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ABSTRACT Data clustering is an unsupervised learning task that has been extensively studied, given its
wide applicability in various domains. Traditional algorithms often struggle to achieve a balance between
exploration and exploitation, leading to sub-optimal solutions. This paper presents a novel hybrid algorithm
named SA-PSO-GK++ that synergistically combines Particle Swarm Optimization (PSO), K-means++,
Simulated Annealing (SA), and Gaussian Estimation of Distribution to tackle this issue effectively. The
proposed SA-PSO-GK++ aims to overcome the drawbacks of existing methods by leveraging the strengths
of each individual algorithm. The K-means++ initialization reduces the risk of poor initial centroids, while
PSO aids in efficient search space exploration. GED provides a statistical model of the particle space,
enabling the algorithm to generate new potential solutions that are statistically guided by the current best
solutions. Additionally, the incorporation of Simulated Annealing allows the algorithm to escape local
minima, thereby enhancing its global search capability. We evaluate the effectiveness of SA-PSO-GK++

using benchmark datasets from the UCI Machine Learning Repository, including the Iris, Breast cancer,
Heart datasets and contraceptive method choice datasets. The proposed method outperforms conventional
and some of the state-of-the-art hybrid clustering algorithms in terms of sum of euclidean distance,
normalized index, and error rates. These advantages make SA-PSO-GK++ a compelling option for a wide
range of clustering applications. The results offer promising avenues for future research in optimizing and
applying this innovative clustering technique in diverse domains.

INDEX TERMS Swarm intelligence, particle swarm optimization (PSO), K-means, K-means++, simulated
annealing, Gaussian estimation, data clustering, big data, cluster convergence, clustering metrics, local
optima.

I. INTRODUCTION
Clustering remains one of the foundational techniques in
data analysis [1], a bridge to understanding the intrinsic
structures and relationships that pervade datasets without the
guideposts of labeled examples [2]. As a key player in unsu-
pervised learning, clustering provides a vantage point from
which patterns emerge and unknown classifications become
discernible [3]. The K-means algorithm, since its inception,
has carved a significant niche in clustering paradigms [4].
Appreciated for its simplicity and efficiency, K-means has
a wide gamut of applications, from market segmentation to
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image processing [5]. However, K-means is not devoid of
shortcomings. It has an inherent sensitivity to initial centroid
placement and, unfortunately, often finds itself ensnared in
local optima, yielding sub-optimal cluster configurations [6].
The K-means++ initialization method was developed to
counteract some of these limitations, ensuring a smarter ini-
tialization process that often results in faster convergence
and more accurate cluster assignments [7]and provides good
initial centers [8]. While traditional techniques have their
merits, in the last two decades researchers have turned to
swarm intelligence algorithms as solutions for clustering [9],
[15], [43]. This includes approaches like PSO clustering [10],
Firefly clustering [11], and Bat clustering [12] among oth-
ers. Swarm intelligence, revered in the optimization domain,
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takes inspiration from nature, particularly from species that
naturally swarm, such as ants, fireflies, and bees [13]. The
behaviors of these species, driven bymotives like food search,
social bonding, and obstacle avoidance, hint at inherent opti-
mization strategies [14]. It is observed that clustering through
swarm intelligence has an increased tendency to bypass local
optima, making it a compelling choice for addressing cluster-
ing issues. To date, a variety of swarm intelligence techniques
have been employed to tackle clustering challenges [15].
In essence, PSO is a heuristic optimization technique that
harnesses collective intelligence, adjusting its search patterns
based on the experience of both individual particles and the
entire swarm [10], [44]. PSO’s metaheuristic nature makes
it a potent tool against the trappings of local optima [16],
Particle Swarm Optimization (PSO) has also distinguished
itself as a superior method in the realm of clustering, espe-
cially in handling complex medical datasets, when compared
to other swarm intelligence algorithms like Bat algorithm in
clustering context [15]. The inherent flexibility and simplicity
of PSO give it an edge in exploring high-dimensional data
spaces [22] commonly found in medical dataset. Moreover,
studies have shown that PSO’s collaborative search mecha-
nism [24] is more adept at avoiding local optima, a common
challenge in complex clustering tasks, compared to individ-
ualistic strategies employed by other swarm algorithms [54].
Despite the widespread adoption of K-means algorithm [39]
in various clustering tasks, the K-means algorithm exhibits
notable limitations, particularly in handling complex datasets.
First and foremost, K-means is inherently sensitive to the
initial choice of centroids, often leading to suboptimal clus-
tering solutions [2] as limitation that has long plagued
traditional clustering algorithms like K-means, we favored
K-means++ over the conventional K-means based on its
established advantages. K-means++ provides a systematic
and probability-based approach to centroid initialization [28].
Furthermore, it offers quicker convergence [61], is adept at
handling data clusters of diverse sizes and densities, and its
superior performance is empirically validated in numerous
contexts [58]. Thus, its inclusion in our methodology is a
strategic choice to ensure enhanced accuracy and efficiency
in clustering results.

Combining the robustness of PSO with traditional clus-
tering has been a topic of significant research interest [19].
By amalgamating the deep search capabilities of PSO
with clustering algorithms, researchers aim to harness the
strengths of both worlds, yielding enhanced stability, accu-
racy, and performance [17], [18], [19], [20]. However, as with
all methods, the fusion of PSO and K-means has its chal-
lenges, particularly in handling high-dimensional data and
ensuring a balance between exploration and exploitation [21].
Among the algorithms integrated into our hybrid model

is Simulated Annealing (SA), a probabilistic optimization
algorithm inspired by the annealing process in metal-
lurgy [49]. SA is renowned for its capability to escape local
optima in the search space, making it an essential compo-
nent for optimizing complex problems [50]. Unlike gradient

descent methods, which are prone to getting stuck in local
minima, SA allows for a certain probability to accept worse
solutions at each step, thereby promoting exploration [51].
This is particularly beneficial when dealing with multi-modal
landscapes where local optima are abundant [50]. By incor-
porating SA into our hybrid model, we aim to address one of
the major pitfalls in clustering algorithms: the susceptibility
to get trapped in locally optimal solutions. Through SA,
the algorithm gains the ability to leap out of local optima,
thereby increasing the likelihood of converging to a global
optimum [52]. GED operates by modeling the distribution of
potential solutions in the search space, providing a statistical
foundation for generating new solutions.

In light of these observations, this study proposes
an advanced PSO-K-means++ clustering approach SA-
PSO-GK++, accentuated with Gaussian Estimation of
Distribution and Simulated Annealing techniques. The
aim is to maximize the exploration capabilities of PSO,
ensure rapid convergence through K-means++, and ulti-
mately deliver a more comprehensive, efficient clustering
solution.

The primary objective of this research is to devise
an enhanced clustering approach that addresses the pit-
falls of traditional methods, particularly in handling
high-dimensional data and achieving the right balance
between exploration and exploitation. This innovation aims
to advance clustering capabilities, avoid trapping in local
optima, offering better accuracy, efficiency, and robustness,
especially in medical datasets with intricate structures and
relationships.

In our proposed SA-PSO-GK++ method, we’ve meticu-
lously addressed several fundamental clustering challenges.
The integration of K-means++ tackles the issue of initial-
ization sensitivity, ensuring that our method starts with a
robust set of initial centroids. Our adoption of Particle Swarm
Optimization (PSO) and Simulated Annealing (SA) jointly
work towards circumventing the pitfalls of local optima,
enhancing the global search capability of our algorithm.
Additionally, the Gaussian Estimation of Distribution (GED)
within our hybrid mechanism adeptly handles the challenges
of high dimensionality by modeling the underlying distribu-
tion of particle space, allowing for effective dimensionality
reduction. The combined strength of these components
assures scalability, reduced susceptibility to noise and out-
liers, and the capability to handle clusters of diverse shapes
and sizes.

The main clustering challenges we are solving are:

• Escape from Local Minima:

The combination of simulated annealing (SA) with PSO is
designed to avoid getting trapped in local optima. SA has a
probabilistic mechanism that allows it to accept worse solu-
tions temporarily, which can lead to escaping local optima.
In the context of clustering, this means the ability to find
better cluster centroids even if initially stuck in a less-optimal
configuration.

12502 VOLUME 12, 2024



A. Abdo et al.: SA-PSO-GK++: A New Hybrid Clustering Approach for Analyzing Medical Data

• Scalability and Adaptability:

Using K-means++ for initialization can provide benefits
in terms of scalability. The method’s ability to spread out
initial centroids reduces the number of iterations needed for
convergence, making it better suited for larger datasets. Fur-
thermore, the hybrid nature of the algorithm means it can
potentially adapt to a variety of data shapes and distributions
better than an algorithm that uses a singular approach.

The Gaussian Estimation of Distribution operates by mod-
eling the distribution of potential solutions in the search
space, providing a statistical foundation for generating new
solutions [55]. This approach is particularly effective in guid-
ing the search process towards promising regions, thereby
improving the algorithm’s convergence rate and robust-
ness and is an integral component of the SA-PSO-GK++

algorithm.
The significant contributions of this paper are:

• Introducing the SA-PSO-GK++, approach, a novel
amalgamation of Particle Swarm Optimization (PSO)
and K-means++ with Gaussian Estimation of Distribu-
tion and Simulated Annealing techniques

• Elucidating the individual and combined strengths of
these techniques in tackling the above clustering chal-
lenges and ensuring optimal cluster assignments.

• Thoroughly evaluating the proposed algorithm’s per-
formance against conventional clustering techniques,
drawing insights from its efficacy, and show casing its
superiority.

The paper unfolds as follows: Section II delves deep into
the relevant literature, contextualizing the study within the
broader realm of clustering research. Section III offers a
detailed exposition on the fundamentals of PSO and K-
means++, simulated annealing and Gaussian estimation
of distribution followed by an intricate description of the
SA-PSO-GK++, methodology. Section IV dives into the
experimental design and datasets employed. Section V show-
cases the results, providing a comparative analysis with
traditional clustering methods. The conclusion in Section VI
wraps up the findings and presents avenues for future explo-
ration in this domain.

II. RELATED WORK
Clustering, as a fundamental process in data analysis, has
been the subject of extensive research. Traditional algo-
rithms like K-means are popular for their simplicity and
efficiency. However, they suffer from issues like convergence
to local optima and sensitivity to initialization. To overcome
these challenges, researchers have investigated the fusion of
clustering with optimization algorithms, particularly Particle
Swarm Optimization (PSO).

In 2003 Van der Merwe and Engelbrecht [10] examined
the potential of Particle Swarm Optimization (PSO) for data
clustering, comparing standard and hybrid PSO strategies
integrated with K-means results. Their findings underscored
the superiority of PSO-based techniques over traditional

K-means in terms of convergence, quantization errors, and
intra/inter-cluster distances. The authors signaled intentions
to refine the fitness function for more precise distance met-
rics optimization and to handle high-dimensional datasets
more robustly. Moreover, the potential to deduce optimal
cluster count dynamically with PSO was also hinted at [22].
They showcased PSO’s ability to efficiently locate optimal or
near-optimal cluster centers, offering a robust alternative to
traditional methods.

In 2005 Omran et al. [23], introduced an innovative image
clustering methodology utilizing Particle Swarm Optimiza-
tion (PSO). Their approach focused on optimizing quan-
tization errors, and intra-cluster distances while enhancing
inter-cluster distances. The study juxtaposed the performance
of a global best (gbest) PSO and a GCPSO algorithmwith tra-
ditional clustering algorithms such as K-means, FCM, KHM,
H2, and GA. Notably, the PSO-driven techniques typically
showcased enhanced inter- and intra-cluster distances, main-
taining comparable quantization errors to the other methods.

In 2008 Ahmadyfard and Modares [17] tackled the data
clustering challenge, proposing an innovative hybrid method
that merges particle swarm optimization (PSO) and the
K-means algorithm. By harnessing the strengths of both
approaches, this new method avoids their individual limi-
tations. The PSO, adept at thorough global search during
initial stages, is employed in the PSO-K-means method’s
early phase. When the swarm particles are nearing the global
optimum, the algorithm transitions to K-means due to its
faster convergence capability. This switch is determined using
a fitness function. Experiments on both real and synthetic
datasets demonstrated that this hybrid method surpasses the
individual performance of both K-means and PSO clustering.

In 2014 Prabha and Visalakshi [18] introduced a Min-max
normalization method for value conversion of attributes
into specific ranges. This study reveals that pre-clustering
normalization yields higher-quality clusters. The proposed
model facilitates optimal fitness function identification via
normalization in unsupervised clustering. Testing on six
numerical benchmarks showcased its prowess compared to
existing models. This Improved PSO-based K-means clus-
tering approach offers the potential for selecting the optimal
number of clusters.

In 2014 Hüseyin Haklıand Harun Uğuz [57] introduced
an innovative iteration of the Particle Swarm Optimization
(PSO) algorithm, augmented with Levy flight, and aptly
named LFPSO. This modification addresses critical limita-
tions of the traditional PSO, particularly its susceptibility
to premature convergence and entrapment in local minima,
thereby inhibiting efficient global search capabilities.

In 2016 Jensi and Wiselin [56] Their proposed method,
termed PSOLF (Particle Swarm Optimization with Levy
Flight), extended the work of [57] aims to augment global
search capabilities and bolster convergence efficiency. The
distinctive aspect of PSOLF lies in its method of updating
particle velocity using Levy flight, leading to an innovative
position update mechanism.
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In 2016 Wang and Sun [48] leveraged the capability of
SA to escape local minima and PSO’s global optimization
strength to address the shortcomings of the traditional K-
means approach. Their experimental results indicated that
this hybrid SA-PSO algorithm exhibited improved global
convergence when compared to a PSO-based K-means
algorithm [Reference Number]. This work is particularly
relevant as it provides valuable insights into the efficacy
of incorporating SA into PSO-based clustering algorithms,
laying the groundwork for further innovations such as the SA-
PSO-GK++ algorithm.

In 2019 Gong et al. [15] ensured that using PSO for clus-
tering is better than other swarm algorithms, they made an
extensive comparative analysis focusing on clustering algo-
rithms derived from swarm intelligence principles, it was
observed that Particle Swarm Optimization (PSO) and Bat
Algorithm outperformed others in terms of operational
efficiency. This study, which evaluated Cuckoo Cluster-
ing, Firefly Clustering, PSO, and Bat Algorithm, found
that Cuckoo Clustering was markedly slower, especially
when compared to PSO. Furthermore, Firefly Cluster-
ing tended to lag in scenarios involving a larger number
of agents.

In 2019 Gupta et al. [47] developed a hybrid PSO-GA
algorithm for medical data clustering, leveraging both Par-
ticle Swarm Optimisation (PSO) and Genetic Algorithm
(GA). Their approach utilized GA for global search initially,
followed by PSO for local search. Tested on six medical
datasets including breast cancer from the UCI machine learn-
ing repository, the hybrid PSO-GA demonstrated superiority
over traditional methods like K-means, standalone PSO, and
GA. The study confirmed the hybrid PSO-GA’s effectiveness
in clustering than regular PSO, with potential applications
in solving classical mathematical problems, signifying a
promising direction in medical data analysis.

In 2020 Ratanavilisagul [26] innovatively enhanced the
widely adopted hybrid clustering technique, which combines
Particle SwarmOptimization (PSO) and k-means (KM). Rec-
ognizing the limitations of KM and PSO-KM’s tendency to
trap in local optima, the paper introduces mutation operations
for PSO particles to overcome these challenges.

In 2020 Gao et al. [20] extended the work of [56] and
[57] and proposed a fusion of Particle Swarm Optimization
(PSO) with the k-means clustering technique. What sets their
approach apart is the utilization of the Gaussian Estimation of
Distribution Method combined with the Lévy Flight mech-
anism. This combination intends to harness the exploratory
power of Lévy Flight with the distribution-driven search
capabilities of Gaussian Estimation. As a result, their hybrid
technique demonstrated enhanced optimization performance
and robustness in clustering tasks.

In 2020 Paul et al. [59] introduced an advanced data
clustering methodology by integrating Particle Swarm Opti-
mization (PSO) with the traditional K-means algorithm. This
approach, known as MfPSO, leverages the global search
capabilities of PSO to address the limitations typically

associated with K-means, particularly its tendency to pro-
duce locally optimal solutions. Their empirical analysis,
which compared the proposed MfPSO algorithm against the
standard K-means and other contemporary PSO-based algo-
rithms, demonstrated a marked improvement in clustering
performance across various metrics.

In a study by Hua 2021 [27], a hybrid clustering
approach was explored that merged swarm intelligence algo-
rithms with K-means. Recognizing that hybrid algorithms,
such as the hybrid particle swarm optimization cluster-
ing algorithm and others like the hybrid genetic clustering
algorithm, have gained prominence in clustering domains.
To address this, the researcher integrated the particle swarm
algorithm with K-means++ (termed PSOK-means++),
Hua introduced the empty-cluster-reassignment technique,
refining PSOK-means++ into EPSOK-means++. Build-
ing on this, quantum computing theory was incorpo-
rated, culminating in the QEPSOK-means++ clustering
algorithm.

In 2022 their Krishna and colleagues [60] presented a
hybrid clustering algorithm that synergistically combines
Particle Swarm Optimization (PSO) with the K-means
algorithm. This research addresses the challenge of optimiz-
ing both global and local search strategies in clustering tasks.
The proposed hybrid algorithm capitalizes on the global
search capability of PSO and the local efficiency of the K-
means model, aiming to enhance both accuracy and speed in
clustering operations. The inertia weight, in particular, plays
a pivotal role in this approach.

In 2023, Gu et al. [58] started applying PSO-K-means++

on clustering for privacy protection.they proposed an Particle
Swarm Optimization (PSO) based K-means++ clustering
method, which integrates multiple differential privacy pro-
tectionmechanisms. By applying the K-means++ algorithm,
the method achieves superior initial clustering centers, which
are then refined using differential privacy techniques and
incorporating Gaussian kernel functions to allocate privacy
and add noise. The final optimization is carried out using the
PSO algorithm.

However, as datasets have grown both in size and com-
plexity, the need for advanced optimization techniques has
become evident. Herein lies the motivation for our work
by incorporating Gaussian Estimation of Distribution (GED)
methods and Simulated Annealing strategy into the PSO-
K-means++ framework, we aim to tackle the nuances of
contemporary datasets.

Our novel approach, SA-PSO-GK++, is designed to
offer an amalgamation of robust initialization, adaptive
optimization, and enhanced exploration in the search
space, addressing many of the challenges presented by
predecessors.

III. PROBLEM DEFINITION
Data clustering is a fundamental task in machine learn-
ing, statistics, and data mining. The objective is to par-
tition a set of data points into distinct groups, based on

12504 VOLUME 12, 2024



A. Abdo et al.: SA-PSO-GK++: A New Hybrid Clustering Approach for Analyzing Medical Data

some measure of similarity. However, conventional clus-
tering algorithms like K-means suffer from limitations
such as sensitivity to initial centroids and a propensity
to get stuck in local optima. Various techniques have
been proposed to address these issues, including Particle
Swarm Optimization (PSO), Levy Flights [25], K-means,
K-means++, genetic algorithm and Gaussian Estimation of
Distribution.

Nevertheless, the current state-of-the-art approaches have
room for improvement in terms of computational efficiency,
robustness, and global optimization capabilities. This study
aims to tackle these shortcomings by introducing a novel
hybrid clustering algorithm, SA-PSO-GK++, that combines
the strengths of Particle Swarm Optimization, K-means++,
Simulated Annealing, and Gaussian Estimation of Distribu-
tion.

The proposed method aims to:
A. Improve global search capabilities by incorporating

Simulated Annealing, thus avoiding local minima.
B. Enhance computational efficiency through the refined

local search strategy of K-means++.
C. Integrate Gaussian Estimation of Distribution to opti-

mize the generation of new particle positions in the
PSO algorithm.

By addressing these key issues, this paper seeks to present
a more robust and efficient approach to data clustering,
specifically targeting high-dimensional datasets commonly
encountered in the fields of bioinformatics, healthcare, and
machine learning benchmarks like Iris, Breast Cancer, and
Heart datasets.

IV. THE PROPOSED SA-PSO-GK++ ALGORITHM
A. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is a heuristic optimization method inspired by the social
behavior of bird flocking or fish schooling. It starts with a
random population of particles where each particle repre-
sents a potential solution [10], [41], [42]. The position of
a particle is influenced by the best-known position of itself
(pBest) and the best-known position of the swarm (gBest)
[29]. The choice of fitness function and the balance between
exploration (global search) and exploitation (local search) are
crucial for the algorithm’s performance [30].
The algorithm proceeds as follows:

1) INITIALIZATION
Particles are initialized with random positions and velocities.

2) EVALUATION
Each particle’s fitness is evaluated using a given objective
function [44].

3) UPDATE BEST POSITIONS
Each particle’s best-known position (pbest) is updated if the
current position has better fitness. The global best-known
position (gbest) among all particles is also updated.

4) UPDATE VELOCITY AND POSITION
The velocity and position of each particle are updated using
the equations (1), (2)

v(t+1)
i ≡ w·v(t)i + c1·r1 ·

(
pbesti − x(t)

i

)
+ c2 · r2·

(
gbest − x(t)

i

)
(1)

x(t+1)
i = x(t)

i + v(t+1)
i (2)

where w is the inertia weight, c1 and c2 are cognitive and
social scaling factors, r1 and r2 are random numbers, vi and
xi are the velocity and position of particle i.

B. FITNESS FUNCTION
The fitness function, a measure of a particle’s quality, is an
essential part of the PSO [30], For this work, we adopted
the Sum of Squared Errors (SSE) as the fitness function
[40]. The SSE calculates the sum of the squared differences
between each observation and its group’s mean [31] using the
equation (3)

SSE =

∑n

i=1

∑k

j=1
ωij

∥∥xi − µj
∥∥2 (3)

Here, n is the total number of data points, k is the number of
clusters, ωij is an indicator of the membership of data point xi
in cluster j, xi is the i-th data point, andµj is themean of cluster
j. It serves to identify the variance within the clusters, with a
lower SSE value indicating more tightly grouped clusters.

C. K-MEANS++

Traditional K-means clustering can sometimes produce less
than optimal results due to the random initialization of cluster
centroids [6]. K-means++ improves upon this by determin-
ing the initial centroids to be more optimally spaced, thus
reducing the chance of random initialization adversely affect-
ing the results. It involves the following steps:

1) INITIALIZATION
• Step 1: Choose one center uniformly at random from the
data points.

• Step 2: For each data point x, compute the distance D(x)
between x and the nearest center that has already been
chosen.

• Step 3: Choose one new data point at random as a new
center, using a weighted probability distribution where a
point x is chosen with probability proportional to D(x)2.

• Step 4: Repeat Steps 2 and 3 until k centers are chosen.

2) CLUSTER ASSIGNMENT
Assign each data point xi to the nearest centroid, denoted by
Cj, using the equation (4):

Cj = argmin
c∈C

∥xi − c∥2 (4)

where C is the set of centroids.
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3) CENTROID UPDATE
Update the centroids by computing the mean of the data
points assigned to each cluster using equation (5):

Cj =
1∣∣Cj

∣∣ ∑
xi∈ci

xi (5)

where
∣∣Cj

∣∣ is the number of data points in cluster j, and Cj is
the centroid of clusterj.

4) CONVERGENCE
Repeat Steps 2 and 3 until the centroids do not change signif-
icantly.

The K-means++ initialization procedure aims to spread
out the initial centroids, which can lead to improved conver-
gence and clustering results compared to standard K-means.
By initializing the centroids in a way that considers the
distribution of the data points, K-means++ often results in
faster convergence and can provide a more accurate final
clustering [32].

D. GAUSSIAN ESTIMATION OF DISTRIBUTION (GED)
The Gaussian Estimation of Distribution Algorithm (EDA)
is a probabilistic model-based optimization algorithm that
models the distribution of promising solutions usingGaussian
distributions. By sampling this distribution, new candidate
solutions are generated, allowing the algorithm to search the
solution space for optimal outcomes [33].
GED is integrated into the PSO to guide the particles

toward promising regions in the search space. The new
candidate solutions are generated based on the Gaussian dis-
tribution calculated from the current positions of the particles
in the swarm [34]. This addition is aimed to provide a balance
between exploration and exploitation in the search space. It is
performed as follows:

• Compute the mean and standard deviation of the particle
positions using equations (6), (7)

Mean_position =
1
N

∑N

i=1
xi (6)

Std_position =

√
1
N

∑N

i=1
(xi − mean_position)2 (7)

• Sample a new position from the Gaussian distribution
with the computed mean and standard deviation using
equation (8):

New_position ∼ N(mean_position, std_position) (8)

E. SIMULATED ANNEALING
Simulated Annealing is a probabilistic technique inspired by
the annealing process in metallurgy. It provides a mechanism
to escape local minima, making it a suitable candidate for
integration into our hybrid SA-PSO-GK++ algorithm.
SA Parameters and Equations
1. Temperature (T): A parameter that controls the prob-

ability of accepting a worse solution than the current
one.

2. Cooling Rate (α): The rate at which the temperature
decreases.

3. Objective Function (f): The function to be minimized;
in our case, this will be the same fitness function used
for the PSO and K-means++ parts of the algorithm.

The Metropolis Criterion, which gives the probability P of
accepting a worse solution, is defined using equation (9):

P = exp(−
1f
T

) (9)

where 1f = f (new solution) − f (current solution)
The proposed hybrid algorithm, SA-PSO-GK++, intro-

duces an avant-garde amalgamation of Particle Swarm
Optimization (PSO), K-means++, Gaussian Estima-
tion of Distribution (GED), and Simulated Annealing
(SA). This unique blend aims to provide a power-
ful, robust, and efficient clustering method that mit-
igates challenges inherent to conventional clustering
algorithms.

At its core, SA-PSO-GK++ fuses PSO with K-means++,
forming a formidable foundation for highly efficient search
space exploration aimed at optimal cluster centroid iden-
tification. K-means++ ensures the initial cluster centroids
are widely distributed, minimizing the risks associated with
local optima. On the other hand, PSO, inspired by swarm
intelligence, fine-tunes these centroids by mimicking the
social behavior of birds and fish. This dual mechanism
catalyzes the algorithm’s speedy convergence to a global
optimum.

Further boosting this foundation is the Gaussian Estima-
tion of Distribution (GED). Integrated into the algorithmic
structure, GED statistically models the distribution of particle
positions. This allows for the intelligent generation of new,
promising candidate solutions based on the current swarm’s
best attributes. GED not only augments the robustness of the
algorithm but also facilitates a more nuanced exploration of
the search space, thereby increasing the likelihood of uncov-
ering the global optimum.

Simulated Annealing (SA), the newest addition to this
hybrid algorithm, brings its own set of advantages. SA intro-
duces a probabilistic mechanism to escape local minima by
accepting new positions based on a temperature-dependent
probability function. As the algorithm progresses, this ‘tem-
perature’ gradually decreases, allowing the algorithm to settle
into a global optimum. The incorporation of SA enhances
the algorithm’s resilience against premature convergence and
local optima, fortifying its explorative and exploitative capa-
bilities.

The collaboration between PSO, K-means++, GED, and
SA makes SA-PSO-GK++ a potent clustering algorithm,
promising faster convergence and higher accuracy compared
to traditional clustering methods. This amalgamation of tech-
niques contributes a novel, effective, and versatile tool to the
clustering arena, demonstrating potential applicability across
various domains that require reliable and efficient clustering
solutions.
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PSEUDOCODE OF SA-PSO-GK++ ALGORITHM
1. Load Dataset
2. Initialize number of clusters (K), number of particles (N),
max_iterations, w, c1, c2, T, alpha
3. Initialize particles with random positions and velocities
4. Initialize global best position with a random position and
calculate its fitness (F_global_best)
5. For iteration = 1 to max_iterations do
5.1 For each particle i do
5.1.1 Calculate fitness F_i of the particle’s position
using K-means++ SSE

5.1.2 If F_i < F_particle_best[i] then
Update particle’s best position
F_particle_best[i] = F_i

End if
5.1.3 If F_i < F_global_best thenUpdate global best

position
F_global_best = F_i

End if
5.1.4 Compute cognitive and social components

cognitive=c1∗rand()∗(particle_best_position -
current_position[i])
social=c2∗rand()∗(global_best_position
-current_position[i])

5.1.5 Update velocity[i]
velocity[i] = w ∗ velocity[i] + cognitive + social

5.1.6 Generate new candidate position using
Gaussian Estimation
Compute mean and std of current particle positions.
new_position = Gaussian(mean, std)

5.1.7 Apply Simulated Annealing
Compute fitness F_new of new_position
delta_F = F_new - F_i
If delta_F < 0 or rand() < exp(-delta_F / T) then

current_position[i] = new_position
End if

5.1.8 Update T = alpha ∗ T
5.2 End For each particle
6. End For iteration
7. Return global best position, fitness, and labels

V. EXPERIMENTAL SETUP AND ANALYSIS
This section presents the results obtained from executing the
novel SA-PSO-GK++, algorithm on the three benchmark
datasets. The performance of SA-PSO-GK++, is evalu-
ated based on multiple metrics: Sum of Squared Errors
(SSE), NormalizedMutual Information (NMI) and Error rate.
Additionally, the results are compared against standard K-
means, MinMaxK-means, K-means++, PSO–means, PSO-
GA, SAPSO-Kmeans and GLPSOK to demonstrate the
improvements offered by the proposed method.

A. AN EXPERIMENTAL SETUP
The algorithm was implemented with Python 3 and executed
on amachinewith an Intel Core i7 processor and 32GBRAM.

The proposed SA-PSO-GK++ algorithm and the other com-
parison algorithms was run 30 times for each dataset, with
each run consisting of 100 iterations. The swarm consisted of
ten particles.

The cognitive and social components of PSO, responsible
for individual and collective learning respectively, were both
weighted 1.4. The inertia weight, controlling the influence of
a particle’s previous velocity, was set to 0.7.

B. EXPERIMENTAL DATA SETS
The datasets employed in this study are widely accepted
benchmarks in the field of data clustering obtained from the
UCI Machine Learning Repository [36]. Table 1 surmises the
datasets:

1) IRIS DATASET (N=178, D=13, K=3)
Consists of 150 instances, each characterized by four fea-
tures. The dataset is composed of three classes, representing
three different species of Iris flowers. It is a popular dataset
for its simplicity and clear class separation.

2) BREAST CANCER WISCONSIN (DIAGNOSTIC) DATA SET
(n= 569, d D= 30, k = 2)
This dataset includes 569 instances with 30 real-valued fea-
tures each. It consists of two classes, benign and malignant,
making it a binary classification task. This dataset is favored
for its real-world relevance and higher dimensionality com-
pared to Iris.

3) HEART DISEASES DATASET (n=303, d= 13, k=2)
Comprises 303 instances, each with 13 features. This dataset,
like the Breast Cancer dataset, presents a binary classification
task. It is chosen for its mixture of categorical and continuous
features, adding to the complexity of the clustering task.

4) CONTRACEPTIVE METHOD CHOICE (CMC) DATA SET
(N=1473, D=9, K=3)
The Contraceptive Method Choice dataset consists of
1473 instances, each described by 9 attributes. The attributes
include the woman’s age, education level, husband’s educa-
tion, number of children, religion, employment status, and
more. The dataset has three classes, representing different
contraceptive methods used (No-use, Long-term, Short-
term). This dataset is selected for its relevance to public health
policy and its mix of categorical and numeric features, offer-
ing a different kind of challenge for clustering algorithms.

C. COMPARISION ALGORITHMS
In the evaluation phase, we conducted a comprehensive
comparative analysis between the proposed algorithm SA-
PSO-GK++ and the following algorithms.

1) K-MEANS
A foundational clustering method that is A widely recog-
nized clustering algorithm; K-means forms the foundational
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TABLE 1. Properties of the UCI datasets.

basis of the proposed SA-PSO-GK++ algorithm. It works by
partitioning the dataset into K clusters, aiming to minimize
the sum of intra-cluster variances. In our study, we made
a comparison against K-means clustering results introduced
in [46].

2) K-MEANS++

K-means++ is an enhanced initialization method for the
classic K-means clustering algorithm. It aims to overcome
the sensitivity to initial cluster centroids by choosing initial
centroids in a smarter way, thereby improving the quality of
the final clusters. The K-means++ initialization algorithm
places initial centroids far apart in the data space, reducing the
likelihood of suboptimal solutions. This modification often
results in faster convergence and better cluster assignments
compared to the standard K-means algorithm [46], [61].

3) MINMAXK- MEANS
A refined variant of K-means, MinMaxK-means assigns
weights to individual clusters relative to their variances [45].
It optimizes a weighted version of the K-means objective
function, where the weights are determined concurrently with
cluster assignments through iterative processes. A variant
of K-means that seeks to address the sensitivity of initial
centroids.

4) PSO-KM
A hybrid that combines Particle Swarm Optimization with
K-means. In this study, we include the PSO-KM algorithm,
initially proposed by Ahmadyfard and Modares [17], as a
comparison algorithm. The PSO-KM hybrid model capital-
izes on the global search abilities of PSO during the initial
stages of the clustering process and transitions to theK-means
algorithm for faster convergence towards the end. A fit-
ness function serves as the decision-making criterion for
this transition. This duality ensures an exhaustive search in
the solution space while also benefiting from quick conver-
gence, providing a balanced and efficient clustering method.
Previous studies have shown the PSO-KM algorithm’s effec-
tiveness on various real and synthetic datasets, making it a
valuable benchmark for our study.

5) PSO-GA
This is a hybrid of PSO with genetic algorithm for clustering
medical data was introduced in [47]. Their approach utilized

GA for global search initially, followed by PSO for local
search.

6) SAPSO-KMEANS
The SAPSO-KMEANS algorithm aims to overcome the lim-
itations of K-means by enhancing it with the global search
capabilities of PSO and the local search benefits of SA. The
algorithm is designed to improve the likelihood of reaching
the global optimum by allowing the particles to escape local
minima [48].

7) GLPSOK
This is another algorithm in comparison is the hybrid PSO-
K-means clustering method using Gaussian Estimation and
Lévy Flight. This fusion enhances optimization performance
by combining the exploratory nature of Lévy Flight with
Gaussian Estimation, offering robustness over traditional
PSO or K-means approaches, his work serves as a founda-
tional basis for our current study and emphasizes the potential
of merging metaheuristic techniques with traditional cluster-
ing methods [20].
These algorithms and some of the results were previously

compared and evaluated on various datasets and metrics.
In our study, we have extended this comparison by including
SA-PSO-GK++ algorithm and by running some of these
algorithms again and getting better results. This approach
allows us to offer new insights and a deeper understanding
of the clustering methods in comparison.

D. PARAMETER SETTINGS
To guarantee consistency and fairness across our experi-
ments, every algorithm was executed 30 times independently
on each dataset. And we standardized specific parameter
settings for all the algorithms evaluated: for all algorithms
grounded in PSO, we limited the maximum number of fitness
evaluations to 30,000.

For algorithms like K-means, K-means++, and their vari-
ants, an iteration typically involves updating the centroids
of the clusters and reassigning data points to the closest
centroids. The process repeats until the centroids stabilize
(i.e., there are no or minimal changes in centroid positions)
or the maximum number of iterations is reached. We simi-
larly restricted the maximum number of calculations for their
respective objective functions to 30,000.

In the case of Particle Swarm Optimization (PSO) based
algorithms (like PSO-KM, PSO-GA, SA-PSO-KMeans,
GLPSOK, SA-PSO-GK++), an iteration involves updating
the positions and velocities of particles in the search space.
The max iteration limit here to 100 to ensures that the search
process doesn’t continue indefinitely and helps in comparing
the performance of different algorithms under similar condi-
tions.

K-means, K-means++ is an exception as it does not
require any additional parameters beyond this only k (number
of clusters) which will depend on dataset k=3 for iris dataset,
k=2 for breast cancer, CMC and heart diseases datasets.
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TABLE 2. Parameter settings for SA-PSO-GK++ and the comparison.

For the other algorithms being compared, we adhered to the
parameter settings as prescribed either in their original publi-
cations or their default configurations. A detailed breakdown
of these settings can be found in Table 2.

Where:
P_size: Population size of the particles in PSO.
Max_FEs: Maximum number of fitness evaluations.
c_1: Personal learning coefficient.
c_2: Global learning coefficient.
w: max Inertia weight, which varies linearly from 0.9 to

0.5 over iterations.
T_init: Initial temperature for simulated annealing.
r: Cooling rate for simulated annealing.
Iter_SA: Number of iterations for simulated annealing.
epsilon: Convergence_threshold.

E. EVALUATION METRICS
In order to evaluate the effectiveness of the proposed hybrid
algorithm, The metrics used in this study – Sum of Euclidean
Distances (SED), Normalized Mutual Information (NMI),
and error rate – are directly influenced by the addressed clus-
tering challenges. The ability of SA-PSO-GK++ to escape
local minima is reflected in the SED metric, as it measures
the compactness of clusters. A lower SED indicates that the
algorithm effectively found cluster centroids closer to the true
centers of the data, avoiding sub-optimal solutions. NMI, as a
measure of clustering quality, is enhanced by the algorithm’s
adaptability and scalability. This metric illustrates how well
the algorithm can uncover the inherent structure of the data,
regardless of the dataset’s complexity or size. Lastly, the error
rate is a direct indication of the algorithm’s overall clustering
accuracy. The integration of SA, K-means++, and Gaus-
sian Estimation of Distribution within the SA-PSO-GK++

framework helps in reducing the error rate, showcasing the
algorithm’s efficiency in correctly assigning data points to
their respective clusters. Thus, improvements in these met-

rics are a testament to the efficacy of the SA-PSO-GK++

algorithm in overcoming common clustering challenges and
delivering superior performance. The detailed of the metrics
are below:

1) NORMALIZED MUTUAL INFORMATION (NMI)
NMI is an information-theoretic measure that quantifies the
amount of information obtained about one variable through
observing the other variable [37]. In the context of clustering,
it’s used to measure the similarity between the true labels
and the labels assigned by the clustering algorithm [38]. The
NMI value ranges from 0 (no mutual information) to 1 (per-
fect correlation), with higher values indicating better using
equation (10)

NMI (A,B) =
2xI(A;B)

H (A) + H (B)
(10)

where I(A;B) is the mutual information between clusters A
and B, and H (A) and H (B) are the entropies of A and B,
respectively.

2) ERROR RATE
One of the evaluation metrics employed in this study is the
Error Rate [31], This metric calculates the ratio of incorrectly
clustered instances to the total number of instances. Mathe-
matically, it can be represented as equation (11).

Error Rate =
Number of Incorrect Clustered Instances

Total Nuber of Instances
(11)

3) SUM OF SQUARED ERRORS (SSE)
The SSE was used as the fitness function for the PSO. it aims
to minimize the total squared deviation of each observation
from its cluster mean [30]. A lower SSE value means that
the data points are closer to the centroids of their respective
clusters, indicating a more accurate clustering.

The SSE is calculated as the sum of the squared distances
between each observation and its corresponding cluster cen-
troid. It is formulated as equation (12):

SSE =

∑n

i=1

∑k

j=1
ωij

∥∥xi − µj
∥∥2 (12)

where:
n is the number of observations.
k is the number of clusters.
xi is the i-th observation.
cj is the centroid of the j-th cluster.
wij is 1 if observation i is in cluster j, and 0 otherwise.

F. COMPUTATIONAL COMPLEXITY ANALYSIS
As we delve into the intricacies of clustering algorithms,
understanding their computational complexity becomes
paramount. This is particularly vital when comparing novel
hybrid algorithms against established methods, as it offers
insights into their scalability and practical applicability. The
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TABLE 3. Complexity calculations for SA-PSO-GK++ and the comparison
algorithms.

following table2 presents a detailed computational complex-
ity analysis of the proposed hybrid clustering algorithm,
SA-PSO-GK++, in juxtaposition with other prevalent clus-
tering algorithms.

Breakdown of the complexities for each:
1) Simulated Annealing (SA): Given its iterative nature,

themain cost comes from evaluating the objective func-
tion. If we letMaxIterSA denote the maximum number
of SA iterations, the complexity can be approximated
as O(MaxIterSA×cost_of_eval), where cost_of_eval
would be the complexity of evaluating the objective
function.

2) Particle Swarm Optimization (PSO): Its complexity,
as mentioned previously, is O(N × D×MaxFs), where
N is the number of particles, D is the dimensionality,
and MaxFs is the maximum number of fitness evalua-
tions.

3) Gaussian Kernel Estimation of Distribution: Gener-
ally, for Gaussian Kernel methods, calculating pairwise
distances is the most computationally intensive step. Its
complexity is O(N2×D).

4) KMeans++: For initialization, KMeans++ requires
O(N × K ), and for clustering, the standard KMeans
complexity is O(N × K × D×MaxFs).

Considering all these parts, a rough estimation for the com-
plexity of our hybrid algorithm would be: O(MaxIterSA
×[N ×D×MaxFs+N2×D+N ×K +N ×K ×D×MaxFs])

VI. RESULT ANALYSIS ON DATASETS
In this section, we describe the comparative experimental
results obtained by applying the proposed algorithm, SA-
PSO-GK++, to four real world datasets: Iris, heart, breast
cancer and CMCwith threemetrics NMI, SED, and error rate.

For the Iris dataset results shown in table 4, the SA-PSO-
GK++ outperformed the traditional K-means and its direct

upgrade, K-means++, MinMax-means and the compined
algorithms PSO-KM, PSO-GA, SA-PSO-KMeans and GLP-
SOK in terms of the Sum of Euclidean Distances (SED)
and Normalized Mutual Information (NMI) and Error Rate
for the iris dataset indicating tighter clustering and better
class purity alignment. Notably, the error rate was minimized
which is a substantial improvement over other algorithms,
demonstrating the effectiveness of the proposed method in
dealing with well-separated clusters. Fig 1 summarize the
results of the metrics on Iris dataset.

In the context of the Breast Cancer dataset shown in
table 5, which presents a more challenging and higher-
dimensional space, the SA-PSO-GK++ algorithm’s perfor-
mance remained robust, achieving the lowest SED among the
compared algorithms but not the lowest error rate although
the rate is better than other algorithms among the compared
algorithms. The NMI for SA-PSO-GK++ was the highest
suggesting that the incorporation of simulated annealing and
Gaussian estimation within the PSO and K-means++ frame-
work effectively captures the underlying distribution of data
points.. Fig 2 summarize the results of the metrics on Breast
Cancer dataset data set.

The comparative results for the Heart Disease dataset
shown in table 6 exhibit a continuation of the trend observed
in the previous datasets. Here, the proposed SA-PSO-GK++

algorithm achieved the lowest SED, signifyingmore cohesive
clustering when handling medical datasets characterized by
mixed feature types. The NMI for SA-PSO-GK++was supe-
rior to some other algorithms but not the best one, suggesting
an improved match between the clusters formed and the
inherent data distribution error rate has low value but not the
lowest and still needs enhancement in the context of heart
disess. Fig 3 summarize the results of the metrics on Heart
Disease data set.

The analysis on the CMC dataset shown in table 7, which
often represents a multi-class clustering challenge, showed
that SA-PSO-GK++ maintained a competitive edge. It reg-
istered the lowest SED and the highest NMI, which indicates
they were more accurate in terms of representing the true data
labels. The error rate was also among the lowest, reinforcing
the algorithm’s capability to maintain high performance even
as the complexity of the task increases. Fig 4 summarize the
results of the metrics on CMC data set

In assessing the comparative performance of the pro-
posed SA-PSO-GK++ algorithm against the comparison
algorithms, we employed theWilcoxon signed-rank test [53],
a non-parametric statistical hypothesis test. This test is par-
ticularly suitable for our analysis given its ability to manage
non-normally distributed data which is common in algorith-
mic performance metrics. For each metric—SED, NMI, and
error rate, we calculated the differences between the paired
observations from 30 independent runs on the four datasets.
The Wilcoxon test then assigns ranks to these absolute dif-
ferences, summing ranks separately for positive and negative
differences to obtain.
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TABLE 4. Comparative Statistical mean (standard deviation) results of eight algorithms across three metrics on the iris dataset In 30 independent runs.

TABLE 5. Comparative statistical mean (standard deviation) results of eight algorithms across three metrics on the breast cancer dataset In
30 independent runs.

TABLE 6. Comparative Statistical mean (standard deviation) Results of Eight Algorithms across Three Metrics on the Heart Dataset In 30 independent runs.

TABLE 7. Comparative Statistical mean (standard deviation) Results of Eight Algorithms across Three Metrics on the CMC Dataset In 30 independent runs.

W+ and W− values. These sums are critical in computing
the test statistic, which under the null hypothesis follows a

known distribution, allowing us to derive the p-value. A low
p-value (typically < 0.05) indicates a statistically significant
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FIGURE 1. Box plots of SED, NMI, Error Rate obtained by eight algorithms on Iris Data set with 30 independent runs.

FIGURE 2. Box plots of SED, NMI, Error Rate obtained by eight algorithms on Breast cancer Data set with 30 independent runs.

FIGURE 3. Box plots of SED, NMI, Error Rate obtained by eight algorithms on Heart diseases Data set with 30 independent runs.

FIGURE 4. Box plots of SED, NMI, Error Rate obtained by eight algorithms on CMC Data set with 30 independent run.

difference in the performance of the algorithms, suggesting
that the observed differences are not due to random variation.

Conversely, a higher p-value suggests insufficient evidence
to assert a significant difference in performance. Moreover,
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TABLE 8. The results of the Wilcoxon signed rank test, between K-means vs. SA-PSO-GK++ with the significance level_D 0.05.

TABLE 9. The results of the Wilcoxon signed rank test, K-means++ vs. SA-PSO-GK++with the significance level_D 0.05.

TABLE 10. The results of the Wilcoxon signed rank test, Min-Max kmeans vs. SA-PSO-GK++with the significance level_D 0.05.

TABLE 11. The results of the Wilcoxon signed rank PSO-KM vs. SA-PSO-GK++test, with the significance level_D 0.05.

to facilitate the interpretation of these tests, we also provide
the z-value—a standardized measure of the test statistic. The

z-value indicates how many standard deviations the observed
statistic is from the expected value under the null hypothesis,
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TABLE 12. The results of the Wilcoxon signed rank test, PSO-GA vs. SA-PSO-GK++with the significance level_D 0.05.

TABLE 13. The results of the Wilcoxon signed rank test, SA-PSO-KMeans vs. SA-PSO-GK++ with the significance level_D 0.05.

TABLE 14. The results of the Wilcoxon signed rank test, GLPSOK vs. SA-PSO-GK++ with the significance level_D 0.05.

which, alongside the p-value, provides a robust understanding
of the statistical significance of the performance differences
observed. Wilcoxon signed rank test results are shown in
Table 8 to table 14.

The consistency in the performance of SA-PSO-GK++

across various datasets, underlines the algorithm’s robustness
and versatility. It demonstrates that the integration of SA and
GEDwithin the PSO and K-means++ framework is not only
theoretically sound but also practically viable across different
data complexities. These results underscore the potential of
SA-PSO-GK++ in a wide range of clustering scenarios,
including those with multiple classes and mixed feature types
commonly encountered in the medical field. Across both
datasets, it also showcased superior performance metrics,
highlighting the algorithm’s adaptability and scalability. The

use of simulated annealing helped in avoiding local optima,
a common pitfall for traditional algorithms like K-means,
while Gaussian estimation provided a probabilistic approach
to centroid initialization and particle updates in PSO, enhanc-
ing the global search capabilities.

VII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
In this study, we have proposed a novel hybrid clustering
algorithm, SA-PSO-GK++, that synergistically combines
Particle Swarm Optimization (PSO), K-means++, Gaussian
Estimation of Distribution (GED), and Simulated Anneal-
ing (SA). Our hybrid model demonstrates the capability of
escaping local minima thanks to the Simulated Annealing
component, while the PSO and K-means++ components
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ensure rapid and efficient global search. The Gaussian
Estimation of Distribution further refines the solution by
modeling the underlying distribution of the particle space,
leading to statistically guided updates.

Experimental results on benchmark datasets like Iris,
Breast cancer, Heart andCMC show that our hybrid algorithm
outperforms traditional clustering algorithms in terms of
NMI, SSE, and error rate. The algorithm is particularly
effective in scenarios where initial clustering centroids are
unknown or poorly defined, thereby manifesting its robust-
ness.

B. FUTURE WORK
In light of the findings and contributions of this study, several
avenues for future research emerge. One of the most imme-
diate next steps is to apply the SA-PSO-GK++ algorithm
to a wider array of datasets, including those with higher
dimensions and different types of data distributions, to bet-
ter evaluate its generalizability. Additionally, it would be
valuable to explore the integration of other optimization
techniques or meta-heuristics with our proposed model to
investigate whether they could further enhance the perfor-
mance. The computational complexity of SA-PSO-GK++

could be another focus, aiming to make the algorithm more
scalable for large datasets. A comparative study involving
more evaluation metrics could also be beneficial to provide a
more comprehensive performance assessment. Furthermore,
the algorithm’s applicability in real-world scenarios, such as
image segmentation, text mining, and bioinformatics, war-
rants investigation, clustering for privacy protection. These
future explorations are anticipated to further validate and
extend the utility of the proposed SA-PSO-GK++ algorithm
in the field of data clustering.

REFERENCES
[1] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Upper Saddle

River, NJ, USA: Prentice-Hall, 1988.
[2] A. K. Jain, M. N.Murty, and P. J. Flynn, ‘‘Data clustering: A review,’’ ACM

Comput. Surv. (CSUR), vol. 31, no. 3, pp. 264–323, 1999.
[3] P. K. Bharne, V. S. Gulhane, and S. K. Yewale, ‘‘Data clustering algo-

rithms based on swarm intelligence,’’ in Proc. 3rd Int. Conf. Electron.
Comput. Technol., vol. 4, Kanyakumari, India, Apr. 2011, pp. 407–411,
doi: 10.1109/ICECTECH.2011.5941931.

[4] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning
With Sparsity: The Lasso and Generalizations. Boca Raton, FL, USA:
CRC Press, 2015.

[5] M. E. Celebi, H. A. Kingravi, and P. A. Vela, ‘‘A comparative study of
efficient initialization methods for the k-means clustering algorithm,’’ Exp.
Syst. Appl., vol. 40, no. 1, pp. 200–210, Jan. 2013.

[6] K. Singh, D. Malik, and N. Sharma, ‘‘Evolving limitations in K-means
algorithm in data mining and their removal,’’ Int. J. Comput. Eng. Manag.,
vol. 12, no. 1, pp. 105–109, 2011.

[7] D. Arthur and S. Vassilvitskii, ‘‘K-means++ the advantages of careful
seeding,’’ in Proc. 11th Annu. ACM-SIAM Symp. Discrete Algorithms,
2007, pp. 1027–1035.

[8] Y. Xu, W. Qu, Z. Li, G. Min, K. Li, and Z. Liu, ‘‘Efficient k-means++

approximation with MapReduce,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 12, pp. 3135–3144, Dec. 2014.

[9] A. Abraham, S. Das, and S. Roy, ‘‘Swarm intelligence algorithms for data
clustering,’’ in Soft Computing for Knowledge Scovery and Data Mining.
Boston, MA, USA: Springer, 2008. 279-313.

[10] D.W. van derMerwe andA. P. Engelbrecht, ‘‘Data clustering using particle
swarm optimization,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), vol. 1,
Dec. 2003, pp. 215–220, doi: 10.1109/CEC.2003.1299577.

[11] T. Hassanzadeh andM. R.Meybodi, ‘‘A new hybrid approach for data clus-
tering using firefly algorithm and K-means,’’ in Proc. 16th CSI Int. Symp.
Artif. Intell. Signal Process. (AISP), Shiraz, Iran, May 2012, pp. 007–011,
doi: 10.1109/AISP.2012.6313708.

[12] X. S. Yang andX. He, ‘‘Bat algorithm: Literature review and applications,’’
Int. J. Bio-Inspired Comput., vol. 5, no. 3, pp. 141–149, 2013.

[13] A. Chakraborty and A. K. Kar, ‘‘Swarm intelligence: A review of algo-
rithms,’’ in Nature-Inspired Computing and Optimization: Theory and
Applications. 2017, pp. 475–494.

[14] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. Amsterdam,
The Netherlands: Elsevier, 2001.

[15] X. Gong, L. Liu, S. Fong, Q. Xu, T. Wen, and Z. Liu, ‘‘Comparative
research of swarm intelligence clustering algorithms for analyzing medical
data,’’ IEEE Access, vol. 7, pp. 137560–137569, 2019.

[16] S. M. A. Salehizadeh, P. Yadmellat, and M. B. Menhaj, ‘‘Local optima
avoidable particle swarm optimization,’’ in Proc. IEEE Swarm Intell.
Symp., Mar. 2009, pp. 16–21.

[17] A. Ahmadyfard and H. Modares, ‘‘Combining PSO and k-means to
enhance data clustering,’’ in Proc. Int. Symp. Telecommun., Tehran, Iran,
Aug. 2008, pp. 688–691, doi: 10.1109/ISTEL.2008.4651388.

[18] K. A. Prabha andN. K. Visalakshi, ‘‘Improved particle swarm optimization
based K-means clustering,’’ in Proc. Int. Conf. Intell. Comput. Appl.,
Coimbatore, India, Mar. 2014, pp. 59–63, doi: 10.1109/ICICA.2014.21.

[19] H. A. Atabay, M. J. Sheikhzadeh, andM. Torshizi, ‘‘A clustering algorithm
based on integration of K-means and PSO,’’ in Proc. 1st Conf. Swarm
Intell. Evol. Comput. (CSIEC), Bam, Iran, Mar. 2016, pp. 59–63, doi:
10.1109/CSIEC.2016.7482110.

[20] H. Gao, Y. Li, P. Kabalyants, H. Xu, and R. Martínez-Béjar, ‘‘A novel
hybrid PSO-K-means clustering algorithm using Gaussian estima-
tion of distribution method and Lévy flight,’’ IEEE Access, vol. 8,
pp. 122848–122863, 2020, doi: 10.1109/ACCESS.2020.3007498.

[21] Y.-K. Lam, P. W. M. Tsang, and C.-S. Leung, ‘‘PSO-based K-means clus-
tering with enhanced cluster matching for gene expression data,’’ Neural
Comput. Appl., vol. 22, nos. 7–8, pp. 1349–1355, Jun. 2013.

[22] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in
Proc. IEEE ICNN, vol. 4. Nov./Dec. 1995, pp. 1942–1948, doi:
10.1109/ICNN.1995.488968.

[23] M. Omran, A. P. Engelbrecht, and A. Salman, ‘‘Particle swarm optimiza-
tion method for image clustering,’’ Int. J. Pattern Recognit. Artif. Intell.,
vol. 19, no. 3, pp. 297–321, May 2005.

[24] S. Janson and M. Middendorf, ‘‘A hierarchical particle swarm optimizer
and its adaptive variant,’’ IEEE Trans. Syst., Man, Cybern., B, vol. 35, no. 6,
pp. 1272–1282, Dec. 2005, doi: 10.1109/TSMCB.2005.850530.

[25] X. -S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc. World
Congr. Nature Biologically Inspired Comput. (NaBIC), Coimbatore, India,
2009, pp. 210–214, doi: 10.1109/NABIC.2009.5393690.

[26] C. Ratanavilisagul, ‘‘A novel modified particle swarm optimization
algorithm with mutation for data clustering problem,’’ in Proc. 5th Int.
Conf. Comput. Intell. Appl. (ICCIA), Beijing, China, Jun. 2020, pp. 55–59.

[27] C. Hua, ‘‘A quantum-inspired particle swarm optimization K-
means++ clustering algorithm,’’ in Proc. IEEE Symp. Ser. Comput.
Intell. (SSCI), Orlando, FL, USA, Dec. 2021, pp. 1–6, doi:
10.1109/SSCI50451.2021.9659549.

[28] H. Li and J. Wang, ‘‘Collaborative annealing power k-means++ cluster-
ing,’’ Knowl.-Based Syst., vol. 255, Nov. 2022, Art. no. 109593.

[29] A. Carlisle and G. Dozier, ‘‘An off-the-shelf PSO,’’ in Proc. Workshop
Particle Swarm Optim., vol. 1, 2001, pp. 1–6.

[30] T. Peram, K. Veeramachaneni, and C. K. Mohan, ‘‘Fitness-distance-
ratio based particle swarm optimization,’’ in Proc. IEEE Swarm Intell.
Symp., Apr. 2003, pp. 174–181.

[31] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction
to Cluster Analysis. Hoboken, NJ, USA: Wiley, 2009.

[32] S. Daoudi, C. M. A. Zouaoui, M. C. El-Mezouar, and N. Taleb, ‘‘Par-
allelization of the k-means++ clustering algorithm,’’ Ingénierie des
systèmes d Inf., vol. 26, no. 1, pp. 59–66, Feb. 2021.

[33] C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium. vol. 7. 1877.

[34] E. Bengoetxea and P. Larrañaga, ‘‘EDA-PSO: A hybrid paradigm combin-
ing estimation of distribution algorithms and particle swarm optimization,’’
in Swarm Intelligence. Berlin, Germany: Springer, 2010.

VOLUME 12, 2024 12515

http://dx.doi.org/10.1109/ICECTECH.2011.5941931
http://dx.doi.org/10.1109/CEC.2003.1299577
http://dx.doi.org/10.1109/AISP.2012.6313708
http://dx.doi.org/10.1109/ISTEL.2008.4651388
http://dx.doi.org/10.1109/ICICA.2014.21
http://dx.doi.org/10.1109/CSIEC.2016.7482110
http://dx.doi.org/10.1109/ACCESS.2020.3007498
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/TSMCB.2005.850530
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1109/SSCI50451.2021.9659549


A. Abdo et al.: SA-PSO-GK++: A New Hybrid Clustering Approach for Analyzing Medical Data

[35] F. Kayaalp and P. Erdogmus, ‘‘Benchmarking the clustering performances
of evolutionary algorithms: A case study on varying data size,’’ IRBM,
vol. 41, no. 5, pp. 267–275, Oct. 2020.

[36] D. Dua. UCI Machine Learning Repository. Accessed: Mar. 20, 2019.
[Online]. Available: http://archive.ics.uci.edu/ml

[37] E. T. Jaynes, ‘‘Information theory and statistical mechanics,’’ Phys. Rev.,
vol. 106, no. 4, pp. 620–630, May 1957.

[38] Z.. X. Fern and C. E. Brodley, ‘‘Random projection for high dimensional
data clustering: A cluster ensemble approach,’’ in Proc. 20th Int. Conf.
Mach. Learn., 2003, pp. 186–193.

[39] K. A. Nazeer and M. P. Sebastian, ‘‘Improving the accuracy and efficiency
of the k-means clustering algorithm,’’ in Proc. World Congr. Eng., vol. 1.
London, U.K.: Association of Engineers London, 2009, pp. 1–3.

[40] T. Thinsungnoena, N. Kaoungkub, P. Durongdumronchaib, K. Kerdpra-
sopb, and N. Kerdprasopb, ‘‘The clustering validity with silhouette and
sum of squared errors,’’ Learning, vol. 3, no. 7, 2015.

[41] A. A. A. Esmin, R. A. Coelho, and S.Matwin, ‘‘A review on particle swarm
optimization algorithm and its variants to clustering high-dimensional
data,’’ Artif. Intell. Rev., vol. 44, no. 1, pp. 23–45, Jun. 2015.

[42] M. W. Rand, ‘‘Objective criteria for the evaluation of clustering methods,’’
J. Amer. Stat. Assoc., vol. 66, no. 336, pp. 846–850, 1971.

[43] B. H. Nguyen, B. Xue, and M. Zhang, ‘‘A survey on swarm intelligence
approaches to feature selection in data mining,’’ Swarm Evol. Comput.,
vol. 54, May 2020, Art. no. 100663.

[44] M. Jain, V. Saihjpal, N. Singh, and S. B. Singh, ‘‘An overview of variants
and advancements of PSO algorithm,’’ Appl. Sci., vol. 12, no. 17, p. 8392,
Aug. 2022.

[45] G. Tzortzis and A. Likas, ‘‘The MinMax k-means clustering algorithm,’’
Pattern Recognit., vol. 47, no. 7, pp. 2505–2516, Jul. 2014.

[46] R. Xu and D. Wunsch II, ‘‘Survey of clustering algorithms,’’ IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[47] I. K. Gupta, V. Yadav, and S. Kumar, ‘‘Medical data clustering based on
particle swarm optimisation and genetic algorithm,’’ Int. J. Adv. Intell.
Paradigms, vol. 14, no. 3, pp. 345–358, 2019.

[48] X. Wang and Q. Sun, ‘‘The study of K-means based on hybrid
SA-PSO algorithm,’’ in Proc. 9th Int. Symp. Comput. Intell. Design
(ISCID), vol. 2, Hangzhou, China, Dec. 2016, pp. 211–214, doi:
10.1109/ISCID.2016.2057.

[49] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[50] S. N. Sivanandam, Genetic Algorithms. Berlin, Germany: Springer, 2008.
[51] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, ‘‘A simulated

annealing-based multiobjective optimization algorithm: AMOSA,’’ IEEE
Trans. Evol. Comput., vol. 12, no. 3, pp. 269–283, Jun. 2008.

[52] B. Suman and P. Kumar, ‘‘A survey of simulated annealing as a tool for
single and multiobjective optimization,’’ J. Oper. Res. Soc., vol. 57, no. 10,
pp. 1143–1160, Oct. 2006.

[53] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ in Break-
throughs in Statistics: Methodology and Distribution. New York, NY,
USA: Springer, 1992. 196-202.

[54] R. Poli, J. Kennedy, T. Blackwell, and A. Freitas, ‘‘Particle swarms:
The second decade,’’ J. Artif. Evol. Appl., vol. 2008, pp. 1–3, May 2008.

[55] X. Wang, H. Zhao, T. Han, Z. Wei, Y. Liang, and Y. Li, ‘‘A Gaussian
estimation of distribution algorithm with random walk strategies and its
application in optimal missile guidance handover for multi-UCAV in over-
the-horizon air combat,’’ IEEE Access, vol. 7, pp. 43298–43317, 2019.

[56] R. Jensi and G. W. Jiji, ‘‘An enhanced particle swarm optimization
with Lévy flight for global optimization,’’ Appl. Soft Comput., vol. 43,
pp. 248–261, Jun. 2016.

[57] H. Hakli and H. Uguz, ‘‘A novel particle swarm optimization algorithm
with Lévy flight,’’ Appl. Soft Comput., vol. 23, pp. 333–345, Oct. 2014.

[58] Y. Gu, Y. Zhang, and H. Zhang, ‘‘Particle swarm K-means++ clustering
method based on multiple differential privacy protection mechanism,’’ in
Proc. IEEE 3rd Int. Conf. Inf. Technol., Big Data Artif. Intell. (ICIBA),
vol. 3, May 2023, pp. 769–773.

[59] S. Paul, S. De, and S. Dey, ‘‘A novel approach of data clustering
using an improved particle swarm optimization based K-means clustering
algorithm,’’ in Proc. IEEE Int. Conf. Electron., Comput. Commun. Technol.
(CONECCT), Jul. 2020, pp. 1–6.

[60] E. R. Krishna, N. Devarakonda, M. Y. H. Al-Shamri, and D. Revathi,
‘‘A novel hybrid clustering analysis based on combination of K-means
and PSO algorithm,’’ in Data Intelligence and Cognitive Informatics.
Singapore: Springer, 2022. 139-150.

[61] A. Deshpande, P. Kacham, and R. Pratap, ‘‘Robust k-means++,’’ in Proc.
Conf. Uncertainty Artif. Intell., 2020, pp. 799–808.

AMANI ABDO was born in 1980. She received
the bachelor’s degree in computers and informa-
tion, the master’s degree in information systems,
and the Ph.D. degree in bioinformatics from the
Department of Information Systems, Faculty of
Computers and Information, Helwan University,
in 2000, 2004, and 2010, respectively. She has
supervised many graduation projects in the field
of data mining, big data, and artificial intelligence.
She also supervised many master’s and doctoral

dissertations in the fields of machine learning, software engineering, infor-
mation systems, medical informatics, and bioinformatics.

OMNIA ABDELKADER was born in 1990. She
received the bachelor’s degree in communication
and computer engineering from Helwan Univer-
sity, Egypt, where she is currently pursuing the
master’s degree with the Software Engineering
Program. She is also with Udacity as a Senior
Programming Instructor.

LAILA ABDEL-HAMID received the bachelor’s,
M.Sc., and Ph.D. degrees in information systems
from Helwan University, in 2005, 2011, and 2018,
respectively. She is a Lecturer with the Faculty
of Computer and Artificial Intelligence, Helwan
University. Her research focuses on data stream-
ing, data mining, sentiment analysis, and software
engineering.

12516 VOLUME 12, 2024

http://dx.doi.org/10.1109/ISCID.2016.2057

