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ABSTRACT The cooperative adaptive tracking control based on full states quantization is investigated in this
paper for multiple uncertain surface vessel systems. Firstly, an uncertain surface vessel system model based
on disturbance accelerations is presented. Next, using the quantized system states, a series of cooperative
tracking controllers and adaptive laws are constructed such that the closed-loop system of every follower is
practically stable and the tracking error between every follower and the leader can be adjusted arbitrarily
small by parameter adjustment technique. Finally, a simulation example is given to verify the effectiveness
of the proposed control strategy.

INDEX TERMS Practical stability, states quantization, cooperative control, adaptive control.

I. INTRODUCTION
Surface vessels was broadly used in ocean survey, ocean
exploration, and military missions, then they have attracted
significant interests and attentions from researchers, and
relevant results have been reported ([1], [2], [3]). Note that the
complexity of task, single surface vessel may not effectively
accomplish the desired control objective, researchers begin to
consider multiple surface vessels to realize complex control
task in many cases. For multiple surface vessels, signals
need to be transmitted among multiple vessels by means
of digital platforms, but the bandwidth of data transmission
is limited, then the discontinuous control techniques such
as quantization control have been applied to reduce the
communication load. The so-called quantization is to use a
digital processor (i.e., quantizer) to manage the signal so that
the signal remains at the same level on some intervals, that is,
the continuous signal is transformed into a piecewise constant
signal. This process can be seen as a discontinuous map from
a continuous space to a finite set. An important fact is that
the selection of quantization scheme can relieve the pressure
of network bandwidth, it also can affect the performance of
the system. Compare with the uniform quantizer ([4], [5]),
the logarithmic quantizer ([6], [7]) can improve the accuracy
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of the quantized signal and make up for the lack of uniform
quantizer. It is worth noting that chattering always occur
when the output of quantizer is transferred from one interval
to the next, which may add the burden of signal transmission
and lead to the instability of system. To solve this problem,
hysteresis quantizer was introduced in [8], [9], and [10] to
avoid the chattering signal by the introduction of additional
quantization levels and the dwell time before a new transition.

The quantization control main contains input quantization
and state quantization. For input quantization, [11] con-
structed a new quantizer based on hysteresis quantizer and
uniform quantizer to study the adaptive tracking control
of uncertain nonlinear systems. Reference [12] proposed a
switching quantization mechanism to complete the sliding
mode tracking problem of surface vessel. For surface vessel
with prescribed performance, the trajectory tracking control
was studied in [13] by radial basis neural networks. More
results can be found in [14], [15], [16], and [17]. When
system state cannot be sampled or only the quantized system
state can be obtained, [18] solved the control performance
degradation problem caused by the inherent state quantization
error. [19] investigated the adaptive tracking control ofmobile
robots with quantized states by unknown slippage effects.
The quantization feedback tracking control of mobile robots
with state quantization and input quantization were studied
in [20]. A novel quantized extended state observer is firstly
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proposed in [21] to study the tracking control of autonomous
underwater vehicles. For the trajectory tracking problem of
surface vessel, a quantized state-feedback robust controller
is established in [22]. Due to the number of agents, the
spatial distribution of actuators, limited sensing capability
of sensors, and short wireless communication ranges, it
is difficult that the implementation of centralized control.
Thus, the distributed cooperative control, depending only on
the local information of every agents, is a promising tool
to stabilization multi-agent systems. Designing appropriate
distributed cooperative controllers is generally a challenging
task, especially for multi-agent systems with complex
dynamics, because of the interconnected effect of the agent
dynamics and the interaction graph among agents ([23]).
For the cooperative control of multiple surface vessels

with quantized states, [24] studied the distributed formation
tracking control based on logarithmic quantizer by some
performance functions. The uniform quantizer was used to
solve the H∞ formation control in [25]. However, they didn’t
solve the chattering phenomenon. How should we design
a cooperative state feedback tracking controller for every
follower together with the communication topology is a
challenge when the system states are quantized. Reference
[26] studied the adaptive control problem for nonlinear
uncertain system with quantized states, but this result cannot
be directly applied to the cooperative tracking control
problem for multiple surface vessels. Therefore, how to
avoid indifferentiable caused by quantized system states
and further analyze the performance of the closed-loop
system by Lyapunov function is a difficulty. Based on the
above analysis, the cooperative adaptive tracking control
problem under full states quantization for multiple uncertain
surface vessel systems is discussed in this paper. The main
contributions of this paper are as follows:

1) The disturbance accelerations in Body-fixed frame,
which caused by wind, waves and ocean currents,
is decomposed in the Earth-fixed frame, further the
uncertain surface vessel system model is proposed.

2) For multiple surface vessel systems with one leader,
by vector backstepping method, a number of coopera-
tive controllers and adaptive laws are constructed such
that every follower’s closed-loop system is practically
stable and every follower’s tracking error can be
made enough small by adjusting mutually independent
controller parameters.

The remainder structures of this paper are structured as
follows. Section II provides the model of surface vessel and
the related graph theory. For multiple surface vessel systems
with one leader, the cooperative adaptive tracking control
problem based on quantized system states is researched
in Section III. Section IV analyzes the closed-loop system
performance of every follower. Section V illustrates the
feasibility of proposed control schemes by a simulation
example. Section VI concludes this paper.
Notions: The real n-dimensional space is represented by

Rn, Rn×m stands for the real n × m matrix space and

R+ represents the set of all nonnegative real numbers. |x|
denotes the Euclidean norm of vector x and |X |F is the
Frobenius norm of matrix X . λmax(X ) and λmin(X ) stand for
the maximum and the minimum eigenvalues of matrix X ,
respectively. The family of all functions with continuous k-th
partial derivative is marked as Ck . C1,1(Rn

× [t0,∞);R+)
represents the set of all functions w(x, t) ∈ R+ on Rn

×

[t0,∞) which are C1 in x and C1 in t . For ϑ1, ϑ2 ∈ R, define
ϑ1 ∨ ϑ2 = max{ϑ1, ϑ2}.

II. PRELIMINARIES
Consider the multiple surface vessel systems including N
followers and one leader, where i-th follower’s system model
can be described by{

η̇i = Ji(ψi)vi,
Miv̇i + Ci(vi)vi + Di(vi)vi = τi +MiJTi (ψi)ξi,

(1)

where ηi = (xi, yi, ψi)T denotes the i-th follower’s
displacement, vi = (vi1, vi2, ωi3)T represent its velocity, and
τi = (τi1, τi2, τi3)T is its control input. Mi stands for its
symmetric positive definite inertia matrix, Ci(vi) represents
its Coriolis-centripetal force matrix, Ji(ψi) is its rotation
matrix and satisfies JTi (ψi)Ji(ψi) = Ji(ψi)JTi (ψi) = I , and
Di(vi) satisfies Di(vi) = θi0i(vi) with 0i(vi) ∈ R3×3 being its
damping matrix and θi being a unknown constant, i.e.,

Mi =

mi11 0 0
0 mi22 mi23
0 mi32 mi33

 ,

Ci(vi) =

 0 0 −ci1(vi)
0 0 ci2(vi)

ci1(vi) −ci2(vi) 0

 ,

Ji(ψi) =

 cosψi − sinψi 0
sinψi cosψi 0
0 0 1

 ,

0i(vi) =

 di11(vi) 0 0
0 di22(vi) di23(vi)
0 di32(vi) di33(vi)

 .

Furthermore, ξi = (ξi1, ξi2, ξi3)T is the disturbance
acceleration of i-th follower and satisfies max1≤i≤N |ξi| ≤

K1 with K1 > 0, where ξi1, ξi2 and ξi3 represent
disturbance accelerations along Xi1 axis, Yi1 axis and Zi1 axis,
respectively. Figure 1 shows the decomposition diagram of
disturbance accelerations.

The communication relationship among N followers and
one leader can be expressed by a topology graph G =

(V ,E ,A). V = {0, 1, 2, · · · ,N } is the set of nodes,
where 0 and i(i = 1, · · · ,N ) denote the leader and the
i-th follower, respectively. E ⊆ V × V represents the
set of edges. A = (aij)N×N is the adjacency matrix of
N followers, aij > 0 if and only if node j can send
information to node i, directly, otherwise aij = 0, and we
define that aii = 0. B = diag(b1, b2, · · · , bN ) denotes
the leader-weighted matrix associated with G and if the i-th
follower can directly receive information from the leader,
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FIGURE 1. The decompositions of disturbance accelerations.

then bi > 0, otherwise bi = 0, where i = 1, · · · ,N .
L = D − A is the Laplacian matrix associated with G ,
where D = diag(

∑N
j=1 a1j,

∑N
j=1 a2j, · · · ,

∑N
j=1 aN j) is an

in-degree matrix. In order to ensure that every follower can
receive from the leader’s information, it is supposed that there
exists a path from the leader (the node 0) to every follower
(the node i(i = 1, · · · ,N )) in G .
Remark 1: It is assumed that the motion of surface

vessel on the ocean only has 3 degrees of freedom on the
horizontal plane, then the studied surface vessel system in this
paper only includes surging-direction, swaying-direction and
yawing-direction by [27].

III. COOPERATIVE ADAPTIVE TRACKING CONTROL
BASED ON QUANTIZED STATES
In this section, we consider the cooperative adaptive tracking
control problem for multiple surface vessel systems, where
only quantized system states can be obtained to design
controller τi in (1). Let v̄i = Ji(ψi)vi and τi = ui, we can
rewrite (1) as

η̇i = v̄i,
MiJTi ˙̄vi +MiJ̇Ti v̄i + C̄iv̄i + D̄iv̄i = ui +MiJTi ξi,
pi = ηi, i = 1, · · · ,N ,

(2)

where C̄i = Ci(JTi v̄i)J
T
i , D̄i = Di(JTi v̄i)J

T
i satisfies D̄i =

θi0̄i(v̄i)JTi with 0̄i ∈ R3×3 being a smooth matrix function
and J̇i(ψi) = ψ̇iJi(ψi)S = ωi3Ji(ψi)S, in which S =

(sjk )3×3 = −ST with s21 = −s12 = 1 and sjj = s3k =

sk3 = 0(j = 1, 2, 3, k = 1, 2). Note that only quantized
system states q(ηi) and q(v̄i) are obtained, where q(·) is a
state quantizer, that is to say, the cooperative state feedback
tracking controller ui must be generated by

ui = ui(q(ηi), q(v̄i)). (3)

Remark 2: In this section, we construct the cooperative
adaptive controller only through the quantized states q(ηi),
q(v̄i), the quantizer can be a uniform quantizer, a logarithm
quantizer or a hysteresis quantizer. In fact, the design
method of cooperative adaptive tracking controller based
on quantized states proposed in this paper is applicable
to uniform quantizer, logarithm quantizer and hysteresis
quantizer.

The goal of this section is to construct a series of
cooperative adaptive state feedback tracking controllers
ui(i = 1, · · · ,N ) for multiple surface vessel systems such
that the closed-loop system of every follower is practically
stable, and the output pi(t) of i-th follower can practically
track the leader’s output p0(t), where only quantized system
states can be obtained and |p0(t)| ∨ |ṗ0(t)| ≤ K with
K > 0. Moreover, other signals of every follower’s closed-
loop system are ultimately bounded. Figure 2 gives the flow
diagram of cooperative adaptive tracking control based on
quantized states.

To this end, first of all, define the coordinate transforma-
tions 

ei1 = bi(ηi − p0) +

N∑
k=1

aik (ηi − ηk ),

ei2 = v̄i − αi, i = 1, · · · ,N ,
(4)

where αi ∈ R3(i = 1, · · · ,N ) are stabilizing functions to be
designed.

Step 1: Let Vi1 = eTi1ei1/2, it follows from (2), (4) and
Young’s inequality that

V̇i1 = eTi1(bi(η̇i − ṗ0) +

N∑
k=1

aik (η̇i − η̇k ))

= eTi1(hiv̄i − biṗ0 −

N∑
k=1

aik v̄k )

≤ eTi1(hiαi + hiei2 +
b2i
4dK

ei1 −

N∑
k=1

aikαk )

− eTi1

N∑
k=1

aikek2 + dKK 2, (5)

where dK > 0 is a designed constant and hi = bi +∑N
k=1 aik > 0. Choosing the following stabilizing vector

functions

(αT1 , · · · , α
T
N )T

= −(H⊗ I3)−1((C̄11e11)T , · · · , (C̄N 1eN 1)
T )T , (6)

where C̄i1 = Ci1 + (N /4 + b2i /4dK )I3(i = 1, · · · ,N ) and
Ci1 is a diagonal matrix with positive diagonal elements to be

VOLUME 12, 2024 5119



Q. Xu et al.: Cooperative Adaptive Tracking Control Based on Quantized States

FIGURE 2. Block diagram of cooperative adaptive tracking control based on quantized states.

designed later. (6) can further lead that

αi(η1, · · · , ηN , p0) = −
1
hi
(C̄i1ei1 −

N∑
k=1

aikαk ). (7)

Substituting (7) into (5) yields that

V̇i1 ≤ −eTi1(Ci1 +
N
4
I3)ei1 + hieTi1ei2 − eTi1

N∑
k=1

aikek2

+ dKK 2.

(8)

Step 2: Let Vi2 = Vi1 + eTi2ei2/2 + θ̃2i /2γi, where θ̃i =

θi − θ̂i is the estimation error of θi and γi > 0(i = 1, · · · ,N )
are gain constants. Then,

V̇i2 ≤ eTi2(Ji(−J̇
T
i v̄i −M−1

i C̄iv̄i −M−1
i D̄iv̄i +M−1

i ui

+ JTi ξi) − α̇i) − eTi1(Ci1 +
N
4
I3)ei1 + hieTi1ei2

− eTi1

N∑
k=1

aikek2 + dKK 2
−

1
γi
θ̃i

˙̂
θi

= eTi2(Ji(−J̇
T
i v̄i −M−1

i C̄iv̄i − θ̂iM
−1
i 0̄iJTi v̄i +M−1

i ui

+ JTi ξi) − α̇i + hiei1) − eTi1(Ci1 +
N
4
I3)ei1 + dKK 2

+
cθi
γi
θ̃iθ̂i − θ̃i(

1
γi

˙̂
θ + κi) − eTi1

N∑
k=1

aikek2, (9)

where α̇i =
∑N

k=1 ∂αi/∂ηk v̄k + ∂αi/∂p0ṗ0 and κi =

eTi2M
−1
i 0̄iJTi v̄i+cθi θ̂i/γi with cθi > 0. By Young’s inequality,

we can get that
−eTi1

N∑
k=1

aikek2 ≤
N
4
eTi1ei1 +

N∑
k=1

a2ike
T
k2ek2,

eTi2ξi ≤
1
4d1

eTi2ei2 + d1K 2
1 ,

where d1 > 0 is a designed constant. Then we can rewrite (9)
as

V̇i2 ≤ eTi2(Ji(−J̇
T
i v̄i −M−1

i C̄iv̄i − θ̂iM
−1
i 0̄iJTi v̄i +M−1

i ui

+
1
4d1

ei2) − α̇i + hiei1) − eTi1Ci1ei1 − θ̃i(
1
γi

˙̂
θ + κi)

+
cθi
γi
θ̃iθ̂i +

N∑
k=1

a2ike
T
k2ek2 + dKK 2

+ d1K 2
1 .

(10)

Let

ui = −MiJTi C̄i2ei2 − hiMiJTi ei1 −
1
4d1

Miei2

+MiJTi α̇i +MiJ̇Ti v̄i + C̄iv̄i + θ̂i0̄iJTi v̄i

= σi + Hi + θ̂i0̄iJTi v̄i, i = 1, · · · ,N , (11)

and

˙̂
θi = −γiκi, i = 1, · · · ,N , (12)

where σi = −MiJTi C̄i2ei2−hiMiJTi ei1−Miei2/4d1+MiJTi α̇i
and C̄i2 = Ci2 +

∑N
k=1 a

2
kiI3(i = 1, · · · ,N ) with Ci2 being a

diagonal matrix to be determined later,Hi = MiJ̇Ti v̄i+C̄iv̄i =

ωi3MiST JTi (ψi)v̄i + C̄iv̄i. Then, (10) can be turned into

V̇i2 ≤ −eTi1Ci1ei1 − eTi2C̄i2ei2 + dKK 2
+ d1K 2

1

+
cθi
γi
θ̃iθ̂i +

N∑
k=1

a2ike
T
k2ek2

≤ −eTi1Ci1ei1 − eTi2C̄i2ei2 −
cθi
2γi
θ̃2i +

cθi
2γi
θ2i

+ dKK 2
+ d1K 2

1 +

N∑
k=1

a2ike
T
k2ek2. (13)
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Let Lyapunov function

V =

N∑
i=1

Vi2 =
1
2

N∑
i=1

eTi1ei1 +
1
2

N∑
i=1

eTi2ei2 +

N∑
i=1

1
2γi
θ̃2i ,

then,

r1|ē|2 ≤
1
2

N∑
i=1

eTi1ei1 +
1
2

N∑
i=1

eTi2ei2 +
1

2γmax

N∑
i=1

θ̃2i

≤ V

≤
1
2

N∑
i=1

eTi1ei1 +
1
2

N∑
i=1

eTi2ei2 +
1

2γmin

N∑
i=1

θ̃2i

≤ r2|ē|2, (14)

where r1 = min{1/2, 1/2γmax} with γmax = max1≤i≤N {γi},
r2 = max{1/2, 1/2γmin} with γmin = min1≤i≤N {γi}, ē =

(eT1 , e
T
2 , θ̃

T )T with ej = (eT1j, · · · , e
T
N j)

T , θ̃ = (θ̃1, · · · , θ̃N )T

and j = 1, 2. On the other hand, it follows from (13) that

V̇ ≤ −

N∑
i=1

eTi1Ci1ei1 −

N∑
i=1

eTi2C̄i2ei2 −

N∑
i=1

cθi
2γi
θ̃2i

+

N∑
i=1

N∑
k=1

a2ike
T
k2ek2 + d

≤ −

N∑
i=1

eTi1Ci1ei1 −

N∑
i=1

eTi2(C̄i2 −

N∑
k=1

a2ki)ei2

−

N∑
i=1

cθi
2γi
θ̃2i + d

≤ −

N∑
i=1

eTi1Ci1ei1 −

N∑
i=1

eTi2Ci2ei2 −

N∑
i=1

cθi
2γi
θ̃2i + d

≤ −cV + d, (15)

where d =
∑N

i=1 cθiθ
2
i /2γi + NdKK 2

+ Nd1K 2
1 , c =

min{2c1, 2c2,min1≤i≤N {cθi}} and cj = min1≤i≤N {c∗ij} with
c∗ij being the minimum value of diagonal elements in Cij,
i = 1, · · · ,N , j = 1, 2.

From (14) and (15), we know that the i-th follower’s
closed-loop system (including (1), (2), (4), (6), (11) and (12))
is practically stable. Further, it follows from (15) that

ect (V̇ + cV ) ≤ ectd,

which can further lead that

ectV (t) − ect0V (t0) ≤

∫ t

t0
ecsd ds,

i.e.,

V ≤ e−c(t−t0)V (t0) +
d
c
. (16)

Combining with (14) and (16), we have

r1|ē(t)|2 ≤ V

≤ e−c(t−t0)V (t0) +
d
c

≤ r2|ē(t0)|2e−c(t−t0) +
d
c
, (17)

which yields that lim supt→∞ |ē(t)| ≤ (d/cr1)1/2. This shows
that all signals in every follower’s closed-loop system are
ultimately bounded.

In addition, let e1 = (eT11, e
T
21, · · · , e

T
N 1)

T , then we have

e1 =
(
b1(ηT1 − pT0 ) +

N∑
k=1

a1k (ηT1 − ηTk ), · · · ,

bN (ηTN − pT0 ) +

N∑
k=1

aN k (η
T
N − ηTk )

)T
=

(
(b1 +

N∑
k=1

a1k )(ηT1 − pT0 ) −

N∑
k=1

a1k (ηTk − pT0 ), · · · ,

(bN +

N∑
k=1

aN k )(η
T
N − pT0 ) −

N∑
k=1

aN k (η
T
k − pT0 )

)T
= (H⊗ I3)(η − p0 ⊗ 1N ), (18)

where η = (ηT1 , · · · , η
T
N )T ∈ R3N , 1N = (1, · · · , 1)T ∈

RN andH = B +D −A. From

|e1|2 = |e11|2 + · · · + |eN 1|
2

≤ 2V ,

together with (17) and (18), we can obtain that

|η − p0 ⊗ 1N |
2

≤ |H−1
⊗ I3|2F |e1|2

≤ 2|H−1
⊗ I3|2FV

≤ 2|H−1
⊗ I3|2F (r2|ē(t0)|e

c(t−t0) +
d
c
),

which means that

lim sup
t→∞

|pi(t) − p0(t)| = lim sup
t→∞

|ηi(t) − p0(t)|

≤ lim sup
t→∞

|η − p0 ⊗ 1N |

≤

√
2|H−1 ⊗ I3|2Fd

c
. (19)

Accroding to the definitions of c and d , if we make the
design constants dK and d1 as small as possible and the
design parameters γi(i = 1, · · · ,N ) large enough, the right
hand of (19) can be adjusted arbitrarily small, where these
parameters are independent of each other.

Based on the above analysis, we know that we can
design the cooperative tracking controller (11) and adaptive
law (12) for the i-th follower (i = 1, · · · ,N ) such that
every follower’s closed-loop system is practically stable, all
signals of every follower’s closed-loop system are ultimately
bounded and the tracking error of every follower can be
regulated arbitrarily small by parameter adjustment scheme.

Next, we consider to construct the cooperative adaptive
tracking controller based on quantized system states q(ηi(t))
and q(v̄i(t)). Choose

ui(t) = σ̃i + H̃i + θ̂i0̃iJ̃Ti (q(ψi))q(v̄i)
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= −MiJ̃Ti (q(ψi))C̄i2ẽi2 − hiMiJ̃Ti (q(ψi))ẽi1

−
1
4d1

Miẽi2 +MiJ̃Ti (q(ψi)) ˙̃αi + C̃i(q(v̄i))q(v̄i)

+ q(ωi3)MiST J̃Ti (q(ψi))q(v̄i)

+ θ̂i0̃i(q(v̄i))J̃Ti (q(ψi))q(v̄i), (20)
˙̂
θ = −γiκ̃i, (21)

ẽi1 = bi(q(ηi) − p0) +

N∑
k=1

aik (q(ηi) − q(ηk )), (22)

ẽi2 = q(v̄i) − α̃i, (23)

α̃i == −
1
hi
(C̄i1ẽi1 −

N∑
k=1

aik α̃k ), (24)

κ̃i = ẽTi2M
−1
i 0̃i(q(v̄i))J̃Ti (q(ψi))q(v̄i) + cθi θ̂i/γi, (25)

˙̃αi =

N∑
k=1

∂αi

∂ηk
q(v̄k ) +

∂αi

∂p0
ṗ0, (26)

where σ̃i = −MiJ̃Ti (q(ψi))C̄i2ẽi2 − hiMiJ̃Ti (q(ψi))ẽi1 −

Miẽi2/4d1 + MiJ̃Ti (q(ψi))
˙̃αi, 0̃i = 0̃i(q(v̄i)) and H̃i =

q(ωi3)MiST J̃Ti (q(ψi))q(v̄i) + C̃i(q(v̄i))q(v̄i).
Note that we only use quantized syatem states q(ηi) and

q(v̄i) to replace states ηi and v̄i, respectively, in (4), (6), (11)
and (12), then (20)-(26) can be obviously obtained. In fact,
by the cooperative tracking controller (20) and adaptive
law (21), which are made up of quantized system states q(ηi)
and q(v̄i), we can still guarantee the performance of evey
follower.

IV. STABILITY ANALYSIS
To analyze the stability of every follower’s closed-loop
system and tracking performance of every follower, the
following Lemma 1 is proposed as a preparation and the proof
of Lemma 1 can be found in Appendix.
Lemma 1: For i = 1, · · · ,N , we have

|ẽi1(q(ηi)) − ei1(ηi)| ≤ ϵe1 , (27)

|α̃i(q(ηi)) − ᾱi(ηi)| ≤ ϵα, (28)

|ẽi2(q(ηi), q(v̄i)) − ei2(ηi, v̄i)| ≤ ϵe2 , (29)

|σ̃i(q(ηi), q(v̄i)) − σi(ηi, v̄i)| ≤ ϵσ , (30)

|H̃i(q(v̄i)) − Hi(v̄i)| ≤ ϵH , (31)

|0̃i(q(v̄i))J̃Ti (q(ψi))q(v̄i) − 0̄i(v̄i)JTi (ψi)v̄i| ≤ ϵ0̄, (32)

|κ̃i(q(ηi), q(v̄i)) − κi(ηi, v̄i)| ≤ ϵκ , (33)

where ϵe1 , ϵα , ϵe2 , ϵσ , ϵH , ϵ0̄ and ϵκ are known constants and
depend on G , quantization bound δ and designed parameters.
Theorem 1: For multiple surface vessel systems with N

followers and one leader, and the dynamical equation of every
follower is described by (1), the cooperative adaptive tracking
controller (20) and (21) based on quantized system states
can be constructed and can guarantee that the closed-loop
system ((1), (2) and (20)-(26)) of i-th follower is practically
stable, all the signals in every follower’s closed-loop system

are ultimately bounded, and the tracking error of i-th follower
satisfies

lim sup
t→∞

|pi(t) − p0(t)| ≤

√
2d0|H−1 ⊗ I3|2F

ρ
, (34)

whereH = B+D−A. By parameter adjustment technique,
the right side of (34) can be made arbitrarily small.
Proof: Let Lyapunov function

V =
1
2

N∑
i=1

eTi1ei1 +
1
2

N∑
i=1

eTi2ei2 +

N∑
i=1

1
2γi
θ̃2i ,

together with (13), we have

V̇ ≤

N∑
i=1

eTi2(Ji(−J̇
T
i v̄i −M−1

i C̄iv̄i +M−1
i ui +

ei2
4d1

−M−1
i θ̂i0̄iJTi (ψi)v̄i) − α̇i) −

N∑
i=1

eTi1Ci1ei1

+

N∑
i=1

hieTi1ei2 −

N∑
i=1

θ̃i(
˙̂
θ

γi
+ κi) +

N∑
i=1

cθi
γi
θ̃iθ̂i

+Nd1K 2
1 +NdKK 2

+

N∑
i=1

N∑
k=1

a2ike
T
k2ek2. (35)

Substituting (20) and (21) into (35) yields that

V̇ ≤

N∑
i=1

eTi2(Ji(−J̇
T
i v̄i −M−1

i C̄iv̄i − θ̂iM
−1
i 0̄iJTi (ψi)v̄i

+M−1
i (σ̃i + H̃i + θ̂i0̃iJ̃Ti (q(ψi))q(v̄i) − σi + σi)

+
ei2
4d1

) − α̇i + hiei1) −

N∑
i=1

eTi1Ci1ei1 +

N∑
i=1

cθi
γi
θ̃iθ̂i

−

N∑
i=1

θ̃i(
˙̂
θ

γi
+ κi) +NdKK 2

+Nd1K 2
1

+

N∑
i=1

N∑
k=1

a2ike
T
k2ek2

=

N∑
i=1

eTi2(JiM
−1
i (θ̂i0̃iJ̃Ti (q(ψi))q(v̄i) − θ̂i0̄iJTi (ψi)v̄i))

+

N∑
i=1

eTi2(JiM
−1
i (σ̃i − σi)) +

N∑
i=1

θ̃i(κ̃i − κi)

+

N∑
i=1

eTi2(JiM
−1
i (H̃i − Hi)) +

N∑
i=1

cθi
γi
θ̃iθ̂i +NdKK 2

−

N∑
i=1

eTi1Ci1ēi1 −

N∑
i=1

eTi2Ci2ei2 +Nd1K 2
1 .

(36)
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By (30)-(33) and Young’s inequality, we can obtain that

eTi2(JiM
−1
i (σ̃i − σi)) ≤

1
4
λmax(M̃i)eTi2ei2 + ϵ2σ ,

eTi2(JiM
−1
i (H̃i − Hi)) ≤

1
4
λmax(M̃i)eTi2ei2 + ϵ2H ,

θ̃i(κ̃i − κi) ≤
1
4
θ̃2i + ϵ2κ ,

cθi
γi
θ̃iθ̂i = −

cθi
γi
θ̃2i +

cθi
γi
θ̃iθi ≤ −

cθi
2γi
θ̃2i +

cθi
2γi
θ2i ,

(37)

and

eTi2(JiM
−1
i (θ̂i0̃iJ̃Ti (q(ψi))q(v̄i) − θ̂i0̄iJTi (ψi)v̄i))

≤
1
4
λmax(M̃i)eTi2ei2 + ϵ2

0̄
θ̂2i

≤
1
4
λmax(M̃i)eTi2ei2 + ϵ2

0̄
(θi − θ̃i)2

≤
1
4
λmax(M̃i)eTi2ei2 + ϵ2

0̄
(θ2i + θ̃2i − 2θiθ̃i)

≤
1
4
λmax(M̃i)eTi2ei2 + 2ϵ2

0̄
θ2i + 2ϵ2

0̄
θ̃2i , (38)

where M̃i = M−1
i (M−1

i )T . Let cθi = γiςi(i = 1, · · · ,N )
with ςi > 0 being a designed constant, substituting (37)
and (38) into (36) yields that

V̇ ≤

N∑
i=1

cθi
2γi
θ2i + 2ϵ2

0̄

N∑
i=1

θ2i + ϵ2σ +NdKK 2
+ ϵ2H

+Nd1K 2
1 −

N∑
i=1

eTi1Ci1ei1 −

N∑
i=1

cθi
2γi
θ̃2i +

1
4

N∑
i=1

θ̃2i

−

N∑
i=1

eTi2(Ci2 −
3
4
λmax(M̃i)I3)ei2 + 2ϵ2

0̄

N∑
i=1

θ̃2i + ϵ2κ

≤

N∑
i=1

ςi

2
θ2i +Nd1K 2

1 +NdKK 2
+ 2ϵ2

0̄

N∑
i=1

θ2i

− c1
N∑
i=1

eTi1ei1 − (c2 −
3
4
λ∗
max)

N∑
i=1

eTi2ei2

−

N∑
i=1

(ςi −
1
2

− 4ϵ2
0̄
)γi

1
2γi
θ̃2i + ϵ2σ + ϵ2H + ϵ2κ

≤ −ρV + d0, (39)

where λ∗
max = max1≤i≤N {λmax(M̃i)}, d0 =

∑N
i=1 ςiθ

2
i /2 +

2ϵ2
0̄

∑N
i=1 θ

2
i + NdKK 2

+ Nd1K 2
1 + ϵ2σ + ϵ2H + ϵ2κ , ρ =

min{2c1, 2(c2 − 3λ∗
max/4), ς

∗
} with cj = min1≤i≤N {c∗ij} and

c∗ij being the minimum value of diagonal elements in Cij, j =
1, 2, and ς∗

= min1≤i≤N {(ςi − 1/2 − 4ϵ2
0̄
)γi}.

This means that the closed-loop system of every follower,
including (1), (2), (20)-(26), is practically stable by (16)
and (39).
Furthermore, we can also obtain the following inequality

r1|ē|2 ≤ e−ρ(t−t0)V (t0) +
d0
ρ

≤ r2|ē(t0)|e−ρ(t−t0) +
d0
ρ
,

FIGURE 3. The communication topology graph G .

FIGURE 4. The hysteresis quantizer.

that is to say,

lim sup
t→∞

|ē(t)| ≤

√
d0
r1ρ

, (40)

which implies that all the signals in every follower’s closed-
loop system are ultimately bounded.

Note that

|e1|2 = |e11|2 + · · · + |eN 1|
2

≤ 2V

≤ 2r2|ē(t0)|e−ρ(t−t0) +
2d0
ρ
, (41)

combining with e1 = (H⊗ I3)(η− p0 ⊗ 1N ), we can obtain
that

|η − p0 ⊗ 1N |
2

≤ |H−1
⊗ I3|2F |e1|2

≤ 2|H−1
⊗ I3|2FV

≤ 2(r2|ē(t0)|e−ρ(t−t0) +
d0
ρ
)|H−1

⊗ I3|2F , (42)

which means that

lim sup
t→∞

|pi(t) − p0(t)| = lim sup
t→∞

|ηi(t) − p0(t)|

≤ lim sup
t→∞

|η − p0 ⊗ 1N |

≤

√
2d0|H−1 ⊗ I3|2F

ρ
. (43)
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FIGURE 5. The tracking error and estimation error of every follower.

FIGURE 6. The control input of every follower.

From (43), we know that the tracking error of i-th follower can
be regulated by selecting the appropriate parameters. In other
words, for the definitions of ρ and d0, if wemake the diagonal
elements c∗ij(1 ≤ i ≤ N ; 1 ≤ j ≤ 2) and ςi(1 ≤ i ≤ N )
as large as possible, the right side of (43) can be adjusted
small enough. This means that the output of i-th follower can
practically track the leader’output by parameter adjustment
technique.

The above analysis shows that the cooperative track-
ing controller (20) and adaptive law (21) can make
every follower’s closed-loop system achieve the desired
performance.

V. SIMULATION RESULT
Consider the multiple surface vessel systems with 3
followers and one leader, and the dynamic behavior of
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FIGURE 7. The system state η1 and quantized state q(η1) of the first follower.

FIGURE 8. The system state η2 and quantized state q(η2) of the second follower.

every follower is described by (1). The communication
topology graph G of multiple surface vessel systems is
shown in Figure 3. The elements of every follower’s
Coriolis-centripetal force matrix are given as c11(v1(t) =

14.95v12(t) + 1.49ω13(t), c12(v1(t)) = 14.97v11(t),
c21(v2(t)) = 9.98v22(t)+3.95ω23(t), c22(v2(t)) = 9.99v21(t),

c31(v3(t)) = 15.05v22(t) + 2.97ω23(t) and c32(v3(t)) =

14.99v31(t), and inertia matrix Mi and matrix 0i(vi(t)) are
given by Table 1 and Table 2, respectively.

We use a hysteresis quantizer to verify the performance
of proposed controller. For the i-th follower, the function
relationship between the output of quantizer q(χi) and the
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FIGURE 9. The system state η3 and quantized state q(η3) of the third follower.

FIGURE 10. The system state v1 and quantized state q(v1) of the firrst follower.

TABLE 1. The nonzero elements of every follower’s inertia matrix. TABLE 2. The nonzero elements of every follower’s damping matrix.
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FIGURE 11. The system state v2 and quantized state q(v2) of the second follower.

input χi is given by (44) and the mapping curve between
q(χi) and χi is drawn in Figure 4 with χi ≥ 0, where
χi = (ηTi , v̄

T
i )
T .

q(χi)

=



χijsgn(χi),
χij

1 + δi
< |χi| ≤ χij, χ̇i < 0,

or χij < |χi| ≤
χij

1 − δi
,

χ̇i > 0,

χij(1 + δi)sgn(χi), χij < |χi| ≤
χij

1 − δi
, χ̇i < 0,

or
χij

1 − δi
< |χi| ≤

χij(1 + δi)
1 − δi

,

χ̇i > 0,

0, 0 ≤ |χi| <
χi0

1 + δi
, χ̇i < 0,

or
χi0

1 + δi
≤ |χi| ≤ χi0,

χ̇i > 0,
q(χi(t−)), χ̇i = 0,

(44)

where χij = ϱ
1−j
i χi0 with χi0 > 0 being the size

of dead-zone in hysteresis quantizer (44), ϱi = (1 −

δi)/(1 + δi) > 0 being the quantization density and j =

1, 2, · · · . δi is a quantization parameter and belongs to
(0, 1), and the output of quantizer q(χi) takes the value in
Qi = {0,±χi1,±χi1(1 + δi),±χi2,±χi2(1 + δi), · · · } with
i = 1, 2, 3.
In simulation, we choose quantization parameters χ10 =

χ20 = χ30 = 0.02, δ1 = δ2 = δ3 = 0.05. Further,

it follows from Figure 3 that the leader-weighted matrix
B1 = diag(1, 0, 1) and the adjacency matrix A1 = (aij)3×3
with a21 = 1 and other matrix elements being zero. The
unknown disturbances are defined by ξi(t) = (0.2 sin(0.05t+
0.125π ), 0.1 cos(0.01t), 0.01 sin(0.02t)+ 0.01 cos(0.01t))T ,
where i = 1, 2, 3. The leader’s output p0(t) = (sin(0.02t +

0.25π ), cos(0.02t + π/6), 0.5 sin(0.02t + 0.125π ))T and
three followers’ system initial values η1(0) = (0.8, 1, 0.4)T ,
v1(0) = (0.5, 1.8,−0.1)T , η2(0) = (0.8, 1.5, 0)T , v2(0) =

(−1, 0.2,−0.4)T , η3(0) = (0.9, 1.3, 0.1)T , v3(0) =

(0.2,−0.1, 0.7)T . The design diagonal matrices C11 =

diag(10, 8, 9), C21 = diag(7, 7, 6), C31 = diag(7, 9, 11),
C12 = diag(3, 1, 7), C22 = diag(3, 2, 7), C32 = diag(5, 6, 6)
and the design parameters dK = d1 = 0.05, ς1 = 1.5,
ς2 = 0.8, ς3 = 0.6, γ1 = 0.3, γ2 = 0.4, γ3 = 0.5. The truth
value of θ = (θ1, θ2, θ3)T = (−2, 0.5,−1)T and the initial
value of adaptive update law θ̂ (0) = (θ̂1(0), θ̂2(0), θ̂3(0))T =

(−1.9, 0.6,−0.8)T . Let ē∗i1 = pi − p0 = (ē∗i11, ē
∗

i12, ē
∗

i13)
T

represents the tracking error of i-th follower, where
i = 1, 2, 3.
For the tracking control of multiple surface vessel, the

performances of every follower’s closed-loop system are
given by Figures 5-13. Figure 5 reflects the component of
every follower’s tracking error and estimation error of θi(i =
1, 2, 3). It also follows from Figure 5 that the component
in tracking error and the estimation error of every follower
can be made very small. Figure 6 gives the fluctuations of
quantization control signals. Figures 7-12 show the system
state and quantized state curve of every follower in turn.
Moreover, the tracking trajectory (in X -Y ) of every follower
is given in Figure 13. These Figures show that the cooperative
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FIGURE 12. The system state v3 and quantized state q(v3) of the third follower.

FIGURE 13. The tracking trajectories (in X -Y plane) of three followers.

adaptive control strategy based on quantized states proposed
in this paper is feasible.

VI. CONCLUSION
In this paper, the cooperative adaptive tracking control
based on quantized system states is studied for multiple
surface vessel systems. Firstly, different from the existing
results, the environmental disturbance is introduced into
the dynamic equations of surface vessel in the form of
disturbance accelerations. Further, quantized system sates
and vector backstepping method are used to structure a
series of cooperative tracking controllers and adaptive laws,
which guarantee that the tracking error between the leader
and every follower can be adjusted to be as small as
possible.

We only discuss the tracking control of multiple surface
vessels systems, and collision avoidance and obstacle avoid-
ance are not considered in this paper. The collision avoidance
control and obstacle avoidance control are very practical
problems for multiple surface vessel systems, we will try to
solve this problem in the future.

APPENDIX
PROOF OF LEMMA 1
Proof: According to the sector boundedness of quantizer
(including uniform quantizer and the logarithmic quantizer,
hysteresis quantizer) in [26], we have

|q(ηi) − ηi| ≤ δ, |q(v̄i) − v̄i| ≤ δ, i = 1, · · · ,N ,
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where δ > 0 is a quantization bound. Then, for (27), we have

|ẽi1 − ei1| ≤ hi|ηi − q(ηi)| +

N∑
k=1

aik |ηk − q(ηk )|

≤ δ(hi +
N∑
i=1

aik )

≤ ϵe1 , (45)

where ϵe1 = max1≤i≤N {δ(hi +
∑N

k=1 aik )} with hi = bi +∑N
k=1 aik being positive constants.
Let H−1

= (h̄ik )N×N , we can rewrite (7) as αi =

−
∑N

k=1 h̄ik C̄k1ek1 and (24) as α̃i = −
∑N

k=1 h̄ik C̄k1ẽk1.
For (28), we have

|α̃i − αi| = |

N∑
k=1

h̄ik C̄k1ek1 −

N∑
k=1

h̄ik C̄k1ẽk1|

= |

N∑
k=1

h̄ik C̄k1|F
N∑
k=1

|ek1 − ẽk1|

≤ ϵα, (46)

where ϵα = max1≤i≤N {N ϵe1
∑N

k=1 h̄ik |C̄k1|F }. Further,
for (29), we also have

|ẽi2 − ei2| = |v̄i − αi − q(v̄i) + α̃i|

≤ |v̄i − q(v̄i)| + |α̃i − αi|

≤ ϵe2 , (47)

where ϵe2 = δ + ϵα .
For (30), we can get that

|σ̃i − σi|

= |MiJ̃Ti (q(ψi)) ˙̃αi −MiJ̃Ti (q(ψi))C̄i2ẽi2

− hiMiJ̃Ti (q(ψi))ẽi1 −
1
4d1

Miẽi2 −MiJTi α̇i

+MiJTi C̄i2ei2 + hiMiJTi ei1 +
1
4d1

Miei2|

≤ |Ci2Mi|F |JTi ei2 − J̃Ti (q(ψi))ẽi2|

+ hi|Mi|F |JTi ei1 − J̃Ti (q(ψi))ẽi1|

+
|Mi|F

4d1
|ei2 − ẽi2| + |Mi|F |J̃Ti (q(ηi)) ˙̃αi − JTi α̇i|.

(48)

Note that

|eij|2 ≤
1
r1
e−c(t−t0)V (t0) +

d
cr1

≤
1
r1
V (t0) +

d
cr1

≜M2
0 , (49)

withM0 = (V (t0)/r1 + d/cr1)1/2 and j = 1, 2, then we have

|Ci2Mi|F |JTi ei2 − J̃Ti (q(ψi))ẽi2|

≤ |Ci2Mi|F |JTi − J̃Ti (q(ψi))|F |ei2|

+ |Ci2Mi|F |ei2 − ẽi2||J̃Ti (q(ψi))|F
≤ 2|Ci2Mi|FM0 + |Ci2Mi|Fϵe2

≤ ϵσ1, (50)

where ϵσ1 = max1≤i≤N {2|Ci2Mi|FM0 + |Ci2Mi|Fϵe2}.
In similar way, we have

hi|Mi|F |JTi ei1 − J̃Ti (q(ψi))ẽi1|

= hi|Mi|F |JTi ei1 − J̃Ti (q(ψi))ei1
− J̃Ti (q(ψi))ẽi1 + J̃Ti (q(ψi))ei1|

≤ hi|Mi|F |JTi − J̃Ti (q(ψi))|F |ei1|

+ hi|Mi|F |ei1 − ẽi1||J̃Ti (q(ψi))|F
≤ 2hi|Mi|FM0 + hi|Mi|Fϵe1

≤ ϵσ2, (51)

where ϵσ2 = max1≤i≤N {2hi|Mi|FM0 + hi|Mi|Fϵe1}, and

|Mi|F |J̃Ti (q(ηi)) ˙̃αi − JTi α̇i|

= |Mi|F |JTi α̇i − J̃Ti (q(ηi))α̇i + J̃Ti (q(ηi))α̇i − J̃Ti (q(ψi)) ˙̃αi|

≤ |Mi|F |JTi − J̃Ti (q(ψi))|F |α̇i| + |Mi|F |α̇i − ˙̃αi||J̃Ti (q(ψi))|F

≤ 2|Mi|F |

N∑
k=1

∂αi

∂ηk
v̄k +

∂αi

∂p0
ṗ0| + |

N∑
k=1

∂αi

∂ηk
v̄k +

∂αi

∂p0
ṗ0

−

N∑
k=1

∂αi

∂ηk
q(v̄k ) −

∂αi

∂p0
ṗ0||Mi|F

+N δ|Mi|F |

N∑
k=1

∂αi

∂ηk
|F

≤ 2|Mi|F |

N∑
k=1

∂αi

∂ηk
|F (|ek2| + |αk |) + 2K |Mi|F |

∂αi

∂p0
|F

+N δ|Mi|F |

N∑
k=1

∂αi

∂ηk
|F

≤ 2|Mi|F |

N∑
k=1

∂αi

∂ηk
|F (NM0 +NM0|

N∑
k=1

h̄ik C̄k1|F )

+ 2K |Mi|F |
∂αi

∂p0
|F +N δ|Mi|F |

N∑
k=1

∂αi

∂ηk
|F

≤ ϵσ3, (52)

where |∂αi/∂ηk |F and |∂αi/∂p0|F are known constans
from (7), C̄0 = max1≤i≤N {(1 + |

∑N
k=1 h̄ik C̄k1|F )}, and

ϵσ3 = max1≤i≤N {|Mi|F (2|
∑N

k=1 ∂αi/∂ηk |FNM0C̄0 +

2K |∂αi/∂p0|F + N δ|
∑N

k=1 ∂αi/∂ηk |F )}. Further, we also
have

1
4d1

|Mi|F |ei2 − ẽi2| ≤
1
4d1

|Mi|Fϵe2 ≤ ϵσ4, (53)

where ϵσ4 = max1≤i≤N {ϵe2 |Mi|F/4d1}. Substituting
(50)-(53) into (48) yields that

|σ̃i − σi| ≤ ϵσ1 + ϵσ2 + ϵσ3 + ϵσ4 ≜ ϵσ , (54)

where ϵσ = ϵσ1 + ϵσ2 + ϵσ3 + ϵσ4.
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For (31), we have

|H̃i − Hi|

= |ωi3MiST JTi (ψi)v̄i + C̄iv̄i − q(ωi3)MiST J̃Ti (q(ψi))q(v̄i)

− C̃i(q(v̄i))q(v̄i)|

≤ |ωi3MiST JTi (ψi)v̄i − q(ωi3)MiST J̃Ti (q(ψi))q(v̄i)|

+ |C̄iv̄i − C̃i(q(v̄i))q(v̄i)|, (55)

which leads to

|ωi3MiST JTi (ψi)v̄i − q(ωi3)MiST J̃Ti (q(ψi))q(v̄i)|

= |Mi|F |ωi3ST JTi (ψi)v̄i − ωi3ST J̃Ti (q(ψi))v̄i
− q(ωi3)ST J̃Ti (q(ψi))q(v̄i) + ωi3ST J̃Ti (q(ψi))v̄i|

≤ |Mi|F ||ωi3v̄i||ST JTi (ψi) − ST J̃Ti (q(ψi))|F
+ |Mi|F |ωi3v̄i − q(ωi3)q(v̄i)||ST J̃Ti (q(ψi))|F

≤ 2|Mi|F |M2
0 C̄

2
0 + |Mi|F |v̄i||wi3 − q(ωi3)|

+ |Mi|F |δ + ωi3||v̄i − q(v̄i)|

≤ 2|Mi|FM2
0 C̄

2
0 + δ|Mi|FM0C̄0 + δ|Mi|F (δ +M0C̄0)

≤ ϵH1, (56)

with ϵH1 = max1≤i≤N {|Mi|F
(
2M2

0 C̄
2
0 + δM0C̄0 + δ(δ +

M0C̄0)
)
}, and

|C̄iv̄i − C̃i(q(v̄i))q(v̄i)|

= |C̄iv̄i − C̃i(q(v̄i))v̄i + C̃i(q(v̄i))v̄i − C̃i(q(v̄i))q(v̄i)|

≤ |C̄i − C̃i(q(v̄i))|F |v̄i| + |v̄i − q(v̄i)||δI3 + C̄i|F
≤ |C̄i − C̃i(q(v̄i))|FM0C̄0 + δ(δ + |C̄i|F ). (57)

For |C̄i − C̃i(q(v̄i))|F , we also have

|C̄i − C̃i(q(v̄i))|F
≤ |Ci(vi)JTi (ψi) − C̃i(q(vi))J̃Ti (q(ψi))|F
≤ |JTi (ψi) − J̃Ti (q(ψi))|F |Ci(vi)|F

+ |Ci(vi) − C̃i(q(vi))|F |J̃Ti (q(ψi))|F
≤ 2|Ci(vi)|F + |Ci(vi) − C̃i(q(vi))|F . (58)

From the definition of Ci(vi) in [28], we know that ci1(vi) =

ℓi1vi2 + ℓi2ωi3 and ci2(vi) = ℓi3vi1 with ℓi1, ℓi2 and ℓi3 being
known positive constants, then we can get that

|q(ci1(vi)) − ci1(vi)|

≤ |ℓi1q(vi2) + ℓi2q(ωi3) − ℓi1vi2 − ℓi2ωi3|

≤ ℓi1|q(vi2) − vi2| + ℓi2|q(ωi3) − ωi3|

≤ δ(ℓi1 + ℓi2), (59)

and in similar way, we can easly obtain that other elements
are also bounded in Ci(vi) − C̃i(q(vi)), which means that
|Ci(vi)−C̃i(q(vi))|F is bounded. From the definitions ofCi(vi)
and C̄i = Ci(vi)JTi , combining with

|vi| ≤ |Ji(ψi)|F |v̄i| ≤ |ei2 + αi| ≤ M0C̄0, (60)

the boundedness of |Ci(vi)|F and |C̄i|F can be obtained in (57)
and (58), respectively. Then, we have

|C̄iv̄i − C̃i(q(v̄i))q(v̄i)| ≤ ϵi1M0C̄0 + δ(δ + ϵi2)

≤ ϵH2, (61)

where ϵH2 = max1≤i≤N {ϵi1M0C̄0+δ
2
+δϵi2)}with ϵi1 being

the boundary of |C̄i − C̃i(q(v̄i))|F and ϵi2 being the boundary
of |C̄i|F . Substituting (56) and (61) into (55) yields that

|H̃i − Hi| ≤ ϵH1 + ϵH2 ≜ ϵH , (62)

where ϵH = ϵH1 + ϵH2.
For (32), we have

|0̄iJTi (ψi)v̄i − 0̃iJ̃Ti (q(ψi))q(v̄i)|

≤ |0̄iJTi (ψi)v̄i − 0̄iJ̃Ti (q(ψi))q(v̄i)|

+ |0̄iJ̃Ti (q(ψi))q(v̄i) − 0̃iJ̃Ti (q(ψi))q(v̄i)|

≤ |0̄i|F |JTi (ψi)v̄i − J̃Ti (q(ψi))v̄i + J̃Ti (q(ψi))v̄i
− J̃Ti (q(ψi))q(v̄i)| + |0̄i − 0̃i|F |J̃Ti (q(ψi))|F |q(v̄i)|

≤ |0̄i|F |JTi (ψi) − J̃Ti (q(ψi))|F |v̄i| + |0̄i − 0̃i|F |δI3 + v̄i|

+ |0̄i|F |v̄i − q(v̄i)||J̃Ti (q(ψi))|F
≤ 2|0̄i|FM0C̄0 + δ|0̄i|F + δ|0̄i − 0̃i|F + |0̄i − 0̃i|FM0C̄0

≤ ϵ0̄, (63)

where ϵ0̄ = max1≤i≤N {2ϵi3M0C̄0 + δϵi3 + δϵi4 + ϵi4M0C̄0}

with ϵi3 being the boundary of |0̄i|F and ϵi2 being the
boundary of |0̄i − 0̃i|F . According to the definition for
damping matrix in [28], the proof for the boundedness of
|0̄i|F and |0̄i − 0̃i|F are similar to (59), then the calculation
process is omitted.

For (33), from (63), we can get that

|κ̃i − κi|

≤ |ẽTi2M
−1
i 0̃i(q(v̄i))J̃Ti (q(ψi))q(v̄i) − ẽTi2M

−1
i 0̄i(v̄i)JTi (ψi)v̄i|

+ |ẽTi2M
−1
i 0̄i(v̄i)JTi (ψi)v̄i − eTi2M

−1
i 0̄i(v̄i)JTi (ψi)v̄i|

≤ ϵ0̄|q(v̄i) +

N∑
k=1

h̄ik C̄k1ẽk1| + ϵe2 |M
−1
i |F |JTi (ψi)|F |0̄i(v̄i)v̄i|

≤ ϵ0̄|δI3 + v̄i| + ϵ0̄|

N∑
k=1

h̄ik C̄k1(δI3 + ek1)|

+ ϵe2 |M
−1
i |F |0̄i(v̄i)v̄i|

≤ δϵ0̄ + δϵ0̄M0C̄0 + δϵ0̄|

N∑
k=1

h̄ik C̄k1|F

+NM0ϵ0̄|

N∑
k=1

h̄ik C̄k1|F + ϵe2ϵi5|M
−1
i |F

≤ ϵκ , (64)

where ϵκ = max1≤i≤N {ϵ0̄|
∑N

k=1 h̄ik C̄k1|F (δ + NM0) +

ϵe2ϵi5|M
−1
i |F + δϵ0̄(1 + M0C̄0)} with the boundary ϵi5 of

|0̄i(v̄i)v̄i|.
So far, we have completed the proof of Lemma 1.

REFERENCES
[1] X. Hu, X. J. Wei, J. Han, and X. D. Zhu, ‘‘Adaptive disturbance estimation

and cancellation for ships under thruster saturation,’’ Int. J. Robust
Nonlinear Control, vol. 30, no. 13, pp. 5004–5020, 2020.

5130 VOLUME 12, 2024



Q. Xu et al.: Cooperative Adaptive Tracking Control Based on Quantized States

[2] X. Hu, X. Wei, G. Zhu, and D. Wu, ‘‘Adaptive synchronization for surface
vessels with disturbances and saturated thruster dynamics,’’ Ocean Eng.,
vol. 216, Nov. 2020, Art. no. 107920.

[3] X. Hu, Q. Gong, J. Han, X. Zhu, H. Yang, and M. Wang, ‘‘Dynamic
event-triggered composite anti-disturbance fault-tolerant tracking control
for ships with disturbances and actuator faults,’’ Ocean Eng., vol. 280,
Jul. 2023, Art. no. 114662.

[4] D. F. Delchamps, ‘‘Stabilizing a linear system with quantized state
feedback,’’ IEEE Trans. Autom. Control, vol. 35, no. 8, pp. 916–924,
Aug. 1990.

[5] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, ‘‘Average consensus
on networks with quantized communication,’’ Int. J. Robust Nonlinear
Control, vol. 19, no. 16, pp. 1787–1816, Nov. 2009.

[6] M. Fu and L. Xie, ‘‘The sector bound approach to quantized feedback
control,’’ IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1698–1711,
Nov. 2005.

[7] C. De Persis, ‘‘Robust stabilization of nonlinear systems by quantized and
ternary control,’’ Syst. Control Lett., vol. 58, no. 8, pp. 602–608, Aug. 2009.

[8] T. Hayakawa, H. Ishii, and K. Tsumura, ‘‘Adaptive quantized control
for nonlinear uncertain systems,’’ Syst. Control Lett., vol. 58, no. 9,
pp. 625–632, Sep. 2009.

[9] T. Wang, Z. Yu, and Z. Li, ‘‘Adaptive tracking control for quantized
nonlinear systems via backstepping design technique,’’ J. Franklin Inst.,
vol. 355, no. 5, pp. 2631–2644, Mar. 2018.

[10] B. Xu, Y. Liang, Y.-X. Li, and Z. Hou, ‘‘Adaptive command filtered fixed-
time control of nonlinear systems with input quantization,’’ Appl. Math.
Comput., vol. 427, Aug. 2022, Art. no. 127186.

[11] L. Xing, C. Wen, Y. Zhu, H. Su, and Z. Liu, ‘‘Output feedback control for
uncertain nonlinear systems with input quantization,’’ Automatica, vol. 65,
pp. 191–202, Mar. 2016.

[12] T. Jiang, Y. Yan, D. Wu, S. Yu, and T. Li, ‘‘Neural network based
adaptive sliding mode tracking control of autonomous surface vehicles
with input quantization and saturation,’’ Ocean Eng., vol. 265, Dec. 2022,
Art. no. 112505.

[13] K. Jiang, L. Mao, Y. Su, and Y. Zheng, ‘‘Trajectory tracking control for
underactuated USV with prescribed performance and input quantization,’’
Symmetry, vol. 13, no. 11, p. 2208, Nov. 2021.

[14] J. Zhou, C. Wen, and G. Yang, ‘‘Adaptive backstepping stabilization of
nonlinear uncertain systems with quantized input signal,’’ IEEE Trans.
Autom. Control, vol. 59, no. 2, pp. 460–464, Feb. 2014.

[15] J. Zhou and C.Wen, ‘‘Adaptive backstepping control of uncertain nonlinear
systems with input quantization,’’ presented at the Proc. 52nd IEEE Conf.
Decis. Control, Florence, Italy, Dec. 2013, pp. 5571–5576.

[16] C. Wang, C. Wen, Y. Lin, and W. Wang, ‘‘Decentralized adaptive
tracking control for a class of interconnected nonlinear systems with input
quantization,’’ Automatica, vol. 81, pp. 359–368, Jul. 2017.

[17] E. Aslmostafa, S. Ghaemi, M. A. Badamchizadeh, and A. R. Ghiasi,
‘‘Adaptive backstepping quantized control for a class of unknown
nonlinear systems,’’ ISA Trans., vol. 125, pp. 146–155, Jun. 2022.

[18] T. Zanma, T. Ohtsuka, and K.-Z. Liu, ‘‘Set-based state estimation in
quantized state feedback control systems with quantized measurements,’’
IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 550–557, Mar. 2020.

[19] S. J. Yoo and B. S. Park, ‘‘Quantized-states-based adaptive control against
unknown slippage effects of uncertain mobile robots with input and
state quantization,’’ Nonlinear Anal., Hybrid Syst., vol. 42, Nov. 2021,
Art. no. 101077.

[20] S. J. Yoo and B. S. Park, ‘‘Quantized feedback control strategy for
tracking performance guarantee of nonholonomic mobile robots with
uncertain nonlinear dynamics,’’ Appl. Math. Comput., vol. 407, Oct. 2021,
Art. no. 126349.

[21] B. Zhou, Y. Su, B. Huang, W. Wang, and E. Zhang, ‘‘Trajectory
tracking control for autonomous underwater vehicles under quantized
state feedback and ocean disturbances,’’ Ocean Eng., vol. 256, Jul. 2022,
Art. no. 111500.

[22] B. S. Park and S. J. Yoo, ‘‘Robust trajectory tracking with adjustable per-
formance of underactuated surface vessels via quantized state feedback,’’
Ocean Eng., vol. 246, Feb. 2022, Art. no. 110475.

[23] Z. K. Li and Z. S. Duan, Cooperative Control of Multi-Agent Systems: A
Consensus Region Approach. Boca Raton, FL, USA: CRC Press, 2014,
pp. 123–135.

[24] H. Liu, Y. Li, X. Tian, and Q. Mai, ‘‘Event-triggered predefined-time H∞

formation control for multiple underactuated surface vessels with error
constraints and input quantization,’’ Ocean Eng., vol. 277, Jun. 2023,
Art. no. 114294.

[25] S. J. Yoo and B. S. Park, ‘‘Approximation-free design for distributed forma-
tion tracking of networked uncertain underactuated surface vessels under
fully-quantized environment,’’ Nonlinear Dyn., vol. 111, pp. 6411–6430,
Apr. 2023.

[26] J. Zhou, C. Wen, W. Wang, and F. Yang, ‘‘Adaptive backstepping control
of nonlinear uncertain systems with quantized states,’’ IEEE Trans. Autom.
Control, vol. 64, no. 11, pp. 4756–4763, Nov. 2019.

[27] T. I. Fossen, Marine Control Systems Guidance, Navigation and Control
of Ships, Rigs and Underwater Vehicles. Trondheim, Norway: Marine
Cybernetics, 2002.

[28] L. Yao, Q. Xu, L. Feng, and Z. Wu, ‘‘Adaptive cooperative tracking control
for multiple surface vessel systemswith random disturbance,’’Ocean Eng.,
vol. 286, Oct. 2023, Art. no. 115528.

QINXUE XU received the B.S. degree from
Yantai University, Yantai, China, in 2021, where
he is currently pursuing the M.S. degree. His
research interests include multi-agent systems and
cooperative control.

LIKANG FENG received the Ph.D. degree in
control theory and control engineering from the
Shandong University of Science and Technology,
Qingdao, China, in 2021. He is currently a
Lecturer with the School of Mathematics and
Information Sciences, Yantai University, Yantai,
China. His research interests include stochastic
nonlinear systems and impulsive systems.

LIQIANG YAO received the Ph.D. degree in
control theory and control engineering from the
Shandong University of Science and Technology,
Qingdao, China, in 2020. He is currently an Asso-
ciate Professor with the School of Mathematics
and Information Sciences, Yantai University, Yan-
tai, China. His research interests include stochastic
nonlinear systems and multi-agent systems.

VOLUME 12, 2024 5131


