, and DNN showing the best results. Finally, the
evaluation of AUC applying GAN highlights LSTM as the
predictive model that best classifies true positives with a
percentage of 87%.

The training time in milliseconds used by predictive
models employing data balancing methods is also presented.
LSTM requires a longer training time with unbalanced
data (63.45 ms). DNN shows a longer training time with
SMOTE (60.18 ms) and GAN (44.22 ms); however, for
GAN’s training time, the data generation time for synthetic
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TABLE 7. Confusion matrix of each predictive model according to the method of balancing data obtained in the evaluation of week 8.
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Predicted Values Predicted Values Predicted Values
w
8 | TrueNeg False Pos S 9 |TrueNeg False Pos 8 B |TrueNeg False Pos
s & 32 12 s & 3 10 e & 19 25
Sve s 2 False Neg [RITEIEE E 2 |False Neg IR = 2 | False Neg [RENENZIS
gF 5 84 2 F 6 86 g 18 71
False True False True False True
Predicted Values Predicted Values Predicted Values
bl
g & [True Neg False Pos & 3 TrueNeg False Pos § & | True Neg False Pos
s & 3 12 TE 30 9 £ 18 25
KNN = - z
g g False Neg [RIZERE 3 L False Neg [ETEE 5 2 |False Neg EEQENGE
g F 4 g rF 7 87 g F 19 71
False True False True False True
Predicted Values Predicted Values Predicted Values
§ 3| TrueNeg False Pos & % |TrueNeg False Pos 8 & |TrueNeg False Pos
s P 3 12 s & 30 10 G 35 2
LSTM 2 = z
g @ |False Neg VAR S 2 |False Neg [EITTERZH 2 g |False Neg IR
8= 6 84 g rF 7 86 g F 2
False True False True False True
Predicted Values Predicted Values Predicted Values
v
§ $ True Neg False Pos § & [ True Neg False Pos ¢ & |TrueNeg False Pos
DN S = 34 12 ElS 30 9 S £ 35 2
T @ False Neg RN EREMEELTE True Pos S g |False Neg ETEEEE
SE s 84 2r 7 2F 2
False True False True False True

Predicted Values

Predicted Values

Predicted Values

data (449 ms) must be added, as GAN uses a discriminator
and a synthetic data generator that are trained within another
neural network. We can conclude that GAN requires a longer

training duration.

Table 10 presents the results of the classification error

measure for week 8.

Table 11 presents the results obtained by applying the
Bonferroni-Holm Correction [41] for pairwise comparisons
between our proposed model (LSTM) and other predictive
models. The null hypothesis of the non-parametric test is that

VOLUME 12, 2024

the means of the algorithm results based on the F1-Score
with the application of stratified 5-fold cross-validation are
the same, with a significance level of 0.05. It is demonstrated
that the null hypothesis was rejected when comparing
LSTM with SVC, KNN, and LR, indicating significant
differences between the means of F1-Score values among
these models. However, the null hypothesis is accepted
when comparing LSTM with DT, DNN, and RF, as these
models have no significant differences between the F1-Score
values.
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TABLE 8. Data generation according to the data balancing method.

Attributes

Data Balancing Y C G QPI PT ME QP2 FT PC FE LC M FA T
method

Unbalanced Data 2 1 0 15 20 20 20 20 18 14 20 19 17.90 Pafs
2 1 1 6 0 0 5 6 14 6 11 10 5.05 Fail
SMOTE 1 2 0 6 15 6 8 16 16 9 16 15 10.50 Fail
1 2 0 13 18 8 12 18 16 11 18 14 13.25 Pass
GAN 1 0 0 16.9287273  18.0377125  13.917263 10.192746  12.0377125  17.02833 6.07176373 179263617  18.9736284 11.59 Fail
1 1 0 11.927283  19.1543692 13.5744 10.5906154  14.9387373  17.837383  8.59061538  18.642762  16.9872737 12.55 Pass

Y=Year of Income; C=Career; G=Gender; QP1=Qualified Practice 1; PT=Partial Task; ME=Midterm Exam; QP2=Qualified Practice 2; FT=Final Task; PC=Participation in Class; FE=Final Exam; LC=Linguistic
Comprehension; M=Mathematic; T=Target

TABLE 9. Measurements of sensitivity, specificity, AUC, and training time of the predictive models according to the data balancing method, applied to
week 8.

(Sensitivity) (Specificity) AUC Training Time
Model Unbalanced data SMOTE GAN  Unbalanced data SMOTE GAN Unbalanced data SMOTE GAN Unbalanced data SMOTE GAN
DT 0.98 0.98 0.78 0.81 0.81 0.40 0.929 0935 085 0.012 0.03 0.02
RF 0.98 0.98 0.79 0.80 0.81 0.42 0.96 0963  0.856 0.467 0.44 0.50
LR 0.96 0.93 0.79 0.77 0.76 0.42 0.95 0.95 0.83 0.975 0.06 1.21
svC 0.94 0.93 0.80 0.73 0.76 043 0.94 0.95 0.83 0.063 252 111
KNN 0.95 0.93 0.79 0.73 0.77 0.42 0.95 0.96 0.83 0.091 0.11 0.08
TABLE 10. Classification error of the predictive models according to the We included six additional predictive models: Deep Neural
data balancing method, applied to week 8. Network, Decision Tree, Random Forest, Logistic Regres-
Classification Error sion, Support Vector Machine, and K-Nearest Neighbor.
Model Unbalanced data SMOTE GAN We addressed the problem of unbalanced and small data using
DT 8% % 349, data balancing techniques, such as SMOTE and GAN.
RF 8% 8% 339% The performance of the proposed models with unbalanced
LR 11% 13% 33% data was evaluated. The results show that traditional models
SVC 13% 13% 32% such as Decision Tree and Random Forest achieve accuracy
KNN 12% 13% 33% between 77% (week 7) and 99.9% (week 16), but with rates
LSTM 14% 14% 3% of false positives and false negatives due to the bias of the
DNN 13% 13% 3% predominant class (approved). Likewise, it was found that the

performance of the models using balanced data shows better
values in terms of their precision and recall, with DNN and
LSTM being the models with the highest precision and recall.

5-fold cross-validation Week 8 is strategic for organizational decision-making
Comparison __ Statistic _p-value Result regarding the Programming Fundamentals course. In that

LSTM vs SVC 2.48 0.00015  HOis rejected .
LSTM vs KNN 331 0.00034  HO s rejected context, LSTM with GAN presents an accuracy, recall,

TABLE 11. Bonferroni-Holm correction test results.

LSTM vs LR 321 0.00042  HO is rejected precision, and F1-Score of 98.3%, followed by DNN-GAN
LSTM vs DT 1.57 0.18870  HO is accepted with 98.1%.
LSTM vs DNN 1.25 0.13503  HO is accepted The results show that SMOTE generates better results
LSTM vs RF 1.021 0.12277  HO is accepted than GAN as a balancing method. This is because SMOTE

adds synthetic data from vector space with fewer variations.
However, GAN creates more realistic synthetic samples that

V. CONCLUSION AND FUTURE WORK are different from each other. The above facilitates the models

In this study, we present the results and findings from the to learn the SMOTE data and overfit. The experiments with

articles that make up the research on predicting students’ GAN generalize with the models.

academic performance in the fundamentals of programming GAN has proven to adapt to the requirements and

courses using LSTM and EDM. objectives of this research. However, the analysis of the data
In this research, we used 667 records from the funda- generated by GAN was done manually, finding 64 inconsis-

mentals of programming course of the Computer Science tent data, which were eliminated.

degree and related fields from two Peruvian universities. For future research, more data should be considered,

After data cleaning, we achieved 661 records with thirteen and attributes related to competencies and learning styles

attributes comprising our models’ input. should be incorporated. Likewise, it is expected to be
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able to predict a student’s dropout using Graph Neural
Networks (GNN) and incorporate other data balancing
techniques, like undersampling or hybrid methods.
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